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ABSTRACT
In this paper we study the problem of scheduling wireless
links in the geometric SINR model, which explicitly uses
the fact that nodes are distributed in the Euclidean plane.
We present the first NP-completeness proofs in such a model.
In particular, we prove two problems to be NP-complete:
Scheduling and One-Shot Scheduling. The first problem
consists in finding a minimum-length schedule for a given
set of links. The second problem receives a weighted set
of links as input and consists in finding a maximum-weight
subset of links to be scheduled simultaneously in one shot.
In addition to the complexity proofs, we devise an approxi-
mation algorithm for each problem.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems, Geometrical
Problems and Computations, Sequencing and Scheduling;
G.2.1 [Discrete Mathematics]: Combinatorics, Combina-
torial Algorithms; G.2.2 [Discrete Mathematics]: Graph
Theory, Network Problems.

General Terms
Algorithms, Theory.

Keywords
Wireless, Ad-Hoc Networks, SINR, Geometric SINR,
Scheduling, Weighted Scheduling, NP-complete, Approxi-
mation Algorithms.

1. INTRODUCTION

How long does it take to find an optimal schedule for a
given set of communication links in a wireless ad-hoc net-
work? Is this problem difficult – even in a simplified model?
What if we do not need to schedule all communication links,
but simply want to choose the most “valuable” ones? And
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how hard is it to produce a result which is not necessar-
ily optimal, but only falls short of an optimal solution by a
guaranteed factor? In this paper, we study these questions.
In particular, we present NP-completeness results and ap-
proximation algorithms for two problems: Scheduling and
One-Shot Scheduling.

When studying wireless networks, the choice of the in-
terference model is of fundamental significance. Not only
has the selected model to incorporate the nature of real
networks, but also to facilitate the development of rigorous
reasoning. One model of choice is the “abstract” Signal-to-
Interference-plus-Noise-Ratio (or short, SINRA) model. In
the SINRA model, a signal is received successfully depend-
ing on the ratio of the received signal strength and the sum
of the interference caused by nodes sending simultaneously
(plus noise).

The wireless networking community usually adheres to a
geometric SINR (or short, SINRG) model. In the SINRG

model, the nodes live in space, and the gain (or signal at-
tenuation) between two nodes is determined by the distance
between the two nodes. In particular, a signal fades with
the distance to the power of alpha, alpha being the so-called
path-loss parameter.

SINRG makes some simplifying assumptions, such as per-
fectly isotropic radios, no obstructions, or a constant ambi-
ent noise level. On the other hand, SINRA is not all that
realistic either, as it allows arbitrary values in the gain ma-
trix among the participating nodes of a wireless network.
In reality, if a node u is close to a node v, which in turn is
close to a node w, then u and w will also be close. So the
entries in the gain matrix will be constrained by the other
entries. Thus, SINRG is too optimistic, whereas SINRA is
too pessimistic. Hence, a real network is positioned some-
where between the SINRG and SINRA models.

When studying algorithms or protocols, upper bounds
should be derived for the pessimistic model, as an algo-
rithm for a strictly1 more pessimistic model will also work
for reality. However, also the converse is true: If one is in-
terested in lower bounds (impossibility results or capacity
constraints), one must use the optimistic model. A strictly
more optimistic model guarantees that results are applicable
in practice.

In this paper we study two optimization problems in wire-
less networks: Scheduling and One-Shot Scheduling. Apart
from presenting approximation algorithms, our main result

1Note that models are rarely strictly harder than reality;
SINRA is a typical example, as SINRA does not include
several difficulties of reality, e.g. short-term fading.



is the proof of hardness of these problems. In particular,
we formally prove that Scheduling and One-Shot Schedul-
ing are both NP-complete in the SINRG model. Since the
SINRG model is weaker than reality, this implies that one
cannot compute an optimal schedule of wireless requests in
practice, unless P = NP .

To the best of our knowledge, these are the first NP-
completeness proofs for SINRG. As we will discuss in the
related work section in more detail, there have been vari-
ous NP-completeness proofs for wireless networks model, in
particular for so-called unit disk graphs (UDG) or for the
SINRA model. In contrast to our work, these proofs are
graph-based. In an orthodox SINRA proof one establishes
an arbitrary gain matrix between the participating nodes of
a wireless network, giving O(n2) degrees of freedom. In par-
ticular, this allows to build a graph, as the gain between any
two nodes can be set to either 1 (“link”) or 0 (“no link”).
One ends up with a standard graph, and it trivially follows
that e.g. scheduling is as hard as coloring in graphs. A
similar argument holds for proofs for the UDG model.2

In reality, however, gain cannot be chosen arbitrarily. As
we argued before, the triangular inequality makes all the en-
tries in the gain matrix interdependent. If we turn to the
SINRG model, we must choose positions of the nodes in
space (e.g. in a plane), which determines the attenuation
between two nodes, giving only O(n) degrees of freedom.
Arguing that two nodes cannot transmit concurrently in a
schedule becomes much harder, since the nodes all influ-
ence each other. This is what intuitively makes the problem
harder. In SINRG, one must always deal with the complete
(weighted) graph; this asks for a different kind of proof.

