
Latency and Consistent Flow Migration:
Relax for Lossless Updates

Klaus-Tycho Foerster
Faculty of Computer Science
University of Vienna, Austria

Laurent Vanbever
Networked Systems Group
ETH Zurich, Switzerland

Roger Wattenhofer
Distributed Computing Group

ETH Zurich, Switzerland

Abstract—Consistency in network updates is a nascent re-
search area, especially in the context of traffic engineering or
Software Defined Networks. Various approaches have been pro-
posed and implemented in the problem space of flow migration
and congestion, primarily focusing on different flows not breaking
the bandwidth capacities of the used links during updates.

However, current network update techniques overlook the
effect of flows congesting their own path during a network update
due to latency on the links. Furthermore, while congestion will be
resolved eventually after the network update, the buffers of the
affected routers can be filled for a long time period, leading to the
following paradox: a flow is moved to a path with less latency, but
the latency stays the same! As flows are often migrated because
of latency concerns, this is highly undesirable.

We show that these effects occur already in a small topology in
practice, causing packet loss due to overfull buffers. Furthermore,
we prove that finding a lossless flow migration is NP-hard, already
for a single (splittable) flow on directed acyclic graphs.

Nonetheless, we can relax latency requirements to still obtain
lossless flow migration. To this end, we show how to adapt current
systems such as SWAN or Dionysus [SIGCOMM’13/’14], also
developing our own polynomial time schedule algorithm, and
discussing future consistent flow migration technique adaptations.

I. INTRODUCTION

Network operators continuously strive for increased perfor-
mance, especially to improve end-to-end latency or increase
bandwidth utilization [49]. As such, the paths of network flows
(i.e., the forwarding rules) are always in a state of flux, either
by automated or manual network updates.

Network updates (flow migration) may temporarily destabi-
lize a network, as mixing old and new forwarding rules may
contradict. The chaos that can occur with the update is seen
as an inevitable evil, as eventually the network will be in an
improved state, outweighing the temporary losses by far.

Even though networks provide a best-effort service, con-
gestion is highly problematic especially in contexts such as
WAN and data-centers. Hence, there has been (not only) recent
interest in consistency mechanisms for network updates [6],
[7], [11], [17], [31], [35], [33], [36], [37], [41], [46], [51], [54],
[55], notably against bandwidth violations [8], [24], [27], [47].

However, understanding network updates has issues besides
packet dropping. We would like to motivate these issues with
a simple example. In a small gigabit ethernet network, you
transport a single flow at a rate of one gigabit as well. The
end-to-end latency of the flow is undesirably high, so you move
the flow to a path with low latency. Naturally, you expect the

latency of your flow to be reduced, however, paradoxically, the
end-to-end latency of the flow does not change at all!

Later, you decide to move your flow to yet another path
with low latency. This time it works, but a lot of packets are
dropped in the process! Both phenomena can be explained
with a simple example network, see Fig. 1.

s t

w

u v

capacity = 1

size = 1

size = 1

low latency

hig
h lat

. high lat.

Fig. 1. In this network with just one flow, the flow along the solid path is
moved to the dashed path, causing congestion at v due to packets in flight.
Current methods overlook this issue of flows congesting “themselves”, as
they just consider the flows before and after the update, but not the transient
behavior of packets in flight – causing packet loss due to overfull buffers.

When the flow is moved from the solid path to the dashed
path by, e.g., switching the forwarding rule at u, congestion
will occur at node v. For some time, packets from both w and
u will arrive at v, at a rate of 2 gigabits, twice the rate the
outgoing link of v can manage. Thus, v will need to buffer the
extra packets, or if the buffer is not large enough, drop them.
UDP and TCP effects In the case of a UDP flow and large
enough buffer size, all the extra delay from the old path is
“moved” into the buffer at v. If the rate of the flow is not limited,
this buffer will never decrease, causing the delay to be there
permanently. In the case of a TCP flow, not only will packets
be dropped if the buffer is not large enough, but the re-ordering
of the packets will lead to further problems: in addition to the
lost packets, the source will decrease its sending rate, taking
additional time until the original throughput is reached again.
Packet loss can occur in every non-trivial topology As noted
above, packets are dropped if the remaining buffer size is not
sufficient enough to capture the additional flow caused by the
network update. Thus, as long as there are two different paths to
an egress router, switching to the path with lower latency causes
extra packets to appear at some router for time equivalent to
the latency difference. Therefore, previous flow consistency
formulations are not lossless as they ignore packets in flight:
not just in specific cases, but in any non-trivial topology.
Being lossless is a desirable property As pointed out by [2],
already small losses and additional latencies can cause drastic
changes in data-center performance metrics [30]. Service level
agreements impose an additional challenge [39]. Ideally, the
network’s packet loss rate should be oblivious to flow migration.

ISBN 978-3-903176-16-4 c© 2019 IFIP

Buffering packet loss Packet buffers could be used to
temporarily “store” congestion. Taking Fig. 1 as an exam-
ple, already a 1ms latency difference in a gigabit network
would require a 1Mbit buffer, 10Mbit for 10ms etc. However,
commodity gigabit switches usually just have 32KB buffer size
per port [50]. Similarly, optical switches have small buffers
in general, though optical networks have in turn also lower
latencies. Still, in hybrid networks [26], both effects can collide.

A. Background

To the best of our knowledge, a study of the effects described
for the network in Fig. 1 has not been considered in the
(network update) literature.1 Flow theory from a mathematical
point of view [1] rather focuses on maximizing the flows.

Traffic engineering has a long history in networks, but maybe
it was not before the rise of Software Defined Networks (SDNs)
that consistency during network updates became a field of
wider interest [10]. Complex network updates in SDNs are
common nowadays, e.g., Microsoft’s SWAN [24] and Google’s
B4 [49] run updates every few minutes, hundreds of times per
day. Moreover, updates for rerouting can also be needed in
everyday situations, e.g., taking a link offline for repair [59].

In the area of congestion and flows, staged partial moves
of flows are the current state of the art to prevent packet
loss during updates [17], [18], [37]. However, these methods
currently overlook the effects of edge latencies during the
migration of flows. For example, zUpdate [30] denotes an
update like our example from Fig. 1 as lossless, as their model
does not take edge latencies or packets in flight into account.

The methods of two-phase updates [46] and timed-based
consistent updates [42], [41] also do not protect against this
issue. First, changing the routing rule in u is a valid operation
in [46]. Second, as only one router needs to change its behavior
(u), there are no timing problems either [42], [41].

