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Abstract

Learning system dynamics directly from observations is a
promising direction in machine learning due to its potential to
significantly enhance our ability to understand physical sys-
tems. However, the dynamics of many real-world systems are
challenging to learn due to the presence of nonlinear poten-
tials and a number of interactions that scales quadratically
with the number of particles N , as in the case of the N-body
problem. In this work, we introduce an approach that trans-
forms a fully-connected interaction graph into a hierarchi-
cal one which reduces the number of edges to O(N). This
results in linear time and space complexity while the pre-
computation of the hierarchical graph requires O(N log(N))
time and O(N) space. Using our approach, we are able to
train models on much larger particle counts, even on a sin-
gle GPU. We evaluate how the phase space position accuracy
and energy conservation depend on the number of simulated
particles. Our approach retains high accuracy and efficiency
even on large-scale gravitational N-body simulations which
are impossible to run on a single machine if a fully-connected
graph is used. Similar results are also observed when simu-
lating Coulomb interactions. Furthermore, we make several
important observations regarding the performance of this new
hierarchical model, including: i) its accuracy tends to improve
with the number of particles in the simulation and ii) its gen-
eralisation to unseen particle counts is also much better than
for models that use all O(N2) interactions.

1 Introduction
The ability to simulate complex systems is invaluable to
many fields of science and engineering. Constructing simu-
lators for such systems by hand can be very labour intensive
or even impossible if the underlying processes are not under-
stood or no sufficiently precise and accurate approximations
of the interactions are known. To address this, various data-
driven methods for learning system dynamics have been in-
vestigated (Battaglia et al. 2016; Mrowca et al. 2018; Li et al.
2018; Greydanus, Dzamba, and Yosinski 2019; Sanchez-
Gonzalez et al. 2019, 2020; Finzi et al. 2020). However, they
either use only local interactions between close-by particles
or they simulate systems with just a few particles. Unfor-
tunately, this does not capture many real-world scenarios,
where systems are comprised of thousands of particles that
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interact over long distances. Using only local interactions
would cause very high errors in such cases.

In this contribution, we focus in particular on the N-body
problem, since it cannot be solved to sufficient accuracy
with only local information. The nonlinearity of the inter-
actions and the fact that the system is chaotic if the number
of particles N > 2 (Roy 2012) makes this problem par-
ticularly complicated. This complexity can be seen in the
original work on Hamiltonian Neural Networks (Greydanus,
Dzamba, and Yosinski 2019) where the performance on the
2-body problem was good, but significantly deteriorated on
the 3-body problem.

We propose a hierarchical model1 which builds on top of
existing graph network (GN) architectures such as (Battaglia
et al. 2018) and previous work on accurate physical simula-
tions of a few particles (Sanchez-Gonzalez et al. 2019). Our
hierarchical architecture is physically motivated by the mul-
tipole expansion and inspired by the fast multipole method
(FMM) (Greengard 1988). Our method allows us to extend
existing models and simulate complex systems that require
O(N2) interactions with thousands of particles which we
have observed empirically to be infeasible when a fully con-
nected graph is used. Importantly, models that use our hier-
archical approach retain similar accuracy to models working
with a fully connected graph and a smaller particle count.

Finally, we note that the fast multipole method and
multipole expansion have been applied to various other
problems, such as flow simulations (Koumoutsakos and
Leonard 1995), acoustics (Gunda 2008), molecular dynam-
ics (Board Jr et al. 1992; Ding, Karasawa, and Goddard III
1992) and even interpolation of scattered data (reconstruc-
tion of a 3D object mesh) (Carr et al. 2001). This suggests
that our hierarchical method should also facilitate learning
on a similarly wide range of problems.

2 Related Work
Recent studies show that neural networks can successfully
learn to simulate complex physical processes (Battaglia et al.
2016; Sanchez-Gonzalez et al. 2018; Mrowca et al. 2018;
Li et al. 2018; Greydanus, Dzamba, and Yosinski 2019;
Sanchez-Gonzalez et al. 2019, 2020). Most of the existing
work focuses on introducing better physical biases such as

1Code available at: https://git.io/JtUXt
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a relational model (Battaglia et al. 2016), conservation law
bias (Greydanus, Dzamba, and Yosinski 2019), combining
these with an ODE bias (Sanchez-Gonzalez et al. 2019) and
various similar refinements (Chen et al. 2019; Zhong, Dey,
and Chakraborty 2019; Saemundsson et al. 2020; Desai and
Roberts 2020). Unfortunately, all of these highly accurate
and noise resistant models are only able to work with tens of
particles in complex spring or gravitational systems. Mod-
els which are focused on simulating fluids, rigid and de-
formable bodies are able to work with thousands of particles
(Mrowca et al. 2018; Li et al. 2018; Sanchez-Gonzalez et al.
2020). However, in these scenarios, it is possible to achieve
state of the art performance by just using local information
(Sanchez-Gonzalez et al. 2020).

There is a long history of attempts to improve the scala-
bility of traditional particle simulations. One of the first effi-
cient methods was the tree code introduced by (Barnes and
Hut 1986). It uses a hierarchical spatial tree (i.e. quadtree)
to define localised groups of particles. Particles then interact
directly with other groups (instead of their member parti-
cles) if the distance to the group is sufficiently larger than
the radius encompassing all of the particles in that group, to
avoid large errors. Interaction list for each particle would be
computed by going through the tree top-down and at each
level adding all of the cells that are sufficiently far away and
haven’t been covered by previous interactions to the list. At
the lowest level, particles from neighbouring cells would in-
teract directly. This algorithm has O(N log(N)) complex-
ity. Fast multipole method (FMM) (Greengard and Rokhlin
1987) improved this approach by adding cell-cell interac-
tions and then propagating the resulting effects to the chil-
dren. This algorithm has O(N) complexity for the force es-
timation. It has been shown by (Dehnen 2014) that by care-
fully tweaking the implementation of the FMM it is possible
to achieve comparable gravitational force errors to a direct
summation method that computes all O(N2) interactions.