The paper is structured as follows. In Section 2 we discuss
some results in different interference models. In Section 3
we describe the SINRG model and the problems we address
in this paper. In Section 4 we present the NP-completeness
proofs for the Scheduling and the One-Shot Scheduling prob-
lem. In Section 5 we describe two approximation algorithms
for the referred problems. Finally, in Section 6, we discuss
our results and suggest directions for future research.

2. RELATED WORK

The problem of scheduling link transmissions in a wireless
network in order to optimize one or more of performance
objectives (e.g. throughput, delay, fairness or energy) has
been a subject of much interest over the past decades.

An issue of prime importance is the complexity of schedul-
ing problems. As has already been argued in the intro-
duction, there have been various NP-completeness proofs
for wireless networks. To the best of our knowledge, these
proofs are either built for the UDG model [15, 19], or for
the abstract SINR model (SINRA), and present reductions
without a geometric representation. A typical such proof es-
tablishes an arbitrary gain matrix between the participating
nodes, which results in a standard graph. Afterwards, the
hardness is proved by a reduction from graph coloring, for
example [3].

The joint problem of power control and scheduling with
the objective of minimizing the total transmit power sub-
ject to the end-to-end bandwidth guarantees and the bit
error rate constraints of each communication session is ad-
dressed by Kozat et al. in [18]. They prove their problem

2Not surprisingly as the G in UDG stands for graph.

to be NP-complete by using a reduction from integer pro-
gramming under the assumption that the values of the gain
matrix can be chosen arbitrarily. Similarly, Leung and Wang
[21] prove that the problem of maximizing data throughput
by adaptive modulation and power control while meeting
packet error requirements is NP-complete under the assump-
tion that the values of the gain matrix are arbitrary. An-
other problem is proposed by Chatterjee et al. in [22] as the
power constrained discrete rate allocation problem. A solu-
tion finds the rates at which the base station must transmit
to each user including SINR constraints. They prove that
this problem is NP-complete for CDMA data networks by a
reduction from the Knapsack problem using a gain matrix
with gain value 1 for all links.

The problem of scheduling broadcast requests has been
studied by Ephremides and Truong [7]. They show that in a
generalized, non-geometric model, finding an optimal sched-
ule is NP-complete, if no interference is tolerated. Other
aspects of scheduling and power control using an arbitrary
gain matrix are studied for instance in [3, 4, 6, 28, 29, 30].

One of the very few lower bounds for the SINRG model
is due to Gupta and Kumar [13]. They analyze the overall
capacity of ad-hoc networks in the SINRG model from an
information theoretic perspective, and prove that a wireless
network comprised of n nodes cannot provide a through-
put of more than Θ(1/

√
n). More recently, a study of data

aggregation capacity in the SINRG has been performed.
In [9], Giridhar and Kumar show that, in a random net-
work, the maximum rate for computing divisible functions
is Θ(1/ log n). Furthermore, in [23], Moscibroda shows that
symmetric functions can be computed at rate Ω(1/ log2 n)
in every network, even if its nodes are positioned in a worst-
case manner.

Of course the design of efficient algorithms for scheduling
has been explored as well. In order to compute a time-
schedule such that spatial reuse is maximized, most of the
proposed schemes are based on traditional graph-theoretic
models. They use a graph representation of a wireless net-
work, modeling interference by some (often binary) graph
property. For example, a set of “interference-edges” might
be defined, containing pairs of nodes within a certain dis-
tance to each other, thus modeling interference as a local
measure.

Graph-based scheduling algorithms usually employ an im-
plicit or explicit coloring strategy, which neglects the aggre-
gated interference of nodes located farther away. A variety
of centralized and decentralized approximation algorithms
have been proposed and their quality analyzed for this kind
of model [14, 20, 24, 31, 32]. Most recently, Brar et al. [5]
present a scheduling method that is based on a greedy as-
signment of weighted colors. Although these algorithms
present extensive theoretical analysis, they are constrained
to the limitations of a model that does not reflect the real
nature of wireless networks. In particular, such graph-based
models ignore the accumulated interference of a large num-
ber of distant nodes.

In [1, 10, 11], it is argued that the performance of graph-
based algorithms is inferior to algorithms in more realistic
SINR models. More recently, Moscibroda et al. [26] show
experimentally that the theoretical limits of any protocol,
which obeys the laws of graph-based models, can be broken
by a protocol explicitly defined for the SINRG model.

The computation of efficient schedules in the SINRG



model has been studied in a more restricted number of pa-
pers. In [25], an efficient power-assignment algorithm, which
schedules a strongly connected set of links in O(log4 n) time
slots in the SINRG model, is presented. The work of [2,
3, 16] proposes mathematical programming formulations for
deriving optimal schedules. However, the resulting formu-
lations are infeasible from a computational point of view as
the running time is exponential in the input.

3. MODEL

In this paper we attend to the problem of scheduling com-
munication requests (links) of nodes positioned in a Euclid-
ean plane. The set of links is denoted by L = l1, . . . , ln,
where each link li represents a communication request from
a sender si to a receiver ri, which are determined by points
in the plane. The Euclidean distance between two nodes
si, rj is denoted by dij = d(si, rj), so the length of link li is
referred to by dii.