B. Contribution

Motivation: Packets are dropped in reality Current consis-
tent flow migration models overlook the impact of latency in
the network, already in the small example of Fig. 1. To prove
that the described packet loss and congestion effects actually
occur in reality, we build a small testbed and show that our
conjecture holds up in practice, see Sec. II for details.
Hardness strikes already for a single flow Motivated by
the findings in our testbed, we provide a model for lossless
flow migration in Sec. III. However, we prove in Sec. IV that
the problem is already NP-hard for a single flow for many
variations: for both splittable and unsplittable flows, on DAGs,
for unit latency and unit size flows, but also for latency ranges.
Relaxation leads to tractability Nonetheless, we can show
how to “bake” losslessness into current systems such as
Dionysus [27] or SWAN [24] in Sec. V, by making use of
the fact that these systems require restricted problem scenarios.

To obtain a polynomial technique for the general case, we
relax the lossless property in such a way that algorithms have

1Some preliminary results of our work can be found in [13, §6].

to operate consistently even if the latency changes, see Sec. VI.
We provide details and properties of our algorithm in Sec. VI-B.
Outlook and further work In Sec. VII, we discuss a multitude
of further mitigation techniques on how to obtain a lossless
migration in practice, which we hope to be useful for future
(heuristic) improvements. E.g., how to incorporate flowlets into
dependency graph approaches or the feasibility of buffering to
avoid packet loss. Lastly, we give an overview and comparison
of related work in Sec. VIII, concluding in Sec. IX.

II. MOTIVATION

We show that the congestion effects highlighted in Fig. 1
occur in practice, inducing congestion during potentially
seconds upon updates. We start by describing a brief model, that
formalizes the effects described in the introduction, followed
by a description of our testbed. We then evaluate the effects
considering both UDP and TCP flows, confirming our model.
Model We start with some notations and assumptions. Consider
the network in Fig. 1 and let F be the old flow arriving via
w and F ′ be the new flow arriving via the lower path from
u. Denote the size of F by dF = F ((w, v)) ≥ 0 and the size
of F ′ by dF ′ = F ′((u, v)) ≥ 0. Let the latency ∆old > 0 of
the path u,w, v be larger than the latency ∆new > 0 of the
path u,w and denote the time difference by ∆. Lastly, let the
buffer size of v be B(v) ≥ 0 and let the outgoing link of v
have a capacity of c > 0 with dF + dF ′ > c.

We conjecture that the following effects will appear after
the node u has switched its forwarding from w to v:
• The buffer at v will be filled up at most to:

min (B(v),max((dF + dF ′ − c) ·∆, 0)) , (1)
i.e., the buffer will at most be filled with surplus data, not
being able to be drained, arriving during the time when
both flows arrive at v, but contain at least 0 packets.

• The non-negative amount of data dropped at v will be:
min ((dF + dF ′ − c) ·∆−B(v), 0) , (2)

i.e., the amount of surplus data not fitting into the buffer.
• The buffer at v will be drained after the following time:

((dF + dF ′ − c) ·∆) / (c− dF ′) , (3)
i.e., after the incoming flow F from w has stopped, the
drain of the buffer is equivalent to the difference between
the capacity of the outgoing link and the throughput of
the remaining new flow F ′.

We note that in theory, if the new flow F ′ has the same size
as the capacity c of the outgoing link, the term 3 implies that
the buffer at v will never be drained.
Methodology & Testbed To validate our theoretical model in
practice, we replicated Fig. 1 in a testbed composed of five
servers directly connected through five Gigabit links. Each of
the machines has the following specification: Ubuntu 64bit
server 14.04 with kernel 3.16, 8GB of RAM, 2x Intel Xeon
quadcore 2.4GHz. We configure a one-way latency along the
links (u,w) and (w, v) as well as the buffer size at v using tc.

We create traffic in the network by establishing UDP and
TCP connections from s to t with iperf. Initially, we

10 15 20 25 30

2
4

6
8

10
12

sec

 e
2e

-l
at

en
cy

 in
 m
s

Fig. 2. Median end-to-end latency over 30 UDP
experiments. The dotted vertical line denotes the
update time. It takes seconds for the congestion
induced by latency to disappear.

0 2 4 6 8 10 12

sec

C
D
F

0

20

40

60

80

100

Fig. 3. CDF of the duration length. In 50% of
the experiments, congestion (at the buffer at v)
lasted for more than 4 seconds, in 10%, for more
than 8 seconds.

10 15 20 25 30

0
5

10
15

20

sec

e2
e-

la
te

nc
y

in
m
s

Fig. 4. Median end-to-end latency over 30 TCP
experiments. The dotted vertical line denotes the
update time. Latency-induced congestion is also
detrimental for TCP flows, albeit for shorter time.

In the experiments depicted above, we used (combined) gigabit flow sizes in a Gigabit Ethernet; The buffer sizes were set (vastly over-provisioned) to one
gigabit as well, to rule out any packet losses due to overfull buffers. By setting the buffer sizes to being smaller than the combined size of the packets in flight
induced by the latency difference, packet loss occurs: E.g., by setting the buffer to near zero, the latency drops almost immediately at the price of lost packets.

configure the network so that traffic is forwarded via the (slow)
path s, u, w, v, t. After about 15 seconds, we switch u to the
fast-path s, u, v, t. In parallel, we monitor the buffer at v and
the round-trip time from s to t using iperf. After the switch,
we let the flows run for 60s. We repeated all our measurements
30 times and report the median values in the following.
Upon updates, congestion can appear for several seconds
when link utilization is high We start by considering the
effect of updating a network whose link utilization is high such
as a Wide-Area Network (WAN) where link utilization is often
above 90% [24]. For this, we run a single UDP connection
at a rate close to the link capacity, yet without creating any
congestion. We set the buffer size B(v) such that no packet
would be dropped at v. Fig. 2 depicts the evolution of the delay
prior and after the update. The dotted vertical line indicates
the moment traffic is switched to the low delay path. We
observe that the end-to-end delay stays stable up to 5 seconds
after the switch. As described in our model, this is due to
the latency from the packets in flight along the slow path
u−w−v which was moved into the buffer at v after the switch.
Fig. 3 depicts the CDF of the number of seconds it takes for
congestion to disappear across all experiments. In the majority
of the cases, congestion appeared for more than 4 seconds.
In 10% of the case, the congestion lasted for 10 seconds or
more. This clearly shows that not accounting for latency (as
SWAN [24] or zUpdate [30]) can be highly detrimental for
network traffic. Observe also that with additional cross traffic
at v, the congestion measured above will last even longer.
Congestion did not appear when the rate of the UDP flow
was below 50%. In these situations, the buffer drained nearly
immediately after the switch, together with the dropping of
the additional delay.
Congestion also appears for TCP flows, but last shorter
due to congestion avoidance mechanisms We now show that
latency-induced congestion also impacts TCP flows, which
accounts for the vast majority of the Internet traffic. Fig. 4
reports the evolution of the delay prior and after the update
when running 10 concurrent TCP connections between s and t,
instead of one UDP connection, to fill the pipe. The effect

of congestion (higher end-to-end delay) is still clearly visible.
It takes about 3 seconds for the flows to stabilize around the
minimum delay. This is explained as the throughput of TCP
flows fluctuates due to congestion avoidance mechanisms. As
such, the link is not perfectly filled all the time as some flows
back off when they experience a packet loss or receive three
duplicate ACKs. Such backing off enables the buffer to drain.
Our model precisely captures the effects measured. In all
our experiments, the maximum buffer size at v was consistent
with the terms 1, 2, with delays ranging from 2ms to 40ms.
Similarly, when we set the buffers to be too small to “store” all
extra packets (i.e., to realistic sizes, e.g., 32KB), the remaining
packets were dropped, causing packet loss. Thus, motivated by
our findings, we will now develop a lossless flow framework.

