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Stabilization time

• Synchronous  – all switchable nodes

→ possibly infinite

• Sequential  – one node at a time

→ always stabilizes!
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Switching Condition

• Basic – for any improvement

• Proportional – conflict with ϱ portion of 

(weighted) neighborhood
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Stabilization time

Upper bound:

• Sequential model: O(2n)

Lower bound?
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Sequential model – order of nodes?

• Adversarial: a specific sequence

• Benevolent: every sequence

→ allow only one possible sequence!
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Benevolent case – logical gates



More Variants by [Papp, W]

Unweighted → Θ(𝑛2)

Random initialization → Θ(𝑛2)

Random init & proportional → depends on 𝜚

More general model →



Sensor Networks



[W, Algosensors 2008!]



[PermaSense]



Efficiency and Reliability



reliable

efficient

[Google Trends]



Energy Efficiency

sink

[Burri, von Rickenbach, W]





Energy Efficiency

sink



Energy Efficiency

duty cycling, wake up e.g. every 10 seconds
parent synchronizes children
no network wide synchronization
mean energy consumption: 0.066mW, 10y battery



Reliability

sink



Reliability

nodes send beacons to reconnect orphans
collisions are explicitly accepted
availability & reliability: 99% to 99.999% 



Dozer Measurements

[Burri, von Rickenbach, W, 2007]

[tinynode]



Where’s the Algorithmic Theory?

“no network wide synchronization”



Time Synchronization



Network Synchronization is Tough



Network Synchronization



Tree Based Protocols

FTSP PulseSync

[Lenzen, Sommer, W, TON]

Synchronization Error FTSP PulseSync

Average (t > 2000s) 23.96 µs 4.44 µs

Maximum (t > 2000s) 249 µs 38 µs



Error with Distance

FTSP PulseSync



Neighbor Synchronization



Neighbor Synchronization?

Tree-based Algorithms Neighborhood Algorithms

e.g. FTSP e.g. GTSP

Bad neighbor sync



Theorem: 
Neighbor Sync is Somewhat Tough



Model: Drift & Jitter

t

clock rate

1
1 + 𝜀
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1 − 𝜀

bounded errors (worst-case)

𝑑 + 𝜀𝑑 − 𝜀



Reasonable Time Must Behave!

no stopping no jumping



sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard
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sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

0



Sync To Fastest Neighbor: 
Local Skew Can Be Diameter



Average of Neighbors: 
Local Skew Can Be Diameter Squared



Better Protocol?



Reminder: Drift & Jitter

t

clock rate

1
1 + 𝜀

message delay

1 − 𝜀

bounded errors (worst-case)

𝑚 + 𝜀𝑚 − 𝜀



Theorem: 
Neighbor Sync is Somewhat Tough

neighbor sync error = log diameter
lower bound: difficult proof

matching upper bound: not trivial as well

[Lenzen, Locher, W, JACM]



“The Future”







Starlink



Global Positioning System



[ESA]

GPS



GLONASS

GPS

Galileo (2020)

BeiDou (2020)

QZSS (local)

NAVIC (local)

31

24

4

7

35

23







Atomic Clock Inside
Transmit Time + “Position” + …



𝑝𝑖: position
𝑠𝑖: sending time

ℎ: 3D position
𝑟𝑖: receiving time
𝜃: time offset

𝑑𝑖 = 𝑟𝑖 − 𝑠𝑖
𝑐: speed of light

Location, Location, Location

… and Time
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Tracking





Energy Problem

1 day
with GPS: 6 hours



Delay Problem

Position and time only 30s after turning camera on



Delay Problem

Better: Record 1ms of raw GPS data when taking picture



Coarse Time Navigation

Branch and Bound Search
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Coarse Time Results



[Eichelberger, von Hagen, W]

15 minute duty cycle
18 µW mean power

2 years with coin cell



GPS Spoofing



[Eichelberger, von Hagen, W, 2019]









Indoor «GPS»



ADS-B



[Eichelberger, Luchsinger, Tanner, W]



Does it work?



Localization error [m]



Still many challenges…





Summary
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Questions? Comments?
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