Self-Stabilization

from Efficacy to Efficiency

Eidgendssische Technische Hochschule Ziirich Roger Wattenhofer @ SSS 2009 — 1
Swiss Federal Institute of Technology Zurich

Mea Culpa!

7

The Castle of Self-Stabilization | would like to

SSS 2009

apologize in
advance for
everything you
may find
obvious or

offensive!

* Frog’s eye view, frog is outside(r)!

e Frog may be pretty ignorant, s
but doesn’t stop frog from being curious, ‘
(or even cocky) | =

Roger Wattenhofer @ SSS 2009 — 2

Self-Stabilization: Frog’s Eye View

“fever curve”
of the system

| “Eventually” | Efficiently!

Example: Maximal Independent Set (MIS)

Input: Given a graph (network), nodes with unique IDs.
Output: Find a Maximal Independent Set (MIS)

— a non-extendable set of pair-wise non-adjacent nodes

e

.

VAN

\

A self-stabilizing algorithm:

IF no higher ID neighbor 1s in MIS - join MIS
IF higher ID neighbor is 1in MIS - do not join MIS

Can be implemented by constantly sending (ID, in MIS or not in MIS)

This algorithm has all the beauty of a typical self-stabilizing algorithm:
It is simple, and it will eventually stabilize!

Example

IF no higher ID neighbor 1s iIn MIS - join MIS
IF higher ID neighbor is 1in MIS - do not join MIS

e What about transient failures?

\ 69\\ —\ 17. ’—.—.—\ 7“ ’—.—.—\\1)

e Proof by animation: Stabilization time is linear in the diameter of the network

— We need an algorithm that does not have linear causality chain (,,butterfly effect”)

An Efficient Algorithm

e Nodes constantly send the following message

box differ from the
ent box? (Cole/Vishkin)

001010 1.° 001011 110

0100110110

neighbor A neighbor B

restart with less neighbors

An Efficient Algorithm (2)

- Original Node ID log n bits

loglog n bits | loglog n bits

\i

log*n

e In the first box (left-right, then top-bottom) where your value is smaller
than that of any of your neighbors, you declare to be in the MIS

e |If any neighbor declares to be in the MIS, you declare not to be in the MIS
e Algorithm is much more difficult; | cheated extensively...

It can be shown...

e Eventually” a MIS will emerge, not depending on graph or node IDs

e |nfact, for an important class of graphs, so-called bounded-independence
graphs (well-suited for practical networks), the message will only have
O(1) columns, in other words

Message size is O(log n)
Stabilization time is O(log*n)

e Stabilization Proof: As soon as there are no more transient failures, each
node will recompute the correct message in O(log*n) time.

e Results basically taken from [Schneider et al., 2008]

Connectivity Models for Wireless Networks: Overview

General
Graph

too pessimistic

v
o T —
L] T ™
F 1A Wy
#R 2 N
/ N
/ X ., .
® / \ ;
/ Ly \
£ s ——— \
/ i - STl \

/ H P § \
[i ’ A \
[H Ay \ o \
] i y 1
] %] D \ |
| X 1 I I

| 1 \ !
i \ i]
\ 3 \ / !
. \ S, i
\ e - 4
\ R P /
\ i ——— ’
\ 1 /
A ;
\ "
. ,
N Y ,
N y ’
Wi 5

Bounded
Independence

Unit Ball
Graph

Quasi
UDG

UDG

too optimistic

Bounded Independence Graph (BIG)

e Size of any independent set grows
polynomially with hop distance r

e e.g, f(r) =0(r?) or O(r3)

e AsetS of nodes is an independent set, if
there is no edge between any two nodes in S.

e BIG model also known
as bounded-growth
— Unfortunately, the
term bounded-growth
is ambiguous ®

Local Algorithm

e Given a graph, each node must determine its decision (e.g., in MIS or not
in MIS) as a function of the information available within radius t of the
node.

e Alternatively: Given a synchronous algorithm, no failures whatsoever,
each node can exchange a message with all neighbors, for t
communication rounds, and must then decide.

Self-Stabilization vs. Local Algorithms

Results: MIS, Local Algorithms vs. Self-Stabilization

raphs,
6], [oth

Upper Bounds

Qrowth- '

CERy=ED

= N

V ral Graphs
. 20(‘

*Advanced in the sense of ,,optimizing something else”

=

|

Lower Bounds

Results: Maximal Matching, Local Algorithms vs. Self-Stabilization

raphs Pﬁ
6] [othe
QBrowth-_
ﬂSCh”eidw ’ ? F ,

Upper Bounds

General Graphs

Kum etal 2004]

Lower Bounds

... similarly connected dominating sets, coloring,
covering, packing, max-min LPs, etc.

Self-Stabilization vs. Local Algorithms

Faults are just

transient, not Local Algorithms
while stabilizing [19805]

No Faults
One-Shot

Synchronous

No problem really

(e.g. synchronizers)

run forever

Theorem: Self-Stabilization = Local Algorithms

In other words: Self-Stabilization ,,Re-Invented” by Local Algorithms

Self-Stabilization = Local Algorithms

< This direction is known for a very long time, and considered to be a folk
theorem, e.g. [Afek, Kutten & Yung 1990], [Awerbuch & Varghese, 1991].