III. MODEL & PROBLEM SETTING

We first define some common notation, such as network,
latency, or flow, before describing network updates. Afterwards,
in Sec. IV, we show that lossless migration is NP-hard.
Network, graph, capacity, latency We define a network as a
simple (i.e., no self-loops) directed graph with edge capacities.

Definition 1. Let G = (V,E) be a simple connected directed
graph with n = |V | nodes, representing the routers, and m =
|E| edges, representing the links. We denote the set of outgoing
edges (v, u) of a node v ∈ V by out(v) and the set of incoming
edges (u, v) by in(v). A network N is a pair (G, c), with
c : E → R+ assigning each edge e ∈ E a capacity of c(e).

For ease of readability, we model delays in the network (e.g.,
by buffers) as latency on the edges, i.e., the time it takes from
arriving at some router to the next hop along the path.

Definition 2. Let N = (G, c) be a network. The latency of N
is a function ` : E → R+ assigning each edge e = (u, v) ∈ E
a latency of `(e), with `(e) being the time T it takes data to
arrive at v from u.

Buffers We note that besides not dropping packets due to
edges being over capacity, we also want to avoid congestion in
the form of buffer build-ups, as seen in the example of Fig. 1.

As thus, we effectively model the available buffer sizes as zero
(i.e., packets cannot wait), meaning in turn that our methods
will work for any current buffer utilization and sizes.
Flows Next, we define an unsplittable flow according to
the standard flow constraints, i.e., demand satisfaction, flow
conservation, and capacity constraints. As common in this
context, we only consider cycle-free flows in this paper.

Definition 3. Let N = (G, c) be a network. A map F : E →
R≥0 is called an unsplittable flow (from s to t) if it is cycle-free
and fulfills the standard flow constraints, i.e.,

∀v ∈ V \ {s, t} :
∑

e∈out(v)
F (e) =

∑
e∈in(v)

F (e), (4)∑
e∈out(s)

F (e) = dF =
∑

e∈in(t)
F (e), (5)

∀e ∈ E : F (e) ≤ c(e), (6)

with dF being the size of F and the edges with F (e) > 0
forming a simple path from s to t.

Definition 4. Let F1, F2, . . . , Fk be a set of unsplittable flows.
F = (F1, . . . , Fk) is called a multi-commodity flow, if for all
edges e in E holds:

∑k
i=1 Fi(e) ≤ c(e).

Network Updates We consider network updates for flows, i.e.,
given a set of old forwarding rules for some flow F , we want
to change to a set of new forwarding rules of a flow F ′.

Definition 5. Let N be a network and let F, F ′ be flows in N ,
both from node s to t. A network update is a triple (N,F, F ′).

Atomicity of network updates We assume that the change
from a flow F to a flow F ′, both from s to t, is performed as
an instantaneous operation on the ingress router s. In practice,
this can be achieved by a two-phase protocol as described
in, e.g., [46]: all forwarding rules in the network for F ′ are
installed by the SDN controller first. When these installations
are confirmed, the ingress router s will start tagging all packets,
that previously were marked with F , with F ′. With this method,
if the latency from s to some node in the network is the same
for F and F ′, the flow F ′ will arrive after F has departed.

s tv
latency = 1 latency = 1

Fig. 5. This picture depicts the network one time unit after the ingress router
s switches from F (solid) to F ′ (dashed). Note that atomicity can only be
guaranteed per router, not for the whole network.

Lossless updates We can now define when a network update
is consistent under the effects of latency:

Definition 6. Let (N,F, F ′) be a network update where the
ingress router s switches from F to F ′ at time T = 0. Let `
be the latency of N . The network update (N,F, F ′) is called
latency-consistent, if there is no time T ≥ 0 s.t. the capacity
limit of some edge is violated at time T .

For an example of Definition 6 being applied, consider the
network update in Fig. 1: when the ingress router switches
from F (solid path) to F ′ (dashed path), the flow of F ′ is
always behind F , until F ′ takes a shortcut to v: then, for a
time equal to the latency differences between both paths, the

router v will have an incoming flow of 2, even though the only
outgoing edge has a size of 1. Thus, there will be congestion,
and the network update is not latency-consistent.

IV. Latency-CONSISTENCY IS INTRACTABLE
We will now show that latency-consistency is an NP-hard

problem, already for a single splittable flow on a DAG. The
hardness also holds if the latencies are not known exactly.
Latency-consistent migration is NP-hard Our first reduction
is from the Hamiltonian path problem. Essentially, in order to
find an alternative path on where to temporarily store the current
flow, one needs to find a longer path, which is intractable.
Theorem 1. Deciding if a latency-consistent migration from
F to F ′ exists is NP-hard.

s tu z w

u′ w′

G

` = x

`
=
x

capacity = 1

size = 1

size = 1

Fig. 6. In this network, the task is to migrate in an latency-consistent way from
the flow F , depicted in solid blue, to the flow F ′, depicted as a blue dashed
path. All edges have a capacity of 1 and a latency of 1, except for (z, w) and
(w′, w) with a latency of x. The only way to migrate in an latency-consistent
fashion is if there is a path P via G from s to w that has a length of exactly
x+ 3. Then, one can latency-consistently migrate F to P,w, t, then to F ′.

Proof: Let I = (G = (V,E)) be an instance of the
HAMILTONIAN PATH [21] problem, with |V | = x+ 2 nodes.
We construct an instance I ′ for latency-consistent migration,
which is solvable if and only if I contains a Hamiltonian path
(of length x+ 1). An illustration is depicted in Fig. 6.
I ′ contains G = (V,E) and seven additional nodes

s, t, z, w,w′, u, u′. s has outgoing edges to all nodes of V
with a latency of 1, while w has incoming edges from all
nodes of V with a latency of 1 as well. Furthermore, there
are edges (s, u′), (s, u), (u′, u), (u, z), (z, w′) and (w, t), with
a latency of 1 too, but the edges (z, w) and (w′, w) have a
latency of x. All edges in I ′ have a capacity of 1. The flow
F of size 1 is routed via s, u′, u, z, w, t, while the flow F ′ of
size 1 is to be routed via s, u, z, w′, w, t.

