Wireless Network Algorithms Looking Back & Moving Forward

Roger Wattenhofer

ETH Zurich – Distributed Computing – www.disco.ethz.ch

Theory & Practice

PODC STOC FOCS ICALP SPAA ESA SODA

EC

OSDI SenSys ICML CHI IPSN NeurIPS Mobicom SIGCOMM

SPECTRE : Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators

Karolis Martinkus¹ Andreas Loukas^{*2} Nathanaël Perraudin^{*3} Roger Wattenhofer¹

Automating Rigid Origami Design

Jeremia Geiger, Karolis Martinkus, Oliver Richter, Roger Wattenhofer

International Symposium on Algorithmics of Wireless Networks

Ad Hoc Networks Autonomous Mobile Robots Communication Protocols Complexity and Computability **Computational Models** Data Aggregation and Fusion Dynamic Networks, Temporal Graphs Energy Management, Power Saving Fault Tolerance and Dependability Game Theoretic Aspects Infrastructure Discovery Internet of Things Localization Medium Access Control

Mobility and Dynamics Obstacle Avoidance Pattern Formation, Experimental Analysis Population Protocols, Swarm Computing **Resource Efficiency RFID Algorithms Routing and Data Propagation** Self-stabilization, Self-* Properties Sensor Networks Systems and Testbeds Time Synchronization **Topology Control** Tracking Virtual Infrastructures

International Symposium on Algorithmics of Wireless Networks

Ad Hoc Networks Autonomous Mobile Robots Communication Protocols Complexity and Computability **Computational Models** Data Aggregation and Fusion Dynamic Networks, Temporal Graphs Energy Management, Power Saving Fault Tolerance and Dependability Game Theoretic Aspects Infrastructure Discovery Internet of Things Localization Medium Access Control

Mobility and Dynamics **Obstacle Avoidance** Pattern Formation, Experimental Analysis Population Protocols, Swarm Computing **Resource Efficiency RFID Algorithms Routing and Data Propagation** Self-stabilization, Self-* Properties Sensor Networks Systems and Testbeds Time Synchronization **Topology Control** Tracking Virtual Infrastructures

• Synchronous – all switchable nodes

 \rightarrow possibly infinite

• Synchronous – all switchable nodes

 \rightarrow possibly infinite

• Synchronous – all switchable nodes

 \rightarrow possibly infinite

• Synchronous – all switchable nodes

 \rightarrow possibly infinite

• Synchronous – all switchable nodes

 \rightarrow possibly infinite

• Synchronous – all switchable nodes

 \rightarrow possibly infinite

• Sequential – one node at a time

 \rightarrow always stabilizes!

Weighted Minority Process

Weighted Minority Process

Weighted Minority Process

• Basic – for any improvement

• Basic – for any improvement

- Basic for any improvement
- Proportional conflict with *e* portion of (weighted) neighborhood

- Basic for any improvement
- **Proportional** conflict with *e* portion of (weighted) neighborhood

Upper bound:

• Sequential model: $O(2^n)$

Upper bound:

• Sequential model: $O(2^n)$

Stabilization time

Upper bound:

• Sequential model: $O(2^n)$

Stabilization time

Upper bound:

• Sequential model: $O(2^n)$

Lower bound?

Majority vs. Minority

Majority process (take most frequent color)

Minority process

(take least frequent color)

steps: $2^{\Theta(n)}$

steps: ?

Majority vs. Minority

Majority process (take most frequent color)

Minority process

(take least frequent color)

steps: $2^{\Theta(n)}$

steps: 2⁽ⁿ⁾

Lower weightsMore switches

 $Q=\frac{5}{6}$

 $Q=\frac{5}{6}$

e =

e =

e =

• Adversarial: a specific sequence

• Adversarial: a specific sequence

• Adversarial: a specific sequence

Benevolent

• Adversarial: a specific sequence

• **Benevolent:** every sequence

• Adversarial: a specific sequence

• Benevolent: every sequence

 \rightarrow allow only one possible sequence!