In this work, we apply the lessons learned in scaling tradi-
tional particle simulations to current approaches of learning
simulations from data using graph neural networks.

There have been attempts to incorporate a hierarchical
structure to neural simulators of fluids, rigid and deformable
bodies (Mrowca et al. 2018; Li et al. 2018). However, in
those cases, the focus was to improve the accuracy and ef-
fect propagation in simulations with only local interactions
between particles. The resulting methods are not as scal-
able and are ill-suited for simulations of long-range force
field interactions. (Li et al. 2018) restricted hierarchy to one
level of groups. (Mrowca et al. 2018) included edges be-
tween children and all of their grandparents in the hierarchy.
This resulted in O(N logN) complexity when propagating
information through their hierarchical graph. To construct
the hierarchy, recursive applications of k-means clustering
were used, which can be more computationally expensive
than using a quadtree or an octree (Arthur and Vassilvitskii
2006). In these hierarchies, nodes only interact with other
nodes in the same group. This can result in two particles
that are next to each other having no direct interaction, even
though close interactions are the most important ones. We
also know from physics that cluster-cluster force field in-

teractions can only be approximated if the clusters are suf-
ficiently far away (Dehnen 2014). Nevertheless, neighbour-
ing clusters often interact directly in these hierarchies. These
issues make existing hierarchical approaches ill-suited for
force field interactions. This is unsurprising, as they were
designed for a fundamentally different problem.

Successful non-graph-based neural simulators have also
been proposed (Ummenhofer et al. 2019; Finzi et al. 2020).
However, they only use local information from the particle’s
neighbourhood to update its position.

3 Model

...

Figure 1: 3 level hierarchy (L = 3) from the point of view
of the black particles that belong to the black cells. The first
level (l = 1) has 16 cells, in each subsequent level, the num-
ber of cells quadruples. At the lowest level, we have the par-
ticles. Each cell is connected to its four child cells at the
lower level. Cells at the second-lowest level (L − 1) are in-
stead connected to the particles that belong to them. First,
during an upward pass cell features are recursively com-
puted from the features of their children. Then, during the
downward pass, at each level, the black cell interacts with
its near-neighbours (blue). Aggregated interactions are prop-
agated to the cell’s children. At the lowest level (L), particles
interact directly with particles (blue) from the neighbouring
cells (grey).

3.1 Hierarchical Graph
We build the hierarchy by recursively subdividing the space
into four parts (2D space is assumed, but our approach nat-
urally generalises to 3D spaces as it is based on quadtrees).
When a cell is split we add edges between it and its chil-
dren. We assume that the particles are roughly uniformly
distributed and repeat the splitting blog(N)e times. In ex-
pectation, this results in having one particle per cell at the
lowest level. In the general case, when the data is not uni-
form, each cell can be split until there are at most k particles
in it, where k ≥ 1 is some constant. For real-world data,
this should also result in linear experimental complexity as it
does for the FMM (Dehnen 2014; Kabadshow 2012). Empty
cells are pruned. We also include another level at the bottom



of the hierarchy that holds all of the particles. Each parti-
cle has an edge to the cell it belongs to at the level above.
Both, the particles and the cells are represented as nodes in
the hierarchical graph. Particle nodes have mass, position
and velocity as their features. For the cell nodes, the total
mass, centre of mass position and velocity are pre-computed
from their children. If Coulomb interactions are simulated,
the particle charge and total charge features are added to the
particle and cell nodes respectively.

Each cell is also connected to its near-neighbours. Near-
neighbours are other cells at the same level that are not di-
rectly adjacent to the cell, but whose parents were adjacent
to the cell’s parent (blue, Figure 1). This way we recursively
push down the closest interactions to lower levels, where
the interactions are more granular. Ensuring that interacting
cells are never next to each other is also necessary in order
to avoid potentially large errors (Dehnen 2014). At the low-
est level particles are directly connected with other particles
that belong to the same cell or the neighbouring cells. Im-
portantly, two particles that are next to each other are never
separated. This hierarchy also ensures that the receptive field
of each particle is close to being symmetric at every level.
The top-level with 4 cells is removed from the hierarchy, as
all of the cells are neighbours and do not interact. A visual
depiction of the hierarchy can be seen in Figure 1.

It is easy to see that constructing a quadtree with log4N
levels takes O(N logN) time and O(N) space. Next, we
demonstrate that the strategy used to construct the hierarchy
yields a number of nodes and edges that scale linearly with
N (instead of the typical quadratic complexity discussed
earlier).

Theorem 1. There are O(N) nodes in the hierarchy.

Proof. Based on our assumption that particles are uniformly
distributed, after log4(N) splits we will have one particle per
cell and thusN cells. In each level going from the bottom-up
we will have 4 times fewer cells. This gives us the following
geometric progression for the total number of cells:

N +
N

4
+ ...+ 16 =

log4(N)−2∑
l=0

N

(
1

4

)l
< 2N .

Considering that in the hierarchy we also include one level
with all of the particles, we will have < 3N = O(N) nodes
in the hierarchical graph.

Theorem 2. There are O(N) edges in the hierarchy and
each node has at most a constant number of edges.

Proof. As we assume that particles are uniformly distributed
and that in expectation we have 1 particle per cell in the low-
est level, each particle will have 8 + 1 edges in expectation
(since each particle is only connected to particles from its 8
neighbouring cells and their parent cell).