Observe that a network update from F to F ′ is not latency-
consistent, as the capacity of (u, z) will be violated for some
time. It would be possible to update F to be routed via w′, but
then the flow between s and w has a latency of x+ 4 instead
of x+ 3. As thus, the only option is to find an alternate path
of length ≥ x+ 3 from s to u via G. However, such a path
exists if and only if G contains a Hamiltonian path H of length
x+ 1 Then, one can update latency-consistent to s−H, w, t,
and then to F ′, as the latency for both to w is x+ 3.

Note that the above proof of Theorem 1 still works even
if the flows are splittable (during the migration), as the
problem of finding a longer path remains. Furthermore, as
x ∈ O(n2), x ∈ N in the above proof, we can turn all latencies
to 1 by replacement with paths of length x.

Corollary 1. Deciding if a latency-consistent migration from
F to F ′ exists is NP-hard, for both splittable and unsplittable
flows, even if all latencies, capacities, and demand sizes are 1.

Furthermore, if the nodes u′, w′ are removed, then it would
be NP-hard to decide if there is any alternative path at all:

Corollary 2. Deciding if any flow F ′ exists, F ′ being different
to F , but of same or larger size, s.t. the network update
(N,F, F ′) is latency-consistent is NP-hard, even if the flows
are splittable and all latencies, capacities, demand sizes are 1.

It is not just about finding the longest path While the longest
path problem is intractable on general graphs, it can be solved
in linear time on DAGs [12]. Nonetheless, latency-consistency
remains NP-hard, via reduction from PARTITION [21]: in
the proof of Theorem 1, we can replace the general graph G
with a DAG s.t. the task of finding a path through the DAG
of a certain length is equivalent to solving PARTITION. The
specific graph construction is detailed in [25, Fig. 9, p. 285].

Corollary 3. Latency-consistent migration is NP-hard on
DAGs, already for a single splittable flow of unit size.

Hardness also holds for latency ranges From a practical
point of view, it is unrealistic to know the latency values of
every edge with 100% accuracy. Much rather, one can assume
that the latency of an edge e falls into a certain (uncertainty)
range [a, b], but the specific value is unknown (or might shift).

However, this assumption does not make the migration
problem easier from a theoretical point of view, as we can
transform the fixed latencies of hardness instances into non-
empty latency ranges, retaining the NP-hardness property: e.g.,
in the proof for Theorem 1, replace the latency from z to w
with [1, x− 3], from w′ to w with [2x+ 3, 3x+ 3], and all
other latencies with [1, 2]. As such, we still need to find an
intermediate Hamiltonian path in G from s to w with a latency
range of [x+ 3, 2x+ 6]. Similar examples can be constructed
where all edges have an identical latency range, e.g., of [1, 2].

V. ADAPTING CURRENT SYSTEMS

To our knowledge, current network update mechanisms that
aim at lossless migration of live flows overlook the effects of
latency in the network. Systems like SWAN keep their focus
on the asynchrony caused by changing multiple flows at once,
which is not an atomic operation such as changing just one flow:
the network is still a distributed system, where the individual
routers could execute their updates in any ordering, cf. the
studies in [23], [27], [29], unless orchestrated in e.g., rounds.

For example, zUpdate defines a network update of multiple
flows F1, . . . , Fk to be lossless if the following condition holds:

∀e ∈ E :
∑

1≤i≤k
max (Fi (e) , F

′
i (e)) ≤ c (e) , (7)

which we call max-consistent. Even though this is an elegant
way to capture the asynchrony of different flows Fi, Fj with
each other, it does not account for flows congesting their own
path due to latency. When considering Fig. 1, all edges satisfy
condition (7), yet there is congestion: for some time, the old
flow F and the new flow F ′ use the same edge outgoing from
v, violating the edge’s capacity. Nonetheless, systems such
as SWAN [24] or Dionysus [27] are custom-tailored, i.e., they
cannot decide if a consistent flow migration exists in general.
As such, we will be able to “bake” losslessness into them.

A. A Dependency Graph Approach: Dionysus

For the consistent migration of unsplittable flows, Diony-
sus [27] builds a dependency graph based on the old and new
flow paths. E.g., in order to move flow F1, first move F2 or
F3. No intermediate flow paths are considered. Their approach
relies on turning the dependency graph into a DAG during the
runtime, which can be traversed in a topological order. Cycles
are broken via rate-limiting flows to avoid deadlocks.

Adapting Dionysus to latency can be done in a straightfor-
ward way. Observe that a single path change of an unsplittable
flow can be simulated in time-steps, based off the latency
difference between intersections of the old and the new path.
To come back to the above F1, F2, F3 example, if all three
flows can be updated in a latency-consistent way, then we have
two possible update orders for F1: first F2 or F3, then F1.
Corollary 4. Let G be a dependency graph where individual
updates are latency-consistent. If G is a DAG, Dionysus will
perform a latency-consistent flow migration.

B. Slack Based Approaches: SWAN

A key concept used by SWAN [24] is the concept of slack,
i.e., free capacity on the edges. When we speak about slack
s, we mean free capacity of size s, while relative slack sR
denotes a free fraction of capacity. One of the central ideas
by SWAN is that consistent flow migration is easy if there is
relative slack sR on every edge, a technique which we will
call the slack method: e.g., if sR is 1/10, one can migrate in
9 relaxed-consistent updates by moving 10% of the flow each
time to the new flow rules, never breaking capacity constraints2.

As free capacity on every edge cannot be assumed in general,
SWAN proposes to rate-limit background flows of low priority,
creating a suitable environment for consistent flow migration.
Should rate-limiting not be possible, SWAN proposes an LP-
based approach, which aims at finding a fast migration, but
cannot decide infeasibility. In particular, for each flow change,
they enforce Condition 7, which we showed to be not lossless.
Enforcing enough space for old and new flow A straight-
forward way to “fix” Condition (7) would be to replace the
maximum operation with the addition operation [19], i.e.,

∀e ∈ E :
∑

1≤i≤k
(Fi (e) + F ′i (e)) ≤ c (e) , (8)

which we call ⊕-consistent. Now, the network update in Fig. 1
is no longer detected as lossless. In fact, the lossless property
always holds: if there is enough capacity to accommodate the
flow twice, the latency on the edges is irrelevant for congestion.

Corollary 5. The slack-method is latency-consistent. Replacing
max-consistency with ⊕-consistency in SWAN’s LP makes it
(and analogous approaches) latency-consistent.

Completeness? However, Condition (8) is “too strong”, cf.
Fig. 7: in this example, there will be no congestion, as the
flows do not meet again once they divert from each other’s
path. Yet, the network update in Fig. 7 violates condition (8)!

