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Abstract
Data gathering is one of the most common applications of
wireless sensor networks. Such networks are an extremely
useful tool for researchers in various domains since they
allow for measurements in unaccessible locations, e.g., on
mountains, glaciers or in animal habitats. At the same time,
the deployment and maintenance of such sites is time con-
suming and costly. Network reprogramming protocols allow
to distribute code updates over the wireless network, which
prolongs the interval between human intervention at the de-
ployment site.

While network reprogramming has been studied exten-
sively in the literature, existing bulk data dissemination pro-
tocols often do not work well together with data gathering
applications which operate at low duty-cycles. We present
a reliable data dissemination protocol designed for energy-
efficient operation at low duty-cycles. A simple remote pro-
cedure call mechanism is used to control and monitor single
nodes during the update process, which provides maximal
observability during network reprogramming.
1 Introduction

Wireless sensor networks gain momentum as a research
tool within different scientific domains, e.g., environmental
monitoring. Such sensor deployments strive to gather long-
term data with a focus on high measurement accuracy and
data yield. Interruptions of the sensing process may have
a severe impact on the success of the whole experiment.
Therefore, it is indispensable to restrict network downtime to
a minimum. Furthermore, human intervention, such as man-
ual reprogramming of sensor nodes, may be costly and even
dangerous when sensor nodes are deployed in areas which
are difficult to access by humans.

Remote code updating mechanisms, also known as net-
work reprogramming, have been explored in the context of
wireless sensor networks. Updating the program image run-
ning on a node over the radio typically consists of three steps:
(1) announcement of a new image, (2) image dissemination
and (3) reprogramming the node.

Deluge [2] employs a “polite-gossiping” algorithm to an-
nounce the availability of a new binary image. The data dis-
semination phase is started when nodes request a new im-
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age from their neighbors. Since a single radio message can
only hold a limited amount of data, an image has to be split
in multiple pages and packets. Deluge employs negative
acknowledgments to request missing or corrupted packets
again. Finally, an image checksum guarantees the integrity
of the image before it is flashed to the program memory. In
this work we tackle two major problems of Deluge: the lack
of feedback from nodes about the success of network repro-
gramming and the interference of update packets with other
network protocols [3].
2 Data Dissemination Protocol

In this section, we present the basic building blocks of
our novel data dissemination protocol for wireless sensor
networks. Our work builds upon SlotOS [1], a slotted pro-
gramming abstraction for TinyOS, which has been designed
to ease programming by decoupling different modules of an
application. By design, a module is only allowed to be ac-
tive within its designated time slot. This assumption greatly
reduces the code complexity since resource arbitration, such
as providing access to the radio chip, is already handled by
the operating system. Furthermore, SlotOS aims to reduce
idle listening time of the radio transceiver by establishing a
global time on all nodes. Each module is scheduled for exe-
cution during one or mored dedicated slots within each round
of 32 seconds, see Figure 1. The radio transceiver is only
powered when requested by the currently running module,
otherwise it remains in the power-save mode. The first slot of
each round is reserved for the TimeSync module, which runs
a clock synchronization protocol to align the schedules on all
nodes. The Bidirectional Tree module builds and maintains a
spanning tree rooted at the base station containing only links
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Figure 1. Execution times of modules are scheduled
within each round by SlotOS. Modules are allowed to op-
erate within their dedicated time slots only.
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Figure 2. The Broadcaster module operates within mul-
tiple subslots which are assigned based on the level of a
node in the bidirectional tree.

with high bidirectional packet reception rates. This span-
ning tree is used by the Multi-Hop Control module to for-
ward control messages between nodes and the base station.
As the next module in the schedule, the Broadcaster mod-
ule is responsible for the data dissemination. It is only active
on-demand when there is a new image to be disseminated,
otherwise the radio and the microcontroller are kept in sleep
mode to reduce the energy consumption. Similar to Deluge,
the data object is split into pages each containing 48 packets.
One page is attempted to be transfered in each round. The
slot for the broadcaster module is further divided into mul-
tiple subslots (Request, Announce, Prepare, Broadcast and
Retransfer), as shown in Figure 2. A node with children in
the spanning tree is active during two consecutive subslots.
First, it will receive a page from its parent node in the first
subslot. Then, it will transmit the page to its children in the
next subslot. Consequently, leaf nodes in the spanning tree
are only active during one subslot to receive a page. Each
subslot is started with a Request phase where each child node
sends a request for the next page to its parent node. Request
packets are sent with a random backoff to avoid collisions.
The Broadcast phase is reserved to broadcast all data pack-
ets corresponding to the current page. To avoid packet col-
lisions by multiple nodes in the same level which simulta-
neously broadcast data packets, a simple channel reservation
mechanism is employed. The child that sends the request
for the lowest page number implicitly reserves the following
broadcast slot for its parent node. If multiple nodes request
the same page number, the node that sent the first request re-
serves the slot for its parent. The elected parent announces
the identifier of the page it will transmit during this round in
the Announce phase. Next, all nodes power off their radios
to save energy while the parent loads the next page from the
external flash memory into the RAM (Prepare phase). Fi-
nally, the Retransfer phase provides a small time window to
retransfer packets which could not be received correctly. Our
experiments revealed that a dedicated retransfer phase at the
end of each round reduces the overall latency since it is very
likely to have one or a few missing packets in each subslot
due to the lossy nature of the wireless channel.
3 Evaluation

In order to demonstrate the feasibility of our approach,
we implemented the protocol on the Shockfish TinyNode584
platform, which features a TI MSP430F1611 microcon-
troller and a Semtech XE1205 radio transceiver. We placed
ten nodes in an indoor setup spanning multiple floors. Dur-
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Figure 3. Radio uptime of the Broadcaster module dur-
ing the dissemination of an image of 21 pages. Circles
denote the actual measurement results, the bars indicate
the standard deviation from the mean value.

ing our test runs, we disseminated a data object of 21886
Bytes, which corresponds to 995 packets in 21 pages. Figure
3 shows the measurement results acquired over 100 repeated
test runs and the spanning tree built by the bidirectional tree
module. As expected, the radio uptime of a node depends on
the number of its children. Node 1 has the highest uptime
while the leaf nodes 5,6,9 and 10 have the smallest radio up-
time. The dissemination of the complete image took 24.73
rounds on average, which is 17.8% more than the theoret-
ical minimum of 21 rounds. The radio of nodes 2-10 was
turned on during 21.7 s on average by the broadcaster mod-
ule until the image has been completely disseminated. This
corresponds to an average data dissemination rate of roughly
1 kB/s, which is about one-ninth of the maximal single-hop
data rate of the radio chip.
4 Conclusion

We have presented a novel data dissemination protocol
with a focus on reliability and energy-efficiency. Scheduling
image dissemination only during reserved time slots elim-
inates interference with the regular data gathering protocol
and increases the observability during the network repro-
gramming phase.
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