Choosing an appropriate interference model is crucial
when studying scheduling in wireless networks. We use the
standard Signal-to-Interference-plus-Noise-Ratio (SINR)
model [13], where a message can be transmitted success-
fully depending on the ratio of the received signal strength
and the sum of the interference caused by nodes sending
simultaneously plus noise level. We assume a transmission
can be decoded correctly if this ratio exceeds a hardware-
dependent value β. This model captures important aspects
of real wireless networks and it is at the same time succinct
enough to allow a concise performance analysis.

More formally, the received power Pri(sj) of a signal
transmitted by sender sj at receiver ri is

Pri(sj) =
P

dα
ji

,

where P is the transmission power and d−α
ji comprises the

propagation attenuation (link gain). The path-loss exponent
α is a constant, whose exact value depends on external con-
ditions of the medium (humidity, obstacles, etc.), as well as
the exact sender-receiver distance. As common, we assume
that α > 2 [13].

Given a request li = (si, ri), we use the notation Iri(sj) =
Pri(sj) for any other sender sj concurrent to si, in order
to emphasize that the signal power transmitted by sj is
perceived at ri as interference. The total interference Iri

experienced by a receiver ri is the sum of the interference
power values created by all nodes in the network transmit-
ting simultaneously (except the intending sender si), that
is, Iri :=

P
sj 6=si

Iri(sj). Finally, let N denote the ambient

noise power level. Then, ri receives si’s transmission if and
only if

SINR(ri) =
Pri(si)

Iri + N

=
Pri(si)P

j 6=i Iri(sj) + N

=

P
dα

iiP
j 6=i

P
dα

ji
+ N

≥ β, (1)

where β is the minimum SINR required for a successful
message reception. In the sequel we assume β ≥ 1.

In this work we assume that all nodes transmit with the
same power level. This assumption is also referred to as
uniform power assignment scheme [12]. This kind of power
assignment has been widely adopted in practical systems
and has been studied in depth in [33].

For the sake of simplicity, in the following analysis sec-
tions, we set N = 0 and ignore the influence of noise in the
calculation of SINR. However, this has no significant effect
on the results.

3.1 Scheduling Problem

The aim of an algorithm for the Scheduling problem is to
generate a short sequence of link sets, such that the SINR
level is above a threshold β at every intended receiver in
each link set and all links are scheduled successfully at least
once.

More precisely, let L be a set of communication requests.
A schedule is represented by S = (S1,S2, . . . ,ST ), where
St denotes a subset of links of L, designated to time slot
t. As in [13], it is assumed without loss of generality that
transmissions are slotted into synchronized slots of equal
length and in each time slot t, a node can either transmit or
remain silent.

The task of a scheduling algorithm is to schedule a set of
communication requests L such that all messages are suc-
cessfully received.

Definition 3.1. Consider a time slot t. The request li =
(si, ri) is successfully scheduled in time slot t if ri can decode
message from si correctly according to the SINR inequality
(1).

We aim at ensuring that after as few time slots as possible
every link has been transmitted. The scheduling complexity
defined in [25] is a measure that captures the amount of time
required by a scheduling protocol to schedule requests in the
physical SINR model.

Definition 3.2. Let St be the set of all successfully
scheduled links in time slot t. The Scheduling problem for
L consists in finding a schedule S of minimal length T such

that the union of all successfully transmitted links
ST (S)

t=1 St

equals L. An algorithm’s scheduling complexity is the length
of the schedule generated.

Evidently, an algorithm’s quality is reflected by its
scheduling complexity. Ideally, a wireless scheduling pro-
tocol should achieve an optimal scheduling complexity in all
networks and for arbitrary communication requests.

In the sequel, we assume that there are no conflicts in the
transmission setup, i.e., each node is either a sender or a re-
ceiver and each receiver is associated with only one sender.
These conflicts can be resolved efficiently by introducing ad-
ditional nodes at the same position such that there is one
sender-receiver pair for each link. Therefore we neglect them
for simplicity’s sake.

3.2 One-Shot Scheduling Problem

In contrast to the Scheduling problem, where we were
interested in a schedule for all links, the objective of an
algorithm solving the One-Shot Scheduling problem is to
pick a subset of weighted links such that the total weight



is maximized and the SINR level is at least β at every
scheduled receiver. In other words, we attempt to use one
slot to its full capacity.

Formally, let L be a set of communication requests,
where each link li is assigned a weight wi. A set S =
(l1, l2, . . . , lm) ⊆ L is a solution to an instance of a One-Shot
Scheduling problem if the following two conditions hold:

S = argmax
S′⊆L

X
lj∈S′

wj ,

SINR(rj) ≥ β, ∀lj ∈ S.

4. COMPLEXITY OF PROBLEMS IN
GEOMETRIC SINR

Solving problems in the SINR setting is very difficult.
Even finding an algorithm determining a good approxima-
tion for every problem instance is hard, as is documented
by the vast amount of literature with heuristics on this sub-
ject [2, 3, 8, 10, 16, 25, 27].

As mentioned in the introduction and related work sec-
tion, there are hardly any results on the hardness of prob-
lems in a geometric setting. However, insights on the com-
plexity are very important for the design of efficient algo-
rithms. In this section we analyze the Scheduling problem
and the One-Shot Scheduling problem and prove them to be
NP-complete in the SINRG model.