2As proposed by Alizadeh et al. [2] with the HULL architecture, leaving
some slack capacity can also be leveraged for greatly reducing latencies in
DCNs. Slack based approaches can thus trade some migration speed for latency.

u v

capacity = 1
size = 1

size = 1

Fig. 7. When changing from the solid (F) to the dashed path (F ′),
Condition (7) is satisfied (max-consistency) on all edges, but Condition (8)
(⊕-consistency) is violated on the incoming edges of u and v.

This is no contradiction to the Corollaries 4 and 5: they only
apply to special cases (latency-consistent dependency-DAG,
slack everywhere) or sophisticated heuristics (LPs).

Hence, we are in a bit of a conundrum, having to choose
between computational intractability (latency-consistency,
Thm. 1), accepting packet loss (max-consistent, [8], [24], [27],
[30]), or only being able to cover special scenarios (Cor. 4, 5).

VI. RELAX FOR LOSSLESS UPDATES

Given the (computationally) problematic situation pointed
out at the end of the last section, we now devise a tractable
model where we are not confined to the restricted scenarios of
Dionysus and SWAN. Inspired by Ludwig et al.’s [16] approach
to accelerating loop-free updates (“It’s Good to Relax!”), we
relax the latency requirements for flow migration. Specifically,
we formulate the relaxed flow migration consistency in such a
way that it is oblivious to the latency in the network. In other
words, consistency has to hold for all latency settings.

Definition 7. Let (N,F, F ′) be a network update where the
ingress router s switches from F to F ′ at time T = 0. The
network update (N,F, F ′) is relaxed-consistent, if for all
possible latencies ` holds: (N,F, F ′) is latency-consistent.

To give some examples, the scenarios in Fig. 7 and Fig. 5
are relaxed-consistent, but not the one in Fig. 1.

Before presenting our polynomial relaxed-consistent migra-
tion algorithm in Sec. VI-B, we present some discussions and
definitions in Sec. VI-A, motivating our algorithmic approach.
A. Further preparatory considerations
Relaxed-consistency for unsplittable flows: NP-hard
By using analogous arguments as the reductions in [8, 3-SAT]
or [58, PARTITION], it is easy to show that relaxed-consistent
flow migration is NP-hard if the flows always have to be
unsplittable. Hence, we will allow the splitting of flows during
the migration process to obtain tractability.
Splitting flows vs. n-splittable flows A natural approach,
inspired from mathematical flow theory, is to let the flow
packets arriving at routers to be split according to some pre-set
distribution. However, the standard hash based flow splitting
is not exact from a theory point of view: it is based on
probabilistic assumptions, meaning that in practice, there can
be a sequence of packets which will not be split according to
the pre-set distribution. Even if the splitting were to be 100%
exact, already moving a single splittable flow once can create
exponentially many different utilizations on an edge. Thus, as
we do not want to drop packets and desire a tractable decision
process, we use another approach, as done by, e.g., Google’s
B4 [49]: we split each flow into (unsplittable) flow paths, each
having its own rules, eliminating probabilistic splitting.

relaxed-consistent migration In the following, we will speak
about splittable flows, but each splittable flow Fi is in reality
a collection of unsplittable flows Fi,1, Fi,2 . . . from si to ti. A
relaxed-consistent migration will begin and end with a set of
unsplittable multi-commodity flows F ,F ′, but in intermediate
updates, each flow Fi can consist of multiple paths:

Definition 8. A sequence of r relaxed-consistent network
updates (N, (F1, . . . , Fk), (F

1
1 , . . . , F

1
k)), (N, (F 1

1 , . . . , F
1
k),

(F 2
1 , . . . , F

2
k)), . . . , (N, (F

r−1
1 , . . . , F r−1

k), (F ′1, . . . , F
′
k)),

with dFi
= dF ′

i
= dF j

i
for all 1 ≤ i ≤ k and 1 ≤ j ≤ r−1, is

called a relaxed-consistent migration (from F = (F1, . . . , Fk)
to F ′ = (F ′1, . . . , F

′
k)).

Should dFi
> dF ′

i
, then one could first reduce the size of dF

to the one of dF ′ before migrating, or vice versa for dFi
< dF ′

i
.

Augmentation is not lossless The only polynomial approach
that can check general feasibility for the max-consistency
model is by Brandt et al. [8] via augmenting flows. Specifically,
for each flow, they consider the residual network and search for
an augmentation that frees up some capacity on some edge at
full capacity. However, their augmentation idea “interleaves” a
flow with itself during updates, not being oblivious to latency.

Nonetheless, we are inspired by their work in the sense
that their approach is combinatorial, and not via linear
programming, as many other works such as, e.g., [30], [58].

We now present our relaxed-consistent flow migration:

B. A relaxed-consistent flow migration algorithm

Our algorithm construction has two phases: first, as
in, [8], [24] we check for slack generation. However, the
process is different, via the concept of so-called divergence
nodes, introduced in the next paragraph (and the constraint
that the intermediate updates have to be relaxed-consistent).
Second, once the slack generation has finished, we can move
the flows in partial steps, see Algorithm 2.
Slack and divergence nodes Given an old flow Fi ∈ F and
a new flow F ′i ∈ F ′, we introduce the concept of a divergence
node vF,F ′ . For the old flow path PFi

and the new flow path
PF ′

i
, the divergence node vF,F ′ is the first node, starting from

si along both paths, beyond which both flows take a different
edge to continue. E.g., in Figure 7, the divergence node is v. For
completeness reasons, we define vF,F ′ to be ti if PFi = PF ′

i
.

As both flows are the “same” until vF,F ′ , we do not need any
slack until vF,F ′ when migrating between Fi and F ′i . Note that
other flows on these edges might enforce the need for slack
though when using the slack method.

In the following Algorithm 1 we will give a method to check
how slack can be generated on as many edges as possible under
the restriction of relaxed-consistent network updates:

Lemma 1. Algorithm 1 creates slack on every edge where
slack can be created via a relaxed-consistent migration (i.e.,
using only relaxed-consistent updates).

Proof: The performed network updates by Algorithm 1
are relaxed-consistent, as flows are only split and rerouted via

Algorithm 1: Slack creation
Input: Network N and m.-c. flow F = (F1, . . . , Fk).

1) For every edge e = (u, v) without slack, check via BFS if there
is a flow Fi,j on e s.t. there is a path P with slack s > 0 from u
to ti. If yes, let w be the node in Fi,j closest to si if you travel
along Fi,j , that is also contained in P . Let P ′ be the subpath of
P from w to ti. Perform a network update where Fi,j is split
into two by reducing the size of Fi,j by min

{
dFi,j/2, s/2

}
and adding a new unsplittable flow of size min

{
dFi,j/2, s/2

}
along the path of Fi,j to w and then via P ′ to ti.

2) Repeat Step 1 until either all edges have slack or there has been
one iteration of Step 1 without any network updates (i.e., all
edges without slack were checked for all flows).

Output: The obtained multi-commodity flow F∗ = (F ∗1 , . . . , F
∗
k).

