
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Wireless Network Algorithms
Looking Back & Moving Forward

PODC

SODA

STOC
FOCS

ICALP
SPAA

EC

SenSys
OSDI

Mobicom

CHI

NeurIPS

SIGCOMM

ICML

IPSN

Theory & Practice

ESA

Automating Rigid Origami Design
Jeremia Geiger, Karolis Martinkus, Oliver Richter, Roger Wattenhofer

International Symposium on
Algorithmics of Wireless Networks

Mobility and Dynamics

Obstacle Avoidance

Pattern Formation, Experimental Analysis

Population Protocols, Swarm Computing

Resource Efficiency

RFID Algorithms

Routing and Data Propagation

Self-stabilization, Self-* Properties

Sensor Networks

Systems and Testbeds

Time Synchronization

Topology Control

Tracking

Virtual Infrastructures

Ad Hoc Networks

Autonomous Mobile Robots

Communication Protocols

Complexity and Computability

Computational Models

Data Aggregation and Fusion

Dynamic Networks, Temporal Graphs

Energy Management, Power Saving

Fault Tolerance and Dependability

Game Theoretic Aspects

Infrastructure Discovery

Internet of Things

Localization

Medium Access Control

International Symposium on
Algorithmics of Wireless Networks

Mobility and Dynamics

Obstacle Avoidance

Pattern Formation, Experimental Analysis

Population Protocols, Swarm Computing

Resource Efficiency

RFID Algorithms

Routing and Data Propagation

Self-stabilization, Self-* Properties

Sensor Networks

Systems and Testbeds

Time Synchronization

Topology Control

Tracking

Virtual Infrastructures

Ad Hoc Networks

Autonomous Mobile Robots

Communication Protocols

Complexity and Computability

Computational Models

Data Aggregation and Fusion

Dynamic Networks, Temporal Graphs

Energy Management, Power Saving

Fault Tolerance and Dependability

Game Theoretic Aspects

Infrastructure Discovery

Internet of Things

Localization

Medium Access Control

Minority Process

Minority Process

Minority Process

Minority Process

Minority Process

Minority Process

Minority Process

Minority Process

Minority Process

Minority Process

Stabilization time

• Synchronous – all switchable nodes

Stabilization time

• Synchronous – all switchable nodes

Stabilization time

• Synchronous – all switchable nodes

Stabilization time

• Synchronous – all switchable nodes

Stabilization time

• Synchronous – all switchable nodes

Stabilization time

• Synchronous – all switchable nodes

→ possibly infinite

Stabilization time

• Synchronous – all switchable nodes

→ possibly infinite

• Sequential – one node at a time

Stabilization time

• Synchronous – all switchable nodes

→ possibly infinite

• Sequential – one node at a time

Stabilization time

• Synchronous – all switchable nodes

→ possibly infinite

• Sequential – one node at a time

Stabilization time

• Synchronous – all switchable nodes

→ possibly infinite

• Sequential – one node at a time

Stabilization time

• Synchronous – all switchable nodes

→ possibly infinite

• Sequential – one node at a time

→ always stabilizes!

Weighted Minority Process

Weighted Minority Process

Weighted Minority Process

Switching Condition

• Basic – for any improvement

Switching Condition

• Basic – for any improvement

13 15

Switching Condition

• Basic – for any improvement

• Proportional – conflict with ϱ portion of

(weighted) neighborhood

Switching Condition

• Basic – for any improvement

• Proportional – conflict with ϱ portion of

(weighted) neighborhood

30% 70%

Stabilization time

Upper bound:

• Sequential model: O(2n)

Stabilization time

Upper bound:

• Sequential model: O(2n)

Stabilization time

Upper bound:

• Sequential model: O(2n)

Stabilization time

Upper bound:

• Sequential model: O(2n)

Lower bound?

Majority process
(take most frequent color)

steps: 2Θ(n)

Minority process
(take least frequent color)

steps: ?

Majority vs. Minority

Majority process
(take most frequent color)

steps: 2Θ(n)

Minority process
(take least frequent color)

steps: 2Θ(n)

Majority vs. Minority

Higher weights

Less switches

Lower weights

More switches

Lower bound construction

Lower bound construction

Higher weights

Less switches

Lower weights

More switches

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

ϱ =
𝟓

𝟔

Lower bound construction

4x

6xϱ =
𝟓

𝟔

Lower bound construction

4x

6xϱ =
𝟓

𝟔

Lower bound construction

4x

6xϱ =
𝟓

𝟔

Lower bound construction

4x

6xϱ =
𝟓

𝟔

Lower bound construction

4x

6xϱ =
𝟓

𝟔
− 𝜺

Lower bound construction

𝑠 ∙
6

4

𝑠

𝑠 ∙
6

4

2

𝑠 ∙
6

4

3

Lower bound construction

Higher weights

Less switches

Lower weights

More switches

4x

6x

Lower bound construction

Lower bound construction

Lower bound construction

Lower bound construction

Lower bound construction

Lower bound construction

𝑠 ∙
6

4

𝑠

𝑠 ∙
6

4

2

𝑠 ∙
6

4

3

Θ 𝑛 levels

6

4

Θ 𝑛
switches

𝑂 1 level size

Lower bound construction

Sequential model – order of nodes?

• Adversarial: a specific sequence

Sequential model – order of nodes?