4.1 Scheduling Problem

Proving the Scheduling problem to be NP-hard implies
that there exists no polynomial time algorithm for deter-
mining an optimal schedule, unless P = NP . It is widely
believed that an NP-hard computational problem is not
tractable efficiently.

We proceed by first showing that the decision version
of Scheduling problem under uniform power assignment
scheme is in the complexity class NP and then give a poly-
nomial time reduction from the Partition problem, an NP-
complete special case of the well known Subset Sum prob-
lem. If the solution to an instance of the Scheduling problem
implies a solution to any instance of the Partition problem,
Scheduling must be at least as hard as Partition.

Lemma 4.1. Scheduling is in NP.

Proof. A decision problem is in NP if one can verify
a solution deterministically in polynomial time. To decide
whether a schedule of a given size permits the successful
transmission of all links, we have to verify, for every link,
whether there is a time slot assigned to it and if the SINR
exceeds β under the interference of the links scheduled in the
same slot. Since computing the SINR level for each receiver
in its time slot can be done in O(n2) time, a schedule is an
efficiently verifiable witness for this problem.

Lemma 4.2. The Partition problem is reducible to the
Scheduling problem in polynomial time.

Proof. The Partition problem (proved to be NP-
complete by Karp in his seminal work [17]) can be formu-
lated as follows: Given a set I of integers, is it possible to

rn+1 rn+2

sn+1

sn+2

s1

r1

s2 r2

sn

rn

     P = β*σ/2

P = β*σ/2

I = i1

I = i2

I = in

dmin

dmin

dmin

Figure 1: Reduction from Partition: link ln+1 (or
ln+2) can be scheduled if and only if the inter-
ference caused by simultaneously scheduled links
sj , j ∈ {1 · · ·n} is less our equal to σ/2.

divide this set into two subsets I1 and I2, such that the
sums of the numbers in each subset are equal? The subsets
I1 and I2 must form a partition in the sense that they are
disjoint and they cover I.

Partition problem: Find I1, I2 ⊂ I = {i1, . . . , in} s.t.:

I1 ∩ I2 = ∅,
I1 ∪ I2 = I, andX
ij∈I1

ij =
X

ij∈I2

ij =
1

2

X
ij∈I

ij .

The proof proceeds as follows. First, we define a many-to-
one reduction from any instance of the Partition problem to
a geometric instance of the Scheduling problem. Then, we
argue that the instance of the Scheduling problem cannot
be scheduled in T ≤ 1 time slots, but can be scheduled in
1 < T ≤ 2 time slots if and only if the instance of the
Partition problem is solved.

Let us look at a set I = {i1, . . . , in} of integers, where the
elements of I add up to σ,

nX
j=1

ij = σ.

Without loss of generality, we can assume all elements
to be distinct and positive. We construct the follow-
ing Scheduling problem instance with n + 2 links L =
{l1, . . . , ln+2} (cf. Figure 1). We refer to the sender node
belonging to lj as sj and the receiver node rj . We assign
each of these nodes a position (X,Y) in the plane. For each

integer ij in I we set the x-axis coordinate of sj to (P/ij)
1/α,

pos(sj) =

 �
P

ij

�1/α

, 0

!
∀1 ≤ j ≤ n.

Next, we designate for every ri, 1 ≤ i ≤ n its position to
be at distance dmin to its sender si, where

dmin = P
1
α ·

�
1

(imax−1)1/α − 1

i
1/α
max

�
�
1 + (nβ)

1
α

� (2)



and imax is the maximal value of the integers in set I. Thus

pos(ri) = pos(si) + (dmin, 0).

Finally, we place rn+1 and rn+2 at the center (0, 0) and
their senders sn+1, sn+2 perpendicular to the x-axis, at dis-
tance (2P/βσ)1/α, i.e.,

pos(rn+1) = pos(rn+2) = (0, 0),

pos(sn+1) =

 
0,

�
2P

β · σ

�1/α
!

,

pos(sn+2) =

 
0,−

�
2P

β · σ

�1/α
!

.

Having defined the geometric instance of the Scheduling
problem for any instance of the Partition problem, we pro-
ceed by showing that in order to find a schedule of length
1 < T ≤ 2, a solution to the Partition problem is required.
Clearly, it is not possible to schedule all links in one slot,
since the receivers rn+1 and rn+2 are at the same position
and we assume β ≥ 1.

In order to transmit successfully, the SINR constraint
at the intended receiver has to be satisfied. In the follow-
ing lemma we prove that the receivers r1, . . . , rn are close
enough to their respective senders to guarantee successful
transmission, regardless of the number of other links sched-
uled simultaneously.

Lemma 4.3. Let Li = {lj |1 ≤ j ≤ n + 1 and i 6= j}. It
holds for all i ≤ n that the SINR exceeds β when the link
li is scheduled concurrently with the set Li,

SINR(ri) =

P
dα

iiP
lj∈Li

P
dα

ji

> β.

We are not considering ln+2, since ln+1 and ln+2 can never
be scheduled simultaneously and the distance between sn+2

and any other node is the same as the distance between sn+1

and this node.