Algorithm 1: Recall that Fi is a collection of unsplittable flows Fi,j

from si to ti, initially just Fi,1. The algorithm creates slack on all
edges where slack can be created by a sequence of relaxed-consistent
network updates. The slack generation is non-destructive in the sense
that if an edge has slack at some point, it always keeps some slack.

paths of free capacity. Assume that there exists some relaxed-
consistent migration M that creates slack on further edges:
consider the first update U of M where free capacity on an
edge e′ was created where Algorithm 1 was not able to create
slack. In U , a flow F using e′ is rerouted (partially) along
some path P not containing e′. Denote the flow induced in
M before U was applied by FU . F∗ has slack on every edge
where FU has slack as well. As thus, we can also reroute F
(partially) along the same path P , inducing slack on e′.
Complexity of slack generation Observe that Algorithm 1
creates slack on at least one edge when a new flow (path) is
introduced. As thus, at most |E| = m new flows are created
with at most m network updates. Note that each flow is split
at most n times. Furthermore, a BFS can be performed in
O(m) time. With O(n) destinations and m edges, the total
computational runtime is therefore O(nm3).

Lemma 2. Algorithm 1 has a runtime of O(nm3), performing
at most m network updates, introducing ≤ m new flows.

We can now use Algorithm 1 to check (and in the positive
case, perform) for a relaxed-consistent migration. The idea is
as follows: we see if we can create slack on all edges beyond
the divergence points of the old and new flows. If yes, we can
migrate between these two states step by step using the slack
method. Else, no relaxed-consistent migration is possible.

Theorem 2. Algorithm 2 decides the feasibility of relaxed-
consistent flow migration. If the answer is positive, a relaxed-
consistent migration schedule is provided.

Proof: We begin by showing that the migration is relaxed-
consistent. The migration via Algorithm 1 is relaxed-consistent
due to Lemma 1. Note that every relaxed-consistent network
update is also relaxed-consistent if applied in reverse. Hence,
using Algorithm 1 in reverse is a relaxed-consistent migration
as well. Lastly, when using the slack method, we only insert
an amount of flow to edges that is at most the available slack.

We now show that else no relaxed-consistent migration is
possible. Assume that for some i there is an edge e∗ behind

Algorithm 2: Flow migration

Input: Network N and multi-commodity flows F ,F ′.
1) Execute Algorithm 1 on N and F .
2) For every corresponding pair of flows Fi ∈ F , F ′i ∈ F ′, check

if all edges behind vFi,F
′
i

in Fi have slack in output of Step 1.
3) Repeat Steps 1, 2 for F ′ instead of F .
4) If the answer is yes in both executions of Step 2, then migrate

from F to F ′ as follows. Else, no relaxed-consistent migration
is possible.
a) Migrate from F to F∗ as described in Algorithm 1.
b) Migrate from F∗ to F ′∗ using the slack method.
c) Migrate from F ′∗ to F ′ using Algorithm 1 in reverse.

Output: A relaxed-consistent migration from F to F ′, if it exists.
Algorithm 2: The algorithm first utilizes two executions of Algo-
rithm 1 to check if a relaxed-consistent migration is possible. If yes,
then the algorithm proceeds in three steps by first creating slack on F ,
migrating to a modified version of F ′ with slack, and lastly migrating
to F ′, all with relaxed-consistent network updates.

vFi,F ′
i

in Fi s.t. Algorithm 1 cannot induce slack on e∗ for F
(the symmetric case for F ′i and F ′ can be handled analogously
due to the reversibility of relaxed-consistent updates), but that
there is a relaxed-consistent migration M from F to F ′. As
e∗ is behind vFi,F ′

i
, there must have been some update U in

M that reroutes some part of Fi going along e∗. The rerouted
flow part cannot use e∗ directly after U , as relaxed-consistency
requires some slack on e∗. Thereby, U could be used to create
slack on e∗, a contradiction to the above assumption.
Complexity of relaxed-consistency Note that the number of
network updates and new flow rules created by the executions
of Algorithm 1 are at most 2m, respectively. When migrating
between F∗ and F ′∗, no further flow rules are needed for the
updates of the slack method. The number of network updates
for this step are d1/sRe, with sR being the smallest relative
slack of F∗ and F ′∗. For the computational runtime, note that
the implicit schedule generation of the slack method (perform
d1/sRe network updates of the same type) is dominated by ex-
ecutions ofAlgorithm 1 with runtimes of O(nm3) (Lemma 2).

Corollary 6. Let sR be the smallest relative slack created by
Algorithm 1 on F ,F ′. Algorithm 2 performs at most d1/sRe+
2m network updates with at most 2m additional flows. The
runtime for the (implicit) schedule generation is O(nm3).
Waypoint enforcement We note that in the current form,
our migration algorithm does not respect waypointing (e.g.,
firewalls) or service chains in general, cf. [5], [32]. However,
observe that each intermediate (splitted) flow has its own
forwarding rules, as we use the method of [46]. As thus,
we can extend our migration algorithm to enforce such rules.
E.g., intermediate paths are only allowed if they pass a firewall.
Relation to ⊕-consistency Lastly, as ⊕-consistent updates only
move flows to edges that currently have sufficient capacity,
they are also relaxed-consistent. The reverse is false though,
there are relaxed-consistent updates that are not ⊕-consistent.
Observation 1. All ⊕-consistent updates are relaxed-
consistent. The reverse is not true, see for example Fig. 7.

As thus, Algorithm 2 can be used to cover the feasibility
space of ⊕-consistency, extending it to relaxed-consistency.

VII. FURTHER MITIGATION TECHNIQUES

In the previous sections, we discussed how to achieve a
lossless flow migration under theoretical model assumptions.
We can imagine that in practice, some of the following con-
siderations can be useful for future (heuristic) improvements.
Scheduling ahead In specialized environments such as, e.g.,
single-tenant data-centers, one can also take an orthogonal
approach to network updates, by scheduling all the traffic [22],
[28], [44], often eliminating the need for the migration of
flows. Should flows arrive online though, flow migration is
unavoidable for optimal traffic utilization, as proven in [40].
Waiting for the gap Using the burstiness of TCP as an advan-
tage, Sinha et al. [48] defined a flowlet as “a burst of packets
from the same flow followed by an idle interval”, allowing them
to be switched independently. The latest generation of data-
center load-balancers such as LetFlow [52] uses that observation
to shift traffic during these frequent gaps without causing packet
reordering. Burstiness varies between different types of TCP
flows (e.g., porcupine and cheetah) [45], with burstiness being
low when, e.g., controlling the sending rates [24]/using UDP.