Each cell in the hierarchy is connected to its parent (≤ 1),
its children (≤ 4) and its near neighbours (≤ 27). There are
at most 27 near neighbours because the cell is connected to
other cells that belong to its parent or the neighbours of its
parent (1 + 8 parent cells, each with 4 children - 36 cells),

but not itself or the cells that are its immediate neighbours
(36− 1− 8 = 27).

So, in expectation, we will always have at most a constant
number of edges per node. As we have O(N) nodes as per
Theorem 1, we will also have O(N) edges.

3.2 Graph Networks
Graph network (GN) models (Battaglia et al. 2018) operate
on a graph G = (V,E,u), with global features u, nodes
V and edges E. Graph networks enforce a structure sim-
ilar to traditional simulation methods, where first interac-
tions (edges) between particles (nodes) are computed. Then
all incoming interactions (edges) are aggregated per parti-
cle (node) and together with particle features are used to
compute updated particle features. Global values such as the
Hamiltonian (total energy) of the system can also be com-
puted from the interactions and the particle features. This
relational bias has been shown to greatly improve the ac-
curacy of simulators compared to using a single multi-layer
perceptron (MLP) (Battaglia et al. 2016; Sanchez-Gonzalez
et al. 2018).

In the basic case, a particle system is represented as a fully
connected graph, where each node is a particle. The node
features we use are mass m, position q, velocity q̇ and if
applicable charge z. The edge matrix E holds sender and
receiver IDs for each edge. In our case relative node posi-
tions are used in the models. Meaning that one of the edge
features used during the forward pass is the distance vec-
tor between the sender and the receiver. Node positions are
masked everywhere else.

As graph network models perform distinct operations on
each edge and each vertex their time and space complexity is
linear in the number of edges and the number of vertices. If
a fully connected graph is used this results in overall O(N2)
time and space complexity.

Delta Graph Network (DeltaGN). DeltaGN is analogous
to previous direct neural simulators (Battaglia et al. 2016;
Sanchez-Gonzalez et al. 2018, 2019, 2020). This model di-
rectly predicts the change in particle position q and velocity
q̇:

(q, q̇)t+1 = (q, q̇)t + (∆q,∆q̇) ,

where (∆q,∆q̇) = GNV (V,E,∆t) are the new vertex fea-
tures produced by the graph network.

Hamiltonian ODE Graph Network (HOGN). HOGN
(Sanchez-Gonzalez et al. 2019) uses a graph network to
compute the Hamiltonian of the system (single scalar):

HGN(q,p = m · q̇) = GNu(V,E) .

By deriving this output w.r.t. the inputs of the network (parti-
cle position q and momentum p) and using Hamilton’s equa-
tions we can recover the derivatives of particle position and
momentum:

fHOGNq̇,ṗ =

(
∂H

∂p
,−∂H

∂q

)
= (q̇, ṗ) .

The position updates for a given ∆t are then produced by a
differentiable Runge–Kutta 4 (RK4) integrator that repeat-
edly queries fHOGNq̇,ṗ .



3.3 Adapting Existing Models
The idea behind adapting existing graph network models to
use the hierarchy is simple: instead of using a dense rep-
resentation of the particle interactions as input, we use the
sparse particle interaction graph from the lowest level of the
hierarchy (Figure 1). When the graph network model con-
structs updated edge feature matrix E′ for this sparse graph,
we append to it edges coming to each particle from its par-
ent cell. This augmented edge feature matrix is then used to
update vertex features and to calculate any global features in
the same manner as done in the original models.

The construction of this special edge – representing all
distant interactions for a particle – requires propagating the
information through the hierarchy. To this end, the updated
lowest level cell feature vectors are built from their children
as:

v′c = vc ⊕
∑

p∈children(c)

φp→c(mc, q̇c,mp, q̇p, (qc − qp)) ,

where vc is the original feature vector of a cell (total mass
and centre of mass velocity), p is the child particle, φp→c is
an MLP and ⊕ is a concatenation operator. The features of
the parent cell cp in the upper levels are built in a similar
way from their children cells cc:

v′cp = vcp⊕
∑

cc∈children(cp)

φcc→cp(mcp , q̇cp ,v
′
cc , (qcp−qcc)).

The φcc→cp MLP uses a different set of parameters from
φp→c, but φcc→cp parameters are shared between all of the
levels.

During the top-down pass at each level cell-cell interac-
tions are computed:

e′cj ,ci = φc→c(v′ci ,v
′
cj , (qci − qcj )) .

For each cell, incoming interactions are aggregated
(summed) together with interactions propagated from the
parent:

e′parentc
= φcp→cc(v′c,v

′
cp , (qc − qcp)) .

These aggregated interactions e′c = e′parentc
+
∑
cj
e′cj ,c are

used to update cell features:

v′′c = vc ⊕ φc(v′c, e′c) .

Finally, the cell-particle edges are computed:

e′parentp
= φc→p(mp, q̇p,v

′′
c , (qp − qc)) .

The φcp→cc MLP uses different parameters from φc→p. Pa-
rameters of φcp→cc and φc→c are shared between the hierar-
chy levels.

If any global parameters u are used by the model they are
also used as part of the input to all of the hierarchy MLPs.

It is easy to see that all of these operations have time and
space complexity that is linear in the number of nodes and
edges.

Further information about the implementation of the mod-
els can be found in Appendix B.

4 Experiments
4.1 Data
We built our own N-body simulator. It uses a symplectic
Leapfrog integrator that preserves the total energy of the
system, Plummer force softening that helps avoid the singu-
larity which arises when the distance between two particles
goes to zero, individual and dynamic time steps for parti-
cles (Dehnen and Read 2011). The time step is set for each
particle as a fraction of the base time step based on its accel-
eration. The particle state (mass, position, velocity) is saved
at every base time step. The system we simulate uses peri-
odic boundary conditions which means that when a particle
leaves the unit cell its exact copy enters it on the opposite
side. Further information on the simulator can be found in
Appendix A.