Proof. Since the positions of the sender nodes s1, . . . , sn

depend on the values of i1, . . . , in, we can determine the
minimum distance between two sender nodes sj , sk.

d(sj , sk) = |d(sj , rn+1)− d(sk, rn+1)|

=

�����
�

P

ij

� 1
α

−
�

P

ik

� 1
α

�����
≥ P

1
α

�
1

(imax − 1)1/α
− 1

i
1/α
max

�
. (3)

Thus, one can deduce that the sender sj closest to ri, i 6= j
is located at least at distance d(sj , si) − dmin from ri. All
the other sender nodes (including sn+1) are farther away.
This suffices to show a lower bound for SINR(ri).

SINR(ri) >

1
dα
min
n

(d(sj ,si)−dmin)α

≥ 1

n

��
1 + (nβ)1/α

�
− 1
�α

= β. (4)

Having proved that successful transmission is guaranteed
for links l1, . . . ln, no matter how many other links are sched-
uled concurrently, we now return to the proof of Lemma 4.2.

We claim that there exists a solution to the Partition prob-
lem if and only if there exists a 2-slot schedule for L. For
the first part of the claim, assume we know two subsets
I1, I2 ⊂ I, whose elements sum up to σ/2. To construct a
2-slot schedule, ∀ij ∈ I1, we assign the link lj to the first
time slot, along with ln+1, and assign the remaining links to
the second time slot. Due to Lemma 4.3 we can focus our
analysis on the receivers rn+1 and rn+2. The situation is the
same for both receivers, so it suffices to examine rn+1. The
signal power rn+1 receives from its sender node sn+1 is

Prn+1(sn+1) =
P��

2P
βσ

� 1
α

�α =
βσ

2
.

The interference rn+1 experiences from each sender sj is

Irn+1(sj) =
P��

P
ij

� 1
α

�α = ij ,

which results in total interference of

Irn+1 =
X

ij∈I1

ij =
σ

2
.

This allows to lower bound the SINR at rn+1

SINR(rn+1) ≥
Prn+1(sn+1)

Irn+1

=
βσ/2

σ/2
= β,

which, in combination with Lemma 4.3, proves that our
schedule guarantees successful transmission for all links.

For the second part of the claim, we need to show that if
no solution to the Partition problem exists, we cannot find a
2-slot schedule for L. No solution to the Partition problem
implies that for every partition of I into two subsets, the
sum of one set is greater than σ/2. Assume we could still find
a schedule with only two slots. Since the receivers rn+1 and
rn+2 are at the same position, they have to be assigned to
different slots to permit a successful transmission. Because
we have to split L\{ln+1, ln+2} into two sets and the received
power from sj , j = 1, . . . , n at (0,0) is ij , we end up with
a total interference at (0,0) greater than σ/2 for one slot,
which prevents the correct reception of the signal from sn+1

or sn+2.

We can now state a theorem on the complexity of the
Scheduling problem.

Theorem 4.4. The Scheduling problem in SINRG is
NP-complete.

Proof. By Lemma 4.1, Scheduling is NP. By Lemma 4.2,
Partition is reducible to Scheduling. Therefore, Scheduling
is NP-complete.

4.2 One-Shot Scheduling problem

In this section we prove that the decision version of the
weighted One-Shot version of the Scheduling problem, under
uniform power assignment scheme, is also NP-complete in
the SINRG model. We proceed by first showing in Lemma



rn+1sn+1

P = β*W

weight = p1
I = w1

weight = p2
I = w2

     weight = pn
I = wn

s1 r1

s2 r2

sn rn

dmin

dmin

dmin

∑⋅=
n

jpweight
1

2

Figure 2: Reduction from Knapsack: the weight of
simultaneously scheduled links is maximized if and
only if the sum of the values pj assigned to them
is maximized and the knapsack capacity W is not
violated.

4.5 that the One-Shot Scheduling problem is in the com-
plexity class NP and then give a polynomial time reduction
for the Knapsack problem in Lemma 4.6.

Lemma 4.5. The One-Shot Scheduling problem is in NP.

Proof. Given a set of links, it is possible to ver-
ify whether these links satisfy the SINR constrains and
whether the sum of their weights exceeds a certain threshold
in time polynomial to the size of the input, analogously to
the Scheduling problem (Lemma 4.1).

Lemma 4.6. Knapsack is reducible to the One-Shot
Scheduling problem in polynomial time.

Proof. Let us first introduce the Knapsack problem:
Consider n kinds of items, x1 through xn, where each item
xj has a value pj and a weight wj . The maximum weight
that we can carry in a bag is W . Our aim is to choose the
items we put in the bag such that the sum of the values
is maximized. We can formulated this task as an integer
program.

Knapsack problem:

max

nX
j=1

pjxj , s.t. (5)

nX
j=1

wjxj ≤ W, (6)

xj ∈ {0, 1}, j = 1, . . . , n

Without loss of generality, we assume that there are only
items of distinct integer weights. As in the proof for the
Scheduling problem, we start by defining a many-to-one re-
duction from any instance of the Knapsack problem to a
geometric instance of the One-Shot Scheduling problem, and
afterwards prove that the latter can be solved if and only if
the former is also solved.