The general idea is to let nodes simulate the local algorithm forever.
Nodes do notice a transient failure because the information of a neighbor
does not correspond to the local simulation (,,local checking”); nodes then
simply (and automatically) adapt their solution.

—> This direction is even simpler. Lower bounds for local algorithms also hold
in the self-stabilization model because the self-stabilization model is
,harder”.

Theorem (just a bit more detail): Every local algorithm with quality
guarantee g and time complexity t can be turned into a self-stabilizing
algorithm with quality guarantee g, stabilizing efficiently in time t;
transient faults will at most affect nodes in radius t. The very same holds
for lower bounds. [Details in SSS 2009 paper]

Relations!

Self- '*
Assembling
Robots Applications
e.g. Multicore

Self- Local I
Stabilization Algorithms

Sublinear
Estimators
Dynamics

Lower Bound Example: Minimum Dominating Set (MDS)

e Input: Given a graph (network), nodes with unique IDs.
e Qutput: Find a Minimum Dominating Set (MDS)

— Set of nodes, each node is either in the set itself, or has neighbor in set

e Differences between MIS and MDS
— Central (non-local) algorithms: MIS is trivial, whereas MDS is NP-hard
— Instead: Find an MDS that is “close” to minimum (approximation)
— Trade-off between time complexity and approximation ratio

Lower Bound for MDS: Intuition

e Two graphs (m << n). Optimal dominating sets are marked red.

complete

IDSgprl = 2

Lower Bound for MDS: Intuition (2)

e Inlocal algorithms, nodes must decide only using local knowledge.

e Inthe example green nodes see exactly the same neighborhood.

e So these green nodes must decide the same way!

Lower Bound for MDS: Intuition (3)

e But however they decide, one way will be devastating (with n = m?)!

Q00 A0

IDSoprl = 2.
IDSopr Withoutgreenl > m. IDS6pT with greenl >N

Graph Used in the Lower Bound

e The exampleis fort = 3.

e All edges are in fact special bipartite graphs
with large enough girth.

D

The Lower Bound

Lower bounds (Kuhn et al., PODC 2004, SODA 2006):

Local model: In a network/graph G, each node can exchange a
message with all its neighbors for t rounds. After t rounds, node needs
to decide.

We construct the graph such that there are nodes that see the same
neighborhood up to distance t. We show that node ID’s do not help,
and using Yao’s principle also randomization does not.

Results: Many problems (vertex cover, dominating set, matching, etc.)
can only be approximated by factors Q(n</t? / t) and/or Q(AYt/ t).

It follows that a polylogarithmic dominating set approximation (or a
maximal independent set, etc.) needs at least ((log A / loglog A)
and/or Q((log n / loglog n)¥/?) time.

Self-Stabilization & Local Algorithms (Lower & Upper Bounds)

Theorem: Self-Stabilization = Local Algorithms

Corollary: Local algorithm lower bounds apply
to the self-stabilization model as well.

.
g v
' \ h- Bounded G \

nt proble

domin AM of
pproxi domlnatlng set
anar gra

S, MST, Sum,
1L e
atch,na‘ R

nd

Selected Bounds

The “Gretchen” Question

Theorem: Self-Stabilization = Local Algorithms

Is ,,Self-Stab = Local Algos” Known?

 If | ask my friends that are into self-stabilization, the answer is ,,sure!”

However, if | search ,,self-stabilization XYZ“ in Google Scholar, | always

find published papers (some very recently) that are exponentially
worse than the state-of-the-art local algorithm, and that do not cite

any local algorithms or lower bounds.

”
|

My friends in self-stabilization say “There is more to self-stabilization

— But what about bit complexity?
— But what about asynchronous systems?
— But what about snap-stabilization, super-stabilization, ...?

Roger Wattenhofer @ SSS 2009 — 26

,But...”

e Randomization
— There are some pretty fast deterministic local algorithms.

— One simple idea is to store random seed in ROM. Any self-stabilizing
algorithm needs some kind of storage (for code) that cannot be tampered.

e Bit Complexity

— Local algorithms often just need (poly)logarithmic many rounds, during
which they often exchange just a few bits. In addition, information may be
compressed, so that all in all, messages are usually of (poly)logarithmic size.

e Asynchronous Systems

— When turning a local algorithm into a self-stabilizing algorithm using the
technique presented on slides 6 and 7, it will automatically be asynchronous,
as there is no notion of time. In other words, no synchronizer is needed.

Snap-Stabilization, Super-Stabilization, Silent Stabilization, etc.

— | cannot claim that local algorithms solve everything; for that
| am not familiar enough with the area (frog‘s eye view!).

Summary & Open Problems

Self-
Assembling
Robots

Applications
! e.g. Multicore

Self- i Local A\

\

\

IS maxme_ %

matching, etc. -

| . (different problems)
| Stabilization Algorithms J 4
¥ / ., dominatin Approximati %
// ’ roximation i dominatin =
2} Sublinear anar graphs vertex ¢
| Estimators L . 4 L
\ Dynamics
—
S

Bounded-Independence Graph (BIG)
°
&) cc"

Thank You!

Comments? Questions?

—t i

Once more, | Sy Thanks to my collaborators
would like to [Fabian Kuhn
apologize for . ; Thomas Moscibroda
everything you ~ * Christoph Lenzen
found obvious Johannes Schneider
or offensive! Jukka Suomela

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