We can imagine using flowlets in systems such as, e.g.,
Dionysus, Sec. V-A: in case a dependency-cycle has to be
broken, wait for an eventual large gap to proceed consistently.
Accept losses By using failure-resilient protocols and efficient
hardware, losses can often be recovered quickly [49]. Fur-
thermore, the network asynchrony can be kept low by using
timed protocols [41]. Nonetheless, even with perfect timing
and synchronization, packet loss can occur, recall Fig. 1.
Don’t migrate For cases such as remote surgery [38], where
resilience is of much higher importance than any positive
migration impact, link protection can come into play [53].

VIII. RELATED WORK

The two-phase approach of Reitblatt et al. [46] is easy
to deploy and efficient: the old and new network state exist
in parallel until all packets from the old state are drained
from the network, preventing the issues of blackholes, loops,
and enforcing packet coherence. Their idea is not aimed at
eliminating congestion, but still mitigates it in many aspects.
We use their mechanism in this article to guarantee an atomic
switch between flows from the same source (cf. Section III).

SWAN [24] and zUpdate [30] target splittable flows and
propose to leave a fraction of free bandwidth (“slack”) on
every link, allowing for a network migration in staged partial
moves, see also Sec. V-B. For example, should 25% of each
link’s capacity not be utilized, they finish in three moves. In
case this slack cannot be guaranteed, even with shutting down
background traffic, they employ an LP-based binary search to
find a sequence of moves that complies with the different flows
not violating bandwidth constraints. Zheng et al. [58] take
an orthogonal approach and aim to minimize the congestion
for a given sequence length, showing the NP-hardness of this
problem for unsplittable flows. All three works cannot decide
if such a consistent sequence exists however, but follow-up
work showed that it can be decided for splittable flows in

polynomial time using augmenting flows [8], respectively in
exponential time for unsplittable flows [14]. As they all ignore
the effect of edge latency, and model the edge utilization of e
as max(F (e), F ′(e)), their network updates are not lossless.

The migrations described in [19], [34] are lossless, but their
model is not complete, see Sec. V, furthermore not accounting
for intermediate paths. Similarly, the model in [9] is lossless,
but only covers one destination, not migrating to specified new
paths, but rather placing new flows anywhere.

Dionysus [27] builds a dependency graph for possible
migrations and runs a greedy algorithm to find an ordering of
network updates to reach the desired network state. Should the
greedy algorithm not be able to proceed with the flow migration
in a consistent manner, then blocking flows are rate-limited
for progress. We adapt their work in Sec. V-A.

Mizrahi et al. tackle the problem of asynchrony: as updates
are installed in a distributed fashion in the network’s routers,
the atomicity of a network update cannot be guaranteed.
They propose the mechanisms TIMEFLIP [42] / timed-based
consistent updates [41] to ensure that rules adhere to timing
constraints. Their approach does not prevent losses in Fig. 1.

Order replacement updates for flows have also been studied
in [3], [4] for multiple flows, but in an asynchronous setting
without latencies. The concept of timed updates has been
recently studied by Zheng et al. [56], [57] for unit latencies,
where flows have to be migrated from an old to a new path.
To perform the updates, the nodes along the path can change
their forwarding behavior, from old to new, synchronously.
In this context of so-called order replacement updates, for a
single flow, the authors give a polynomial time algorithm for
a capacity-respecting update order. Single updates for single
flows have also been studied in [15]. The difference between the
mentioned order replacement updates and the by us employed
two-phase approach is at a conceptual level: order replacement
updates are inherently less powerful as they can only shift
between old and new rules at each node, but on the other hand,
they do not require the overhead of tagging each flow-packet.
In between are Nguyen et al. [43], using a two-phase approach,
where flows may only use paths in the union of old/new routes.
They propose a decentralization approach, see also [20, §5].

Lastly, we refer to the recent survey in [18] for a general
overview and discussion on consistent updates in SDNs.

IX. CONCLUSIONS

Our experiments in a small testbed showed that current
consistent flow migration techniques induce packet loss, due
to ignoring latency. As thus, we gave a flow migration model
that takes latency into account, proving that the problem of
finding a lossless migration is NP-hard, already for a single
splittable flow, for both fixed latencies and latency ranges.

Notwithstanding, we showed how to adapt state of the art
systems such as SWAN or Dionysus to being lossless, as they
only cover consistency in restricted flow migration scenarios.

In order to develop a general and polynomial lossless flow
migration algorithm, we relaxed the problem setting, namely
to being oblivious to the latencies in the network. In this new

relaxed model, we presented a multi-commodity flow migration
scheme, proving it to be polynomial, general, and lossless.

We also briefly discussed heuristic mitigation techniques.
We hope our work can be useful for adapting and developing

further traffic engineering systems, especially those that take
balancing a multitude of consistency properties into account.
Acknowledgements. The authors would like to thank Sebastian
Brandt for valuable insights and discussions. The authors would
also like to thank the anonymous reviewers for their feedback.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows - theory,
algorithms and applications. Prentice Hall, 1993.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). SIGCOMM
Comput. Commun. Rev., 40(4):63–74, 2010.

[3] S. A. Amiri, S. Dudycz, M. Parham, S. Schmid, and S. Wiederrecht. On
polynomial-time congestion-free software-defined network updates. In
IFIP Networking, 2019.

[4] S. A. Amiri, S. Dudycz, S. Schmid, and S. Wiederrecht. Congestion-free
rerouting of flows on dags. In ICALP, 2018.

[5] S. A. Amiri, K.-T. Foerster, R. Jacob, and S. Schmid. Charting
the algorithmic complexity of waypoint routing. SIGCOMM Comput.
Commun. Rev., 48(1):42–48, 2018.

[6] S. A. Amiri, A. Ludwig, J. Marcinkowski, and S. Schmid. Transiently
consistent SDN updates: Being greedy is hard. In SIROCCO, 2016.

[7] A. Basta, A. Blenk, S. Dudycz, A. Ludwig, and S. Schmid. Efficient
loop-free rerouting of multiple SDN flows. IEEE/ACM Trans. Netw.,
26(2):948–961, 2018.

[8] S. Brandt, K.-T. Foerster, and R. Wattenhofer. On consistent migration
of flows in sdns. In INFOCOM, 2016.

[9] S. Brandt, K.-T. Foerster, and R. Wattenhofer. Augmenting flows for
the consistent migration of multi-commodity single-destination flows in
sdns. Pervasive Mob. Comput., 36:134–150, 2017.

[10] M. Casado, N. Foster, and A. Guha. Abstractions for software-defined
networks. CACM, 57(10):86–95, 2014.

[11] F. Clad et al. Computing minimal update sequences for graceful router-
wide reconfigurations. IEEE/ACM Trans. Netw., 23(5):1373–1386, 2015.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

[13] K.-T. Foerster. Don’t disturb my Flows: Algorithms for Consistent
Network Updates in Software Defined Networks. Phd. thesis, ETH
Zurich, Switzerland, September 2016.

[14] K.-T. Foerster. On the consistent migration of unsplittable flows: Upper
and lower complexity bounds. In IEEE NCA, 2017.