Benevolent case

Benevolent case – logical gates

Benevolent case – logical gates

Benevolent case – logical gates

More Variants by [Papp, W]

Unweighted $\rightarrow \Theta(n^2)$

Random initialization $\rightarrow \Theta(n^2)$

Random init & proportional \rightarrow depends on ϱ

More general model
$$\rightarrow f(\lambda) := \max_{\varphi \in (0, \frac{1-\lambda}{2}]} \frac{\log\left(\frac{1-\varphi}{\lambda+\varphi}\right)}{\log\left(\frac{1-\varphi}{\varphi}\right)}$$

Sensor Networks

Algorithms for Sensor NetworksWhat Is It Good For?!

[W, Algosensors 2008!]

[PermaSense]

Efficiency and Reliability

Energy Efficiency

[Burri, von Rickenbach, W]

Energy Efficiency

Energy Efficiency

duty cycling, wake up e.g. every 10 seconds parent synchronizes children no network wide synchronization mean energy consumption: 0.066mW, 10y battery

Reliability

Reliability

nodes send beacons to reconnect orphans collisions are explicitly accepted availability & reliability: 99% to 99.999%

Wireless vehicle detection systems for outdoor parking lots

[tinynode]

Where's the Algorithmic Theory?

"no network wide synchronization"

Time Synchronization

Network Synchronization is Tough

Network Synchronization

Tree Based Protocols

Synchronization Error	FTSP	PulseSync
Average (t > 2000s)	23.96 µs	4.44 μs
Maximum (t > 2000s)	249 μs	38 µs

Error with Distance

Neighbor Synchronization

Neighbor Synchronization?

Tree-based Algorithms e.g. FTSP Neighborhood Algorithms e.g. GTSP

Theorem: Neighbor Sync is Somewhat Tough

Model: Drift & Jitter

Reasonable Time Must Behave!

no stopping

no jumping

Example: Neighbor Sync is Hard

sync to fastest neighbor message delay = 10

Sync To Fastest Neighbor: Local Skew Can Be Diameter Average of Neighbors: Local Skew Can Be Diameter Squared

Better Protocol?

Reminder: Drift & Jitter

Theorem: Neighbor Sync is <mark>Somewhat</mark> Tough

neighbor sync error = log diameter lower bound: difficult proof matching upper bound: not trivial as well

[Lenzen, Locher, W, JACM]

"The Future"

Starlink

-

Global Positioning System

Atomic Clock Inside Transmit Time + "Position" + ...

Tracking

Roger Wattenhofer

ETH Zurich – Distributed Computing – www.disco.ethz.ch

Energy Problem

Delay Problem

Position and time only 30s after turning camera on

Delay Problem

Better: Record 1ms of raw GPS data when taking picture

Coarse Time Navigation

Coarse Time Results

15 minute duty cycle18 μW mean power2 years with coin cell

[Eichelberger, von Hagen, W]

GPS Spoofing

[Eichelberger, von Hagen, W, 2019]

Marca

Indoor «GPS»

[Eichelberger, Luchsinger, Tanner, W]

-light Awar

Does it work?

Still many challenges...

Questions? Comments?

Roger Wattenhofer

ETH Zurich – Distributed Computing – www.disco.ethz.ch

International Symposium on Algorithmics of Wireless Networks

Ad Hoc Networks Autonomous Mobile Robots Communication Protocols Complexity and Computability **Computational Models** Data Aggregation and Fusion **Dynamic Networks, Temporal Graphs** Energy Management, Power Saving **Fault Tolerance and Dependability Game Theoretic Aspects** Infrastructure Discovery Internet of Things Localization Medium Access Control

Mobility and Dynamics Obstacle Avoidance Pattern Formation, Experimental Analysis **Population Protocols, Swarm Computing Resource Efficiency RFID Algorithms Routing and Data Propagation** Self-stabilization, Self-* Properties Sensor Networks Systems and Testbeds **Time Synchronization Topology Control** Tracking Virtual Infrastructures