We have to dispose links in the plane, such that the rules
of the Knapsack problem are enforced (cf. Figure 2). We
position a sender node si in the plane for each xi, such that
the received power from si at (0,0) is wi, i.e.,

pos(si) =

 �
P

wi

� 1
α

, 0

!
, ∀1 ≤ j ≤ n.

Now we set ri close enough to si to guarantee successful
reception regardless of other links.

pos(ri) = pos(si) + (dmin, 0), where

dmin = P
1
α ·

�
1

(wmax−1)1/α − 1

w
1/α
max

�
�
1 + (nβ)

1
α

� ,

and wmax is the largest weight in this problem instance.
In the next step we place an additional link ln+1, such

that rn+1 is at (0,0) and sn+1 is in such a distance that the
received power at (0,0) is βW .

pos(rn+1) = (0, 0),

pos(sn+1) =

 
0,

�
P

βW

� 1
α

!
.

Thereafter, we assign a weight to each link:

weight(li) = pi, ∀1 ≤ i ≤ n

weight(ln+1) = 2 ·
nX

j=1

pj .

Note that SINR(ri) > β,∀i = 1 . . . n, even if all link
transmissions are concurrent, since we can apply Lemma 4.3
(due to the fact that we chose the distance between a sender
and a receiver of a link to be dmin in both reductions). If
we execute an algorithm solving this One-Shot Scheduling
problem, we obtain a solution for the Knapsack problem:
Let SOPT be the set of links of an optimal solution to the
One-Shot problem constructed above. The described assign-
ment of weights ensures that ln+1 is picked, since without
it the maximal sum of weights cannot be reached. We can
compute SINR(rn+1) as follows

SINR(rn+1) =
Prn+1(sn+1)

Irn+1

=

P �
P

βW

� 1
α

!α

P
lj∈SOP T

P �
P

wj

� 1
α

!α

= β · WP
lj∈SOP T

wj
,

and since a valid solution allows ln+1 to be transmitted suc-
cessfully, we have SINR(rn+1) > β. Consequently a solu-
tion to the One-Shot Scheduling problem satisfiesX

lj∈SOP T

wj < W.

Hence, each of the selected links li stands for xi in (5) and
(6), which fulfills the condition of the Knapsack problem.
Because SOPT maximizes the sum of the weights at the same
time, the sum of the values of the items of the Knapsack
problem is maximized as well. This implies that no algo-
rithm can solve the One-Shot Scheduling problem without
solving an NP-complete problem.

Theorem 4.7. One-Shot Scheduling in SINRG is NP-
complete.

Proof. The proof follows from Lemmas 4.5 and 4.6.



In contrast to these results on the complexity of scheduling
with a uniform power assignment, the question whether the
Scheduling problem with power control is also NP-complete
remains open and is an area of active research.

5. APPROXIMATION ALGORITHMS

In this section we propose two approximation algorithms
for the Scheduling and the One-Shot Scheduling problems.

Before describing the algorithms, let us introduce the no-
tion of length diversity, namely the number of magnitudes
of distances. Formally, g(L) is defined as

g(L) := |{m|∃li, lj ∈ L : blog(dii/djj)c = m}|. (7)

For our problem, g(L) denotes the number of non-empty
length classes of the set of links to be scheduled. In realistic
scenarios, the diversity g(L) is usually a small constant.

The algorithms we present consist of two steps: First,
the problem instance is partitioned into disjoint link length
classes; then, a feasible schedule is constructed for each
length class using a greedy strategy.

5.1 Scheduling

Algorithm 1 Approximation Algorithm for the Scheduling
problem

Require: A set L of links located arbitrarily in the Euclid-
ean plane

Ensure: A schedule S in which every link can be transmit-
ted successfully

1: Let R = R0, . . . , Rlog(lmax) such that Rk is the set of

links li of length 2k ≤ dii < 2k+1;
2: t = 1;
3: for all Rk 6= ∅ do
4: Partition the plane into squares of width µ · 2k;
5: 4-color the cells such that no two adjacent cells have

the same color.
6: for j = 1 to 4 do
7: Select color j;
8: repeat
9: For each square A of color j, pick one link li ∈

Rk with receiver ri in A, assign it to time slot t
(Lk

j = Lk
j ∪ li);

10: t = t + 1; St = Lk
j ;

11: until all links of Rk in the selected squares are
scheduled

12: end for
13: end for
14: return S;

The algorithm (for a description in pseudo-code see Algo-
rithm 1) starts by partitioning the input set of links L into
length classes (R0, · · · , Rg(L)). Each subset Rk is scheduled
separately. First, the plane is partitioned into square grid
cells of side µ · 2k, where µ is defined as follows

µ = 4

�
8β · (α− 1)

(α− 2)

� 1
α

, (8)

and then the cells are colored regularly with 4 colors (cf.
Figure 3). Links whose receivers belong to different cells of

2 1 2 1 21

3 4 3 4 3 4

212121

3 4 3 4 43

µ2k

µ2k

Figure 3: In line 7 of Algorithm 1, the algorithm
picks all squares numbered by j. The example shows
an inner loop iteration for length class Rk and j = 3.
The algorithm schedules one unscheduled link from
each selected square (if there exists one).

the same color are scheduled simultaneously (added to set
Lk

j ). Note that the inner repeat loop (lines 9-12) constructs

a schedule of length ∆(Ak
max), which is the maximum num-

ber of links in length class k, whose receivers are in the same
grid cell Ak. Given that there are 4 colors and g(L) length
classes, all links a scheduled in 4 ·∆(Ak

max) · g(L) time slots.
We show now that the schedule obtained by Algorithm 1

is correct, by proving in Theorem 5.1 that all links can be
scheduled successfully in their respective time slot.