We simulate 1000 training, 200 validation and 200 test
trajectories. Every trajectory is 200 base time steps long.
Particle positions are initialised uniformly at random inside
the unit cell, mass is set to 1 and each velocity vector com-
ponent is initialised uniformly at random over (−1, 1). Ad-
ditionally, if we simulate Coulomb interactions each particle
has its charge initialised uniformly at random over (0.5, 1.5)
and assigned a random sign. The base time step is set to
∆t = 0.01. Gravitational and Coulomb constants are re-
spectively set to G = 2 and k = 2. We assume that in our
simulated galaxy all of the units are dimensionless.

4.2 Results
We compare the model that uses our hierarchy (Hierarchi-
cal DeltaGN) against two baselines: model that uses a fully
connected graph (DeltaGN) and a more computationally ef-
ficient model that uses 15 nearest neighbour graph (DeltaGN
(15 nn)). We also perform an experiment to test if our hi-
erarchical approach is compatible with the HOGN model.
Models are trained for 500 thousand steps using a batch size
of 100 unless stated otherwise. We exponentially decay the
learning rate every 200 thousand steps by 0.1. The initial
learning rate for all of the models was set to 0.0003. The
models are optimised using ADAM (Kingma and Ba 2014),
and the mean square error (MSE) which is computed be-
tween the predicted and true phase space coordinates after
one time step.

All datasets have the same particle density, meaning when
increasing the particle count we increase the size of the unit
cell accordingly.

When the rollout error is reported, it means that 200 test
trajectories T are unrolled for a specified number of time
steps by supplying the model with initial particle positions
and then feeding the model its own outputs for the subse-
quent time steps. The input graph is rebuilt each time us-
ing the model’s outputs. The error is computed as RMSE
between phase-space coordinates of the predictions and the
ground truth over the unrolled trajectory.

Gravitational and Coulomb systems are conservative,
which means that their total energy should stay constant
throughout their evolution. From this arises a common ac-
curacy measure used in N-body simulations - relative energy
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Figure 2: Models trained and evaluated on increasing particle counts. (a) 20 step rollout RMSE, (b) 200 step rollout RMSE, (c)
energy error after 20 steps, (d) energy error after 200 steps. Batch sizes smaller than 100 were used if not enough memory was
available (shown in the graph).

error between the first and the last system states. We calcu-
late mean relative energy error over all test trajectories:

Energy error =
1

|T |

|T |∑
i=1

Hi,0 − Ĥi,τ

Hi,0
,

where τ is the number of time steps the trajectory is unrolled
for and Hi,t is the Hamiltonian (total energy) of the system
at time step t of the trajectory i.

All errors are averaged over 5 independent runs of the
model. We report the mean error and the standard deviation.

The experiments were performed on a machine with
an Intel Xeon E5-2690 v3 CPU (2.60GHz, 12 cores, 24
threads), 64GB RAM and NVIDIA Tesla P100 GPU (16GB
RAM).

Scaling to Larger Particle Counts. From Figure 2 we can
see that hierarchical DeltaGN does not perform as well on
small particle counts (< 100) where the hierarchy is small.
However, it quickly catches up when 100 particles are sim-
ulated and is able to simulate large particle counts with even
better accuracy. Simulations with more particles are not fea-
sible with DeltaGN that uses the fully-connected graph, as
it soon runs out of memory and on the 1000 particle dataset
already suffers from terrible performance. This is probably
due to the very large edge count per node. The DeltaGN (15
nn) model that uses only local connectivity is able to scale
to large particle counts but suffers from poor accuracy due

to the ignored long-range interactions. When the same small
batch size is used for all of the models the situation stays
similar (Figure 3).

The energy error usually decreases with the particle count,
because we keep the particle density constant. Thus, when
extra particles are added, many long-range interactions are
created, but the number of close interactions each parti-
cle has stays roughly the same. Close interactions are more
error-prone due to much stronger forces at close distances.

Small Batch Size. One easy way to reduce memory usage
and to decrease the computation time is to reduce the batch
size. However, this potentially comes with a big accuracy
penalty. As can be seen from the rollout RMSE (Figure 3a)
and the energy error (Figure 3b) plots training models with
a batch size of 1 results in a∼ 10% decrease in accuracy for
DeltaGN (15 nn) and a ∼ 5 time decrease in accuracy for
the other models.

We note that using the same batch size is not entirely fair
to models with O(N) complexity. Indeed, they have much
fewer edge samples in the batch, compared to the model that
uses a fully-connected graph. This lack of edge samples is
most likely the reason why some runs of the hierarchical
DeltaGN on 20 and 50 particle datasets got stuck in local
minima and caused high variance.

Coulomb Interactions. We expect that Coulomb interac-
tions are harder to learn since they can be either attrac-
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Figure 3: Models trained using a batch size of 1. Their 20 step rollout RMSE (a) and energy error (b).