• Adversarial: a specific sequence

S1

S2

S3 S4 S5 S6

Sequential model – order of nodes?

• Adversarial: a specific sequence

• Benevolent

S1

S2

S3 S4 S5 S6

Sequential model – order of nodes?

• Adversarial: a specific sequence

• Benevolent: every sequence

Sequential model – order of nodes?

• Adversarial: a specific sequence

• Benevolent: every sequence

→ allow only one possible sequence!

𝑠 ∙
6

4

𝑠

𝑠 ∙
6

4

2

𝑠 ∙
6

4

3

Θ 𝑛 levels

6

4

Θ 𝑛
switches

𝑂 1 level size

Benevolent case

Benevolent case – logical gates

Benevolent case – logical gates

ʌ

Benevolent case – logical gates

More Variants by [Papp, W]

Unweighted → Θ(𝑛2)

Random initialization → Θ(𝑛2)

Random init & proportional → depends on 𝜚

More general model →

Sensor Networks

[W, Algosensors 2008!]

[PermaSense]

Efficiency and Reliability

reliable

efficient

[Google Trends]

Energy Efficiency

sink

[Burri, von Rickenbach, W]

Energy Efficiency

sink

Energy Efficiency

duty cycling, wake up e.g. every 10 seconds
parent synchronizes children
no network wide synchronization
mean energy consumption: 0.066mW, 10y battery

Reliability

sink

Reliability

nodes send beacons to reconnect orphans
collisions are explicitly accepted
availability & reliability: 99% to 99.999%

Dozer Measurements

[Burri, von Rickenbach, W, 2007]

[tinynode]

Where’s the Algorithmic Theory?

“no network wide synchronization”

Time Synchronization

Network Synchronization is Tough

Network Synchronization

Tree Based Protocols

FTSP PulseSync

[Lenzen, Sommer, W, TON]

Synchronization Error FTSP PulseSync

Average (t > 2000s) 23.96 µs 4.44 µs

Maximum (t > 2000s) 249 µs 38 µs

Error with Distance

FTSP PulseSync

Neighbor Synchronization

Neighbor Synchronization?

Tree-based Algorithms Neighborhood Algorithms

e.g. FTSP e.g. GTSP

Bad neighbor sync

Theorem:
Neighbor Sync is Somewhat Tough

Model: Drift & Jitter

t

clock rate

1
1 + 𝜀

message delay

1 − 𝜀

bounded errors (worst-case)

𝑑 + 𝜀𝑑 − 𝜀

Reasonable Time Must Behave!

no stopping no jumping

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

𝑑 + 𝜀

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

0
𝑑 − 𝜀

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

0

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

0

sync to fastest neighbor

message delay = 1

Example: Neighbor Sync is Hard

0

Sync To Fastest Neighbor:
Local Skew Can Be Diameter

Average of Neighbors:
Local Skew Can Be Diameter Squared

Better Protocol?

Reminder: Drift & Jitter

t

clock rate

1
1 + 𝜀

message delay

1 − 𝜀

bounded errors (worst-case)

𝑚 + 𝜀𝑚 − 𝜀

Theorem:
Neighbor Sync is Somewhat Tough

neighbor sync error = log diameter
lower bound: difficult proof

matching upper bound: not trivial as well

[Lenzen, Locher, W, JACM]

“The Future”

Starlink

Global Positioning System

[ESA]

GPS

GLONASS

GPS

Galileo (2020)

BeiDou (2020)

QZSS (local)

NAVIC (local)

31

24

4

7

35

23

Atomic Clock Inside
Transmit Time + “Position” + …

𝑝𝑖: position
𝑠𝑖: sending time

ℎ: 3D position
𝑟𝑖: receiving time
𝜃: time offset

𝑑𝑖 = 𝑟𝑖 − 𝑠𝑖
𝑐: speed of light

Location, Location, Location

… and Time

ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Tracking

Energy Problem

1 day
with GPS: 6 hours

Delay Problem

Position and time only 30s after turning camera on

Delay Problem

Better: Record 1ms of raw GPS data when taking picture

Coarse Time Navigation

Branch and Bound Search

[B
is

si
g,

 E
ic

h
e

lb
e

rg
er

, W
]

Coarse Time Results

[Eichelberger, von Hagen, W]

15 minute duty cycle
18 µW mean power

2 years with coin cell

GPS Spoofing

[Eichelberger, von Hagen, W, 2019]

Indoor «GPS»

ADS-B

[Eichelberger, Luchsinger, Tanner, W]

Does it work?

Localization error [m]

Still many challenges…

Summary

ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

Questions? Comments?

International Symposium on
Algorithmics of Wireless Networks

Mobility and Dynamics

Obstacle Avoidance

Pattern Formation, Experimental Analysis

Population Protocols, Swarm Computing

Resource Efficiency

RFID Algorithms

Routing and Data Propagation

Self-stabilization, Self-* Properties

Sensor Networks

Systems and Testbeds

Time Synchronization

Topology Control

Tracking

Virtual Infrastructures

Ad Hoc Networks

Autonomous Mobile Robots

Communication Protocols

Complexity and Computability

Computational Models

Data Aggregation and Fusion

Dynamic Networks, Temporal Graphs

Energy Management, Power Saving

Fault Tolerance and Dependability

Game Theoretic Aspects

Infrastructure Discovery

Internet of Things

Localization

Medium Access Control