Theorem 5.1. Consider an arbitrary set of links L to be
scheduled. For every time slot t, the set St of links output
by Algorithm 1 is scheduled successfully, i.e., the SINR at
every intended receiver is larger than β.

Proof. We demonstrate that all transmissions scheduled
in a time slot t are received successfully by the intended
receivers, i.e., their SINR is sufficiently high.

Without loss of generality, let us examine links in a length
class Rk. Every link li ∈ Rk satisfies dii < 2k+1, thus the
perceived power at ri from si is at least

Pri(si) ≥
P

2α(k+1)
. (9)

Since Algorithm 1 schedules at most one link in each cell
with the same color concurrently, the closest 8 senders sj

scheduled in the same time slot must be at least at distance
d(ri, sj) ≥ µ2k − 2k+1 = 2k(µ − 2) to ri (cf. Figure 3).
Consequently, the sum of their interference experienced by
ri is less than

8X
j=1

Pri(sj) ≤
8P

(2k(µ− 2))α
.

In the next step, we consider the (at most) 16 senders sj

at distance 3µ2k − 2k+1 ≤ d(ri, sj) ≤ 5µ2k − 2k+1. They
contribute a total interference of

25X
j=9

Pri(sj) ≤
16P

(2k(3µ− 2))α
.



We continue aggregating the interference from nodes sj at
distance range

(2l − 1)µ2k − 2k+1 ≤ d(ri, sj) < (2l + 1)µ2k − 2k+1,

∀l = 1, 2, . . .. Since at most 8l links are picked in each
interval, the interference caused by them is at most

d(ri,sj)<

(2l+1)µ2k−2k+1X
d(ri,sj)≥

(2l−1)µ2k−2k+1

Pri(sj) ≤
8P · l

(2k((2l − 1)µ− 2))α
.

Thus, the total interference at a scheduled receiver ri can
be upper bounded by

Iri ≤
∞X

l=1

8P · l
(2k((2l − 1)µ− 2))α

≤ 8P

2kα

∞X
l=1

l

( 1
2
(2l − 1)µ)α

(10)

≤ 8P

2(k−1)αµα

∞X
l=1

l

(2l − l)α

≤ 8P

2(k−1)αµα

∞X
l=1

1

lα−1

≤ 8P

2(k−1)αµα

(α− 1)

(α− 2)
, (11)

where (10) follows because x− 2 > x/2, ∀x > 4 and µ > 4,
given that β ≥ 1 and α ≥ 2; and (11) follows from a bound
on Riemann’s zeta function. Using (9), (11), and plugging
in the value of µ, defined in (8), the SINR at receiver ri

can be lower bounded by

SINR(ri) =
Pri(si)

Iri

>
P

2α(k+1)

8P

2(k−1)αµα

(α−1)
(α−2)

=
µα

4α · 8 · (α−1)
(α−2)

= β,

Now we turn our attention to the efficiency of Algorithm 1.
In particular, in Theorem 5.2 we bound its approximation
ratio.

Theorem 5.2. The approximation ratio of Algorithm 1
is O(g(L)), where g(L) is the length diversity of the input,
defined in (7).

Proof. The proof relies on the choice of a so called crit-
ical square Ak

max = µ2k ×µ2k (cf. Figure 4), i.e., we choose
the cell with the highest density ∆(Ak

max) over all g(L) gen-
erated grids. Note that ∆(Ak

max) is the number of links
li whose receiver is located in cell Ak

max and whose length
class is k, i.e., 2k ≤ dii < 2k+1. We proceed by showing that
an optimum algorithm OPT can schedule all ∆(Ak

max) in at

Link length classes:

k+1
k

k-1

k2⋅μk2⋅μ

Ak
max

Interference

i

Figure 4: Lower Bound: an optimum algorithm
could schedule at most q links with receivers in Ak

max

in length class k in a single time slot.

least TOPT = d∆(Ak
max)/qe time slots, where q is a constant

dependent on parameters α and β (µ is defined in (8)):

q =

�
2(
√

2µ + 1)
�α

β
. (12)

Assume, by contradiction, that OPT schedules all links
in less than TOPT time slots. Therefore, there must exist
a time slot t′, 1 ≤ t′ ≤ TOPT , such that more than q links
in Ak

max are scheduled simultaneously. We pick one of the
scheduled links li, ri ∈ Ak

max in time slot t′ and calculate
the resulting SINR level at ri:

SINR(ri ∈ Ak
max) ≤

P
dα

ii

P ·
Pq

j=0 d(sj , ri)−α

<
P

2kα

P · q · (2
√

2µ2k + 2k+1)−α
(13)

= β, (14)

where (13) follows from the fact that dii ≥ 2k, djj < 2k+1

and d(ri, rj) ≤ 2
√

2µ2k; and (14) follows from definition
(12) of q.