Model Number of
particles

Rollout RMSE
(20 steps)

Energy error
(20 steps)

Rollout RMSE
(200 steps)

Energy error
(200 steps)

DeltaGN 100 0.0045 ± 2.7 · 10−4 0.0086 ± 0.0041 0.0684 ± 0.0031 0.0584 ± 0.0202
Hierarchical

DeltaGN 100 0.0052± 1.61 · 10−4 0.0152± 0.0036 0.1013± 0.0019 0.0931± 0.0138

DeltaGN 1000 0.1744± 0.0234 0.0592± 0.0507 NA NA
Hierarchical

DeltaGN 1000 0.0058 ± 1.45 · 10−4 0.0014 ± 1.90 · 10−4 0.1252 ± 0.0020 0.0418 ± 0.0031

Table 1: Test accuracy achieved by DeltaGN models on the Coulomb force datasets. DeltaGN used maximum possible batch
size of 4 on the 1000 particle dataset, while in all other cases batch size of 100 was used. NA means that during unroll for some
of the runs particle velocities grew so large that float32 overflowed and model returned NaN values.

tive or repulsive. We also made this dataset more complex
by simulating charges of different magnitudes. In Table 1
we can see that on the 100 particle dataset the hierarchical
DeltaGN again performs similarly to the model that uses a
fully-connected graph. However, when the particle count in-
creases to 1000 DeltaGN fails, while the hierarchical Delt-
aGN retains similar performance.

The particle charge was supplied to the models alongside
the features supplied in the case of gravitational force.

Hierarchical HOGN. Five independent runs of hierar-
chical HOGN were trained on the 100 and 1000 particle
datasets. As can be seen from Table 2 these runs had very
high variance. However, one of the hierarchical HOGN runs
resulted in the most accurate model we have trained on the
1000 particle dataset. Although, the Hamiltonian and ODE
biases did not bring as large of an improvement, as seen
when a fully connected graph is used (Sanchez-Gonzalez
et al. 2019).

We do believe that the training process of the hierarchical
HOGN can be made more stable, but we leave this direction
for future work.

Empirical Time Complexity. We timed 10 000 runs of
the model forward pass, using different graphs as inputs
(Figure 4a). We observe, that while GPU parallelism initially
counteracts the increased complexity, as expected using a
fully-connected graph results in asymptotically quadratic
time complexity. While using hierarchical and 15 nearest

neighbour graphs results in asymptotically linear scaling.
The pre-computation time of the nearest neighbour graphs
is asymptotically quadratic, while the pre-computation time
of our hierarchical graphs scales asO(N logN) (Figure 4b).
In both cases, pre-computation on the CPU was faster than
on the GPU with our implementation. Time scaling is not
monotonic for the hierarchical graph pre-computation and
the hierarchical DeltaGN, because the depth of the hierar-
chy is set as blog4(N)e.

Generalisation to Unseen Particle Counts. Models that
use a fully-connected graph suffer from disastrous perfor-
mance when they are evaluated on particle counts they were
not trained on (Figure 5). The most likely cause is the sharp
change in the number of incoming edges for each node. This
is corroborated by the fact that DeltaGN (15 nn), which uses
a graph with a constant number of neighbours, achieves al-
most the same accuracy on unseen particle counts as the
models trained on that particle count. In our hierarchy, we
have a roughly constant number of edges per node (The-
orem 2). As a result, the hierarchical DeltaGN generalises
to unseen particle counts much better than models that use
a fully-connected graph. When more than 100 particles are
used, it outperforms DeltaGN (15 nn). Our hierarchical ap-
proach can be combined with existing techniques, such as
randomly dropping edges during training (Rong et al. 2019)
or constraining message size (Cranmer et al. 2019), to fur-
ther improve the generalisation.



Model Number of
particles

Batch
size

Rollout RMSE
(20 steps)

Energy error
(20 steps)

Rollout RMSE
(200 steps)

Energy error
(200 steps)

Hierarchical
DeltaGN 100 100 0.0016± 1.74 · 10−5 (2.71± 0.18) · 10−5 0.0612± 0.0015 (2.82± 0.63) · 10−4

HOGN 100 50 (2.09 ± 0.26) · 10−4 (6.30 ± 2.14) · 10−6 0.0139 ± 0.0023 (4.41 ± 1.03) · 10−5

Hierarchical
HOGN 100 100 0.0046± 0.0042 (8.57± 8.48) · 10−5 0.1145± 0.0814 0.0016± 0.0015

Hierarchical
HOGN (best) 100 100 0.0017 3.06 · 10−5 0.0579 3.55 · 10−4

Hierarchical
DeltaGN 1000 100 0.0013± 1.99 · 10−5 (2.37± 0.40) · 10−6 0.0482± 0.0011 (4.22± 1.44) · 10−5

Hierarchical
HOGN 1000 20 0.0023± 0.0011 (4.87± 1.99) · 10−6 0.0691± 0.0299 (4.27± 1.42) · 10−5

Hierarchical
HOGN (best) 1000 20 0.0012 2.03 · 10−6 0.0377 2.87 · 10−5

Table 2: Hierarchical HOGN. Due to the very high variance of the hierarchical HOGN runs we also provide the results for the
best run. All models were trained with a batch size of 100 when possible and largest batch size otherwise. HOGN ran out of
memory on the 1000 particle dataset even with a batch size of 1.
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Figure 4: (a) Time scaling of the model forward pass using a batch size of 100. (b) Time scaling of graph pre-computation on a
CPU. Averaged over 10 000 (a) and 1000 (b) runs respectively.
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models from Figure 2 were used.

5 Conclusion
We presented a novel hierarchical graph construction tech-
nique that can be used to adapt existing graph network mod-
els. We show that this hierarchical graph improves the model

time and space complexity from O(N2) to O(N) when ap-
plied to particle simulations that requireO(N2) interactions.
A pre-computation step also requires O(N logN) time and
O(N) space. This theoretical improvement is also observed
in practice and allows us to train models on much larger
datasets than previously possible. We were able to achieve
good accuracy on a dataset with 10 000 particles, while prior
models that use a fully-connected graph failed on 1000 parti-
cles. Our approach also displayed much better accuracy than
a standard baseline based on the nearest neighbour graph.
Furthermore, we observed improved generalisation to dif-
ferent particle counts when the hierarchy is used. We hy-
pothesise this is due to the regularisation enforced by the
hierarchy (the number of edges per particle tends to be more
constant), although this requires more investigation.