[15] K.-T. Foerster. On the consistent migration of splittable flows: Latency-
awareness and complexities. In IEEE NCA, 2018.

[16] K-T. Foerster, A. Ludwig, J. Marcinkowski, and Schmid S. Loop-free
route updates for software-defined networks. IEEE/ACM Trans. Netw.,
26(1):328–341, 2018.

[17] K.-T. Foerster, R. Mahajan, and R. Wattenhofer. Consistent updates
in software defined networks: On dependencies, loop freedom, and
blackholes. In IFIP Networking, 2016.

[18] K.-T. Foerster, S. Schmid, and S. Vissicchio. Survey of consistent
software-defined network updates. IEEE Commun. Surveys Tuts., 2019.

[19] K.-T. Foerster and R. Wattenhofer. The power of two in consistent
network updates: Hard loop freedom, easy flow migration. In ICCCN,
2016.

[20] K.T-. Foerster, T. Luedi, J. Seidel, and R. Wattenhofer. Local checkability,
no strings attached: (a)cyclicity, reachability, loop free updates in sdns.
Theor. Comput. Sci., 709:48–63, 2018.

[21] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[22] S. Ghorbani and M. Caesar. Walk the line: Consistent network updates
with bandwidth guarantees. In HotSDN, 2012.

[23] K. He et al. Measuring control plane latency in sdn-enabled switches.
In SOSR, 2015.

[24] C.-Y. Hong et al. Achieving high utilization with software-driven WAN.
In SIGCOMM, 2013.

[25] A. Itai, Y. Perl, and Y. Shiloach. The complexity of finding maximum
disjoint paths with length constraints. Networks, 12(3):277–286, 1982.

[26] J. Perelló et al. All-optical packet/circuit switching-based data center
network for enhanced scalability, latency, and throughput. IEEE Network,
27(6):14–22, 2013.

[27] X. Jin et al. Dynamic scheduling of network updates. In SIGCOMM’14.
[28] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula. Calendaring

for wide area networks. In SIGCOMM, 2014.
[29] M. Kuzniar, P. Peresı́ni, and D. Kostic. What you need to know about

SDN flow tables. In PAM, 2015.
[30] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A. Maltz.

zUpdate: updating data center networks with zero loss. SIGCOMM 2013.
[31] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. Transiently policy-

compliant network updates. IEEE/ACM Trans. Netw., 26(6), 2018.
[32] T. Lukovszki and S. Schmid. Online admission control and embedding

of service chains. In SIROCCO, 2015.
[33] L. Luo, Z. Li, J. Wang, and H.-F. Yu. Simplifying flow updates in

software-defined networks using atoman. In IEEE Access, 2019.
[34] L. Luo, H. Yu, S. Luo, and M. Zhang. Fast lossless traffic migration for

SDN updates. In ICC, 2015.
[35] L. Luo, H.-F. Yu, S. Luo, M. Zhang, and S. Yu. Achieving fast and

lightweight SDN updates with segment routing. In GLOBECOM, 2016.
[36] S. Luo, H.-F. Yu, L. Luo, and L. Li. Arrange your network updates as

you wish. In IFIP Networking, 2016.
[37] R. Mahajan and R. Wattenhofer. On consistent updates in software

defined networks. In HotNets, 2013.
[38] J. Marescaux, J. Leroy, F. Rubino, M. Smith, M. Vix, M. Simone, and

D. Mutter. Transcontinental robot-assisted remote telesurgery: feasibility
and potential applications. Annals of surgery, 235(4):487, 2002.

[39] E. Marilly, O. Martinot, H. Papini, and D. Goderis. Service level agree-
ments: a main challenge for next generation networks. ECUMN, 2002.

[40] T. Mizrahi and Y. Moses. On the necessity of time-based updates in
SDN. In ONS, 2014.

[41] T. Mizrahi, E. Saat, and Y. Moses. Timed consistent network updates in
software-defined networks. IEEE/ACM TON, 24(6):3412–3425, 2016.

[42] T. Mizrahi et al. Timeflip: Using timestamp-based TCAM ranges to
accurately schedule network updates. Trans. Netw., 25(2):849–863, 2017.

[43] Thanh Dang Nguyen, Marco Chiesa, and Marco Canini. Decentralized
fast consistent updates. In SOSR, 2017.

[44] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass:
a centralized ”zero-queue” datacenter network. In SIGCOMM, 2014.

[45] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, and W. Willinger.
TCP revisited: a fresh look at TCP in the wild. In IMC, 2009.

[46] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In SIGCOMM, 2012.

[47] R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, and P. Gill. RADWAN:
rate adaptive wide area network. In SIGCOMM, 2018.

[48] S. Sinha, S. Kandula, and D. Katabi. Harnessing tcp’s burstiness with
flowlet switching. In HotNets, 2004.

[49] J. Sushant et al. B4: experience with a globally-deployed software
defined wan. In SIGCOMM, 2013.

[50] V. Vasudevan et al. Safe and effective fine-grained TCP retransmissions
for datacenter communication. In SIGCOMM, 2009.

[51] L. Vanbever, S. Vissicchio, C. Pelsser, P. François, and O. Bonaventure.
Lossless migrations of link-state igps. IEEE/ACM Trans. Netw.,
20(6):1842–1855, 2012.

[52] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall. Let it flow:
Resilient asymmetric load balancing with flowlet switching. NSDI, 2017.

[53] J.-P. Vasseur, M. Pickavet, and P. Demeester. Network recovery: Protec-
tion and Restoration of Optical, SONET-SDH, IP, MPLS. Elsevier, 2004.

[54] S. Vissicchio and L. Cittadini. Safe, efficient, and robust SDN updates
by combining rule replacements and additions. IEEE/ACM Trans. Netw.,
25(5):3102–3115, 2017.

[55] S. Vissicchio et al. Safe update of hybrid SDN networks. IEEE/ACM
Trans. Netw., 25(3):1649–1662, 2017.

[56] J. Zheng, G. Chen, S. Schmid, H. Dai, J. Wu, and Q. Ni. Scheduling
congestion- and loop-free network update in timed sdns. IEEE J. Sel.
Areas Commun., 35(11):2542–2552, 2017.

[57] J. Zheng, B. Li, C. Tian, K.-T. Foerster, S. Schmid, G. Chen, and J. Wu.
Congestion-free rerouting of multiple flows in timed sdns. IEEE Journal
on Selected Areas in Communications, 2019.

[58] J. Zheng, Hong Xu, Guihai Chen, and Haipeng Dai. Minimizing transient
congestion during network update in data centers. In ICNP, 2015.

[59] D. Zhuo, M.Ghobadi, R. Mahajan, K.-T. Foerster, A. Krishnamurthy,
and T. E. Anderson. Understanding and mitigating packet corruption in
data center networks. In SIGCOMM, 2017.