Hence, to schedule all links in the critical square Ak
max,

OPT needs time

TOPT ≥
�

∆(Ak
max)

q

�
. (15)

On the other hand, Algorithm 1 schedules all links in L
in time

T (Algorithm 1) ≤ 4 ·∆(Ak
max) · g(L). (16)

The approximation ratio follows from (15) and (16):

T (Algorithm 1)

TOPT
≤ 4q · g(L)

= O(g(L)). (17)



5.2 One-Shot Scheduling

Algorithm 1 can be adapted to solve the weighted One-
Shot Scheduling problem described in Section 3.2 (cf.
pseudo code in Algorithm 2). As before, the input set L is
partitioned into g(L) length classes, and grids with cell size
µ ·2k, k ∈ {0 · · · g(L)} are colored with 4 colors j ∈ {1 · · · 4}.
Then, 4 · g(L) feasible schedules Lk

j are generated by greed-

ily picking the heaviest link in each square Ak of the same
color. In the end, the heaviest set of links among all colors
and all link classes is chosen.

Algorithm 2 Approximation Algorithm for One-Shot
Scheduling

Require: A set L of links located arbitrarily in the Euclid-
ean plane

Ensure: A subset Lk
j in which every link can be transmitted

successfully and the total weight w(Lk
j ) is maximized

1: Let R = R0, . . . , Rlog(lmax) such that Rk is the set of

links li of length 2k ≤ dii < 2k+1;

2: µ = 4( 8β(α−1)
α−2

)
1
α ;

3: for all Rk 6= ∅ do
4: Partition the plane into squares of width µ · 2k;
5: 4-color the cells such that no two adjacent cells have

the same color.
6: for j = 1 to 4 do
7: For each square A of color j, pick the heaviest link

li ∈ Rk with receiver ri in A, assign it to Lk
j (Lk

j =

Lk
j ∪ li);

8: end for
9: end for

10: return argmaxLk
j

P
li∈Lk

j
w(li);

Since we pick one link per selected square, the feasibility
of any schedule Lk

j constructed by Algorithm 2 has been
proved in Theorem 5.1. In the next theorem we analyze the
approximation ratio of this algorithm.

Theorem 5.3. The approximation ratio of Algorithm 2
is O(g(L)), where g(L) is the length diversity of the input
(defined in (7)).

Proof. We start by defining OPTk to be a subset of the
optimum schedule OPT comprised by links that belong to
length class k, i.e., 2k ≤ dii ∈ OPTk < 2k+1. Observe that

w(OPT ) =

g(L)X
k=0

w(OPTk). (18)

In Theorem 5.2 we showed that an optimum algorithm could
schedule at most q (defined in (12)) links in each cell Ak

at a time. Therefore, given that every feasible schedule Lk
j

computed by Algorithm 2 contains the heaviest link in every
forth cell, the following bound holds:

w(Lk
j ) ≥ 1

4q
· w(OPTk), (19)

∀j ∈ {1 · · · 4}, k ∈ {0 · · · g(L)}.

Since Algorithm 2 returns the schedule Lk
j of maximum

weight over all length classes and colorings (there are at
most 4 ·g(L) schedules Lk

j ), the approximation ratio follows:

argmax
Lk

j

w(Lk
j ) ≥ 1

4 · g(L)
·

g(L)X
k=0

w(Lk
j )

≥
(19)

1

16q · g(L)
·

g(L)X
k=0

w(OPTk)

=
(18)

w(OPT )

16q · g(L)
⇒

w(OPT )

w(Algorithm 2)
≤ 16q · g(L)

= O(g(L)). (20)

Because of ambient noise, there is usually a maximal dis-
tance for a successful transmission in realistic scenarios.
Moreover, because of hardware size, a sender and a receiver
cannot be arbitrarily close to each other. Hence, one can es-
tablish constant minimum and maximum link lengths, which
results in a constant number of link length classes g(L). Us-
ing this observation, we can state the following corollary.

Corollary 5.4. Assuming a constant maximum and
minimum link length, g(L) is constant, and Algorithms 1
and 2 achieve constant approximation ratios.

6. CONCLUSION

In this work we wanted to gain deeper insights into the
complexity of scheduling in wireless ad-hoc networks. To
the best of our knowledge, we presented the first NP-
completeness proofs for the geometric SINR model. As
opposed to other NP-completeness proofs proposed for wire-
less networks, which rely on a graph structure and an arbi-
trary gain matrix, our proof explores the geometric nature
of such networks – a property, which we consider fundamen-
tal. When the distribution of nodes on the Euclidean plane
is considered, all the entries in the gain matrix become con-
strained by the other entries. Therefore, arguing that two
nodes cannot transmit concurrently in a schedule becomes
much harder. Hence, a different kind of proof is necessary.

Our main contribution is a method of reducing a problem
known to be NP-complete by constructing a geometric in-
stance of the scheduling problem. The method consists in
disposing nodes in the plane in a way that restricts the num-
ber of possible solutions and enforces the constraints of the
NP-complete problem. We believe that this method of re-
duction can be adapted to prove other problems to be hard
in the SINRG model. E.g., an exciting research direction
is to analyze the complexity of the joint problem of power
control and scheduling.
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