While we mostly focused on the faster model that directly
predicts the system’s state change, we have also shown that
this hierarchical approach is compatible with Hamiltonian
and ODE biases. However, the inclusion of these biases does
not seem to have the desired impact on the model’s accuracy
and further work is required to reduce the variance of the
resulting model.

We tested our approach in a noiseless setting. However,



noisy observations are a tangent problem that can be ad-
dressed by unrolling the trajectories for multiple steps dur-
ing training and by using a more robust integration scheme
(Desai and Roberts 2020).

Finally, this work takes an important step towards learning
to simulate larger and more realistic dynamical systems in a
way that is compatible with many existing state-of-the-art
approaches. Developing neural simulators is important be-
cause it can even lead to the discovery of novel physics for-
mulas (Cranmer et al. 2020). In general, this method could
be used to extend graph networks that are applied to other
problems where global information is needed.
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A Data Generation
As mentioned in the Data section, we built our own N-body
simulator. It is based on the best practices of N-body sim-
ulations as outlined by (Dehnen and Read 2011). We refer
the reader to that work for more information on the concepts
mentioned below.

We model a 2D system (qi = [xi, yi], q̇i = [ẋi, ẏi]) and
store each particle state as a 5-element vector [m,x, y, ẋ, ẏ].
The initialisation is described in the main body of the pa-
per. We use periodic boundary conditions, which means that
we simulate a unit cell and then tile an infinite system with
copies of that cell (Figure 6). The size of the unit cell is cho-
sen such that we would have roughly one particle per twelve
square units.

The equations of motion are integrated using a symplec-
tic Leapfrog integrator which ensures energy conservation
throughout the simulation. We use the kick drift kick formu-
lation of the Leapfrog integrator:

q̇′ = q̇0 +
1

2
a0∆t ,

q1 = q0 + q̇′∆t ,

q̇1 = q̇′ +
1

2
a1∆t ,

where a is the acceleration vector, q0 and q̇0 are the initial
particle position and velocity vectors, ∆t is the integration
time step. To save particle position and velocity at the same
time we use the time synchronised version of this integrator:

q1 = q0 + q̇0∆t+
1

2
a0∆t ,

q̇1 = q̇0 +
1

2
(a0 + a1)∆t .

Figure 6: Periodic boundary conditions. Unit cell (solid) is
tiled to create an infinite system (dashed). Distance (red) is
computed to the closest copy of the particle.

The particle acceleration is computed precisely by using
all N − 1 interactions of the particle.

To optimise the simulation we use hierarchical time-steps:

∆tn =
∆t0
2n

,

where n is the level in the time-step hierarchy and ∆t0 is the
base time step.

To assign a time-step to a particle i we use the following
criterion:

∆ti = η

√
ε

|ai|
, (1)

where ε is the force softening length that we will discuss in
the next paragraph, |ai| is the magnitude of the particle ac-
celeration and η is free parameter that we set to 0.001. The
particle is assigned to the largest time-step level ∆tn that is
smaller than ∆ti. We use a criterion based solely on accel-
eration because higher-order estimates are not available in
the Leapfrog integration scheme. The particle state is saved
only every base time-step ∆t0.

When particles are very close, their mutual gravitational
attraction goes to infinity. Which means that when particles
are very close we would need infinitesimal time steps to
accurately integrate their trajectories. To make the simula-
tion smoother and to avoid the singularity we use Plummer
softening. In this case each particle is replaced by a Plum-
mer sphere (Plummer 1911) of scale (softening) radius ε and
mass mi. The density of the sphere at the distance r from its
centre is

ρp(r) =
3mi

4πε3

(
1 +

r2

ε2

)
.



This results in a softened acceleration

ai = −G
∑
j 6=i

mj

(‖qi − qj‖22 + ε2)
3
2

· (qi − qj) ,

that for a pair of particles goes to zero when distance is
smaller than ε. We found ε = 0.2 to be sufficiently large
to avoid the need of very small time steps, while being suf-
ficiently small to not influence most particle interactions.

If Coulomb interactions are simulated, the acceleration is
instead computed as

ai = k
1

mi

∑
j 6=i

ci · cj
(‖qi − qj‖22 + ε2)

3
2

· (qi − qj) ,

where c is the particle charge, and k is the Coulomb con-
stant. The particle charge is also appended to the particle
state vector.

B Model Implementation
Graph network block (Battaglia et al. 2018) architectures
used in DeltaGN and HOGN models (Sanchez-Gonzalez
et al. 2019) can be seen in Figure 7 and Figure 8 respec-
tively. It’s assumed that we are working with a graph G =
(V,E,u), with global features u, nodes V and edges E.Nv

is the number of nodes and Ne is the number of edges. Each
edge has its sender sk and receiver rk IDs. All aggregation
functions ρ are summations. ρe→v aggregates all of the in-
coming edges for each node, ρe→u and ρv→u aggregate all
of the edges and nodes respectively. The edge block’s MLP
φe has 2 hidden layers, each with 150 hidden units. Each
layer is followed by an activation function (including the
last one). The node block’s MLP φv has 3 hidden layers,
each with 100 hidden units. Each layer is again followed by
an activation function. The global block’s MLP φu which
is only used in HOGN has 2 hidden layers, each with 100
hidden units. Each layer is again followed by an activation
function.

The activation function used in DeltaGN is ReLU, while
HOGN uses SoftPlus. ReLU does not work with the HOGN
model as its derivatives are either 0 or 1. The same activation
functions are used in the modified hierarchical models and
the hierarchy MLPs.

Overall architectures used for HOGN and DeltaGN mod-
els can be seen in Figures 9 and 10 respectively. They do
not change for the hierarchical model versions, besides the
fact that we use a hierarchical graph. Both architectures use
a linear layer φdecode to transform graph network output into
the coordinate change or the Hamiltonian of the system.

For HOGN we use RK4 integrator:

(qt+1, q̇t+1) = (qt, q̇t) +
1

6
∆t(k1 + 2k2 + 2k3 + k4) ,

k1 = f((qt, q̇t)) , k2 = f((qt, q̇t) +
1

2
∆tk1) ,

k3 = f((qt, q̇t) +
1

2
∆tk2) , k4 = f((qt, q̇t) + ∆tk3) ,

where f is our neural network. The same graphs are used for
all of the internal RK4 steps.

Edge block Node block Global block

Figure 7: Graph network block scheme used in DeltaGN.

Edge block Node block Global block

Figure 8: Graph network block scheme used in HOGN.

As discussed in the Adapting Existing Models section,
when a hierarchical graph is used upward and downward
passes must be performed first. The MLPs used in the up-
ward pass (φp→c and φcc→cp ) have two hidden layers with
100 hidden units in each of them. Each layer is followed by
an appropriate activation function (depending on if DeltaGN
or HOGN architecture is used). MLPs used to compute inter-
actions during the downward pass (φc→c and φcp→cc ) have
two hidden layers with 150 hidden units in each of them.
Each layer is followed by an appropriate activation func-
tion. The MLP that is used to update cell features during the
downward pass (φc) has three hidden layers with 100 hidden
units in each of them. Each layer is again followed by an ap-
propriate activation function. When the cell embeddings at
the lowest level (l = L − 1) are updated, we can finally
construct the edge going from the parent cell to the particle,
which represents all long-range interactions of the particle,
using the φc→p MLP. This MLP has two hidden layers with
150 hidden units in each of them. Each layer is followed by
an appropriate activation function. How this edge is incorpo-
rated into DeltaGN and HOGN graph network blocks can be
seen in Figures 11 and 12 respectively. The remaining block
architecture is exactly the same as before.

The training setup was described in the Results section of
the main body. We did not set a fixed random seed for the
models. We provide the mean error and the standard devia-
tion when the models are run with different random seeds.



Figure 9: DeltaGN architecture.

 

Figure 10: HOGN architecture.

As the variance is low, similar results should be observed on
the datasets we will provide with any random seed.

The number of neighbours in the 15 nearest neighbour
baseline was chosen such that the number of neighbours
would be larger than the expected number of neighbours on
the lowest level of our hierarchy (8) and would still offer
good scalability.

C Additional Results
In this section, we provide the 200 step rollout graphs, which
were not presented in the Results section. We also pro-
vide visualisations of the trajectories predicted by the differ-
ent DeltaGN variants. An additional experiment shows, that
log(N) is the optimal number of hierarchical graph levels.
We also show, what accuracy can be achieved in 24 hours of
training by the different models.

Small Batch Size - 200 Step Rollout. In Figure 13 you
can see the rollout RMSE and the energy error when trajec-

Edge block Node block Global block

Figure 11: Graph network block scheme used in the hierar-
chical DeltaGN. Vp and Ep represent the nodes and edges of
the sparse particle graph from the lowest level of the hierar-
chy (l = L). Vc are the nodes of the parent cells (l = L−1),
Ec→p are edges going from each cell to its child particles.

Edge block Node block Global block

Figure 12: Graph network block scheme used in the hierar-
chical HOGN. Vp and Ep represent the nodes and edges of
the sparse particle graph from the lowest level of the hierar-
chy (l = L). Vc are the nodes of the parent cells (l = L−1),
Ec→p are edges going from each cell to its child particles.

tories are unrolled for 200 steps. The plots are analogous to
the error plots presented in the Results section. The error in-
creased roughly proportionally for all of the models when
trajectories were unrolled for 200 steps instead of 20.

Generalisation to Unseen Particle Counts - 200 Step
Rollout. In Figure 14 you can see the rollout RMSE and
the energy error when trajectories are unrolled for 200 steps.
Compared to the shorter 20 step rollout presented in the Re-
sults section, we see that when the trajectory is unrolled for
more time steps, the error of the hierarchical DeltaGN in-
creases less than the error of the DeltaGN (15 nn).

Optimal Number of Levels. We tested what impact the
number of hierarchy levels has on accuracy and computation
time. We trained multiple versions of hierarchical DeltaGN
on the 100 particle dataset using 2, 3, 4 and 5 levels in the
hierarchy. Note that log4(100) = 3.32 and we would nor-
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Figure 13: Models trained using a batch size of 1. Their 200
step rollout RMSE (a) and energy error (b).

mally use a 3 level hierarchy. From Table 3 we see that the 3
level hierarchy, in fact, provides the best combination of ac-
curacy and speed. The model with 2 level hierarchy is slower
because there are many more connections directly between
the particles (in expectation 56 incoming edges per particle),
while the models with 4 and 5 level hierarchies are slower
because we need more steps to propagate the information
through the hierarchy. These excess levels most likely are
the cause of the worse accuracy which we see in case of the
model that uses a 5 level hierarchy, while the poor accuracy
of the model with a 2 level hierarchy might be caused by the
hierarchy’s MLPs not being trained as well. This is likely
because the weights of the MLPs are shared for all of the
hierarchy levels, except the particle level.

Performance Achievable in 24 hours. To further high-
light the benefits of the hierarchical graph we train all of the
versions of DeltaGN, as well as a hierarchical HOGN for
24 hours on the 1000 particle dataset. We use either batch
size of 4 (which is maximum for DeltaGN) or maximum
batch size possible for each model. HOGN runs out of mem-
ory even with a batch size of 1. From Table 4 we can see
that DeltaGN (15 nn) allows for the biggest batch and is
the fastest with the batch size of 4. However, its accuracy
is much worse than that of the hierarchical models. While
these hierarchical models still achieve good speed and much
larger batch sizes than the DeltaGN which uses a fully con-
nected graph.
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Figure 14: Models trained on a dataset with one particle
count evaluated on datasets with different particle counts.
200 step rollout RMSE. HOGN was trained on 100 parti-
cle dataset using a batch size of 50. All other models were
trained using a batch size of 100.

Predicted Trajectories. In this subsection we provide
model predictions for one of the test trajectories from the
1000 particle gravitational or Coulomb dataset. Figures 15
and 16 correspond to the models trained in the Scaling to
Larger Particle Counts section, Figures 17 and 18 corre-
spond to the models trained in the Small Batch Size section,
Figures 19 and 20 correspond to the models trained in the
Coulomb Interactions section. All of the provided predic-
tions were made by the best corresponding model out of 5
runs.

From these trajectories, it is easy to see that DeltaGN does
not learn the dynamics. While DeltaGN (15 nn) makes rea-
sonable predictions, the lack of long-range interactions can
result in large errors for some particles. For example, the
particle highlighted by the red circle in Figure 15 is moving
downwards instead of upwards in the trajectory predicted by
DeltaGN (15 nn).

Note that the angular momentum is not conserved, be-
cause we use periodic boundary conditions (Kuzkin 2014).



Model Hierarchy
levels

RMSE [10−3]
(20 steps)

Energy
error [10−5]
(20 steps)

RMSE [10−2]
(200 steps)

Energy
error [10−4]
(200 steps)

Forward pass
time

(500k step avg.)
Hierarchical

DeltaGN 2 levels 1.706± 0.184 2.788± 0.267 6.612± 0.476 2.945± 0.288 28 ms

Hierarchical
DeltaGN 3 levels 1.571± 0.017 2.713± 0.256 6.118 ± 0.147 2.815 ± 0.626 23 ms

Hierarchical
DeltaGN 4 levels 1.545 ± 0.023 2.621 ± 0.091 6.27± 0.134 2.910± 0.236 27 ms

Hierarchical
DeltaGN 5 levels 1.592± 0.018 2.711± 0.136 6.680± 0.123 3.315± 0.584 30 ms

Table 3: Test accuracy achieved by Hierarchical DeltaGN models with different numbers of hierarchy layers. Models were
trained and evaluated on the 100 particle dataset. All models were trained using a batch size of 100. Optimal number of levels
for 100 particles would be log4(100) = 3.32.

Model Batch
size

RMSE
(20 steps)

RMSE
(200 steps)

Training
steps

DeltaGN 4 0.2416± 0.0362 NA 239k
DeltaGN (15 nn) 4 0.0086± 2.15 · 10−5 0.1565± 2.35 · 10−4 5.7M

Hierarchical
DeltaGN 4 0.0014 ± 2.73 · 10−5 0.05119 ± 0.0011 1.24M

Hierarchical
HOGN 4 0.0744± 0.0948 0.4156± 0.3839 118k

DeltaGN 4 0.2416± 0.0362 NA 239k
DeltaGN (15 nn) 320 0.0095± 4.95 · 10−4 0.1794± 0.0120 151k

Hierarchical
DeltaGN 150 0.0043 ± 0.0019 0.1176 ± 0.0312 93k

Hierarchical
HOGN 20 0.0109± 0.0099 0.2096± 0.1234 50k

Table 4: Model accuracy after 24 hours of training on the 1000 particle dataset. HOGN ran out of memory even with batch
size of 1. In the upper half of the table, we have results when using batch size of 4 for all of the models. In the lower half, we
have results when using maximum possible batch size for all of the models. NA means that during unroll for some of the runs
particle velocities grew so large that float32 overflowed and model returned NaN values.



Figure 15: Sample simulation from the 1000 particle gravitational test set and the corresponding model predictions. On the right,
we have a zoomed-in central region. In the first row, we show the ground truth simulation. In the second, third and fourth row
we have the predictions produced by the best DeltaGN, DeltaGN (15 nn) and Hierarchical DeltaGN model runs respectively.
DeltaGN was trained with a maximum possible batch size of 4, the other models used a standard batch size of 100. This plot
corresponds to the models trained in the Scaling to Larger Particle Counts section.



Figure 16: Energy (left column) and momentum (right column) plots corresponding to the sample simulation and predictions
from Figure 15.



Figure 17: Sample simulation from the 1000 particle gravitational test set and the corresponding model predictions using a
batch size of 1. On the right, we have a zoomed-in central region. In the first row, we have the ground truth simulation. In
the second, third and fourth row we have the predictions produced by the best DeltaGN, DeltaGN (15 nn) and Hierarchical
DeltaGN model runs respectively. This plot corresponds to the models trained in the Small Batch Size section.



Figure 18: Energy (left column) and momentum (right column) plots corresponding to the sample simulation and predictions
from Figure 17.



Figure 19: Sample simulation from the 1000 particle Coulomb test set and the corresponding predictions by the best runs of the
DeltaGN and hierarchical DeltaGN models. DeltaGN used a batch size of 4 during training, while hierarchical DeltaGN used a
batch size of 100. On the right, we have a zoomed-in central region. The particle size represents the magnitude of their charge.
Blue particles are positively charged while violet particles are negatively charged. This plot corresponds to the models trained
in the Coulomb Interactions section.



Figure 20: Energy (left column) and momentum (right column) plots corresponding to the sample simulation and predictions
from Figure 19. This plot corresponds to the models trained in the Coulomb Interactions section.
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