
Two Elementary Instructions make
Compare-and-Swap

Pankaj Khanchandani
ETH Zurich

Zurich, Switzerland
kpankaj@ethz.ch

Roger Wattenhofer
ETH Zurich

Zurich, Switzerland
wattenhofer@ethz.ch

Abstract—The consensus number of an object is the maximum
number of processes among which binary consensus can be
solved using any number of instances of the object and read-
write registers. Herlihy [1] showed in his seminal work that if
an object has a consensus number of n, then its instances can
be used to implement any non-trivial object or data structure
that is shared among n processes, so that the implementation is
wait-free and linearizable. Thus, an object such as compare-and-
set with an infinite consensus number is “advanced” because its
instances can be used to implement any non-trivial concurrent
object shared among any number of processes. On the other
hand, objects such as fetch-and-add or fetch-and-multiply have a
consensus number of two and are “elementary”.

An important consequence of Herlihy’s result was that any
number of reasonable elementary objects are provably insuf-
ficient to implement an advanced object like compare-and-set.
However, Ellen et al. [2] observed recently that real multiproces-
sors do not compute using objects but using instructions that are
applied on memory locations. Using this observation, they show
that it is possible to use a couple of elementary instructions on
the same memory location to implement an advanced one, and
consequently any non-trivial object or data structure.

However, the above result is only a possibility and uses a
generic universal construction as a black-box, which is not how
we implement objects in practice, as the generic construction
is quite inefficient with respect to the number of steps taken
by a process and the number of shared objects used in the
worst case. Instead, the efficient implementations are built upon
the widely supported compare-and-set instruction and one can-
not conclude from the previous result whether the elementary
instructions can also produce equally efficient implementations
like compare-and-set does or they are fundamentally limited in
this respect. In this paper, we answer this question by giving
a wait-free and linearizable implementation of compare-and-
set using just two elementary instructions, half-max and max-
write. The implementation takes O(1) steps per process and uses
O(1) shared objects per process. Thus, any known or unknown
compare-and-set based implementation can also be done using
only two elementary instructions without any loss in efficiency.
An interesting aspect of these elementary instructions is that
depending on the underlying system, their throughput in a highly
concurrent setting is larger than that of the compare-and-set
instructions by a factor proportional to n.

I. INTRODUCTION

Any multiprocessor chip needs to support some synchro-
nization instructions, such as compare-and-set or fetch-and-
add, to coordinate among several concurrent processes that
can take steps asynchronously at different rates. As it is not
possible to support every other synchronization instruction

on a multiprocessor, the choice of instructions to support is
important. Herlihy [1] gave an elegant way to make such a
choice based on consensus numbers. The consensus number
of an object is defined as the maximum number of processes
n among which binary consensus can be solved using any
number of instances of the object and read-write registers. In
binary consensus, each process is given an input of either 0
and 1. Each process must output the same value (agreement)
within a finite number of its steps (termination) so that the
output value is an input value of some process (validity).

Using objects of consensus number n, Herlihy gave a generic
and universal construction to construct a linearizable and wait-
free implementation of any concurrent data structure or object,
such as stacks or queues, shared among n processes. Lineariz-
ability implies that although each operation takes several steps
to complete, it appears to take effect instantaneously at some
point between its invocation and termination. The wait-free
property implies that every process completes its operation
within a finite number of its steps irrespective of the speed of
other processes.

So, a compare-and-set object, which updates the current
value of the object to a given new value if and only if the
current value is equal to a given expected value, has an infinite
consensus number and is an advanced object to be supported
by a multiprocessor. On the other hand, consensus number
two objects such as fetch-and-add or fetch-and-multiply are
elementary ones. Moreover, as it was later shown in [3] that it
is provably impossible to implement an advanced object from
any number of reasonable elementary ones, a multiprocessor
should support an advanced object.

However, Ellen et al. [2] recently observed that the above
classification treats a synchronization instruction as an in-
dividual object but in reality the instructions supported by
a multiprocessor can be applied on every memory location,
without any restriction that forbids the application of more than
one instruction to a memory location. Based on the observation,
they also give simple examples where a register supporting two
elementary instructions can be used to solve binary consensus
for any given number of processes in constant number of steps
per process. Using Herlihy’s universal construction, it then
follows that it is possible to construct any concurrent data
structure or object by only using elementary synchronization
instructions.

The above possibility relies on the universal construction,
which is inefficient both in number of steps taken by a process
and the number of shared registers used, and is therefore not
used in practical implementations. One may conjecture that the
elementary instructions are only good enough for solving binary
consensus but are fundamentally limited to produce efficient
implementations as can be obtained by widely used advanced
instructions like compare-and-set. In fact, in a followup work
by Gelashvili et al. [4], the authors ask a similar question:
“The practical question is whether we can really replace a
compare-and-set instruction in concurrent algorithms and data-
structures with a combination of weaker instructions.”.

By weaker or elementary instructions, we refer to instructions
of consensus number at most two, or ideally one. We define
the consensus number of an instruction as the consensus
number of an object that supports the instruction and a read
operation that returns the state of the object. This models
that an instruction can be applied on a memory location along
with a read operation that returns the value of the location.
It is crucial to add such a read operation to the object when
defining consensus number of an instruction as otherwise, one
can define instructions that seem to be advanced but still have
consensus number one. For instance, consider the compare-
and-set instruction without a return value and an object that
supports such an instruction without any read operation. The
consensus number of such an object is one because there
is no way to read what the object computes. Moreover, we
define the read operation to return the complete state of the
object as reading a memory location returns its value or all the
bits stored at that location. Thus, elementary instructions with
consensus number one can be seen as a “write-type” instruction
because objects or memory locations that only support read
and write operations also have consensus number one. The
challenge is to find the limits of elementary instructions with
respect to efficiently simulating compare-and-set, which is
primarily used for practical implementations of concurrent
objects or data structures and has been proven to yield efficient
implementations.

In this paper, we show that it is possible to simulate a
compare-and-set instruction using two elementary instructions
and the simulation is efficient in the number of steps taken by
each process and the number of shared registers or memory
locations used per process. Concretely, we introduce two
instructions half-max and max-write of consensus number one
each. We show that using read-write registers and registers that
support half-max and max-write, we can construct a linearizable
and wait-free implementation of a compare-and-set register so
that every compare-and-set operation takes O(1) steps. The
size of the registers required is logarithmic in the length of
the execution. The total number of shared registers required is
O(n) in a system with n processes or O(1) shared registers
per process. Thus, any O(T) step algorithm using compare-
and-set and read-write registers can be transformed into an
O(T) step algorithm that only uses elementary instructions of
consensus number one supported on reasonably large registers.
We give a couple of extensions of the above algorithm such

as optimizing the number of shared objects used when several
compare-and-set registers are needed instead of one. We also
compare the throughput of the elementary instructions half-max
and max-write against the throughput of compare-and-set in a
highly concurrent setting and show that the throughput of the
elementary instructions can be larger by a factor proportional
to the number of processes.

II. RELATED WORK

One of the most central question in concurrent computing
has been to quantify the computing ability of synchronization
instructions. Herlihy [1] originally defined the consensus
number of an object as the maximum number of processes n
that can solve consensus using a single instance of the object
and any number of read-write registers. As a consequence of
this definition, an object that has higher consensus number or
is higher in the Herlihy’s hierarchy cannot be implemented
using an object that has a lower consensus number or is lower
in the Herlihy’s hierarchy. Jayanti [5] defined robustness of
a hierarchy as the property that an object at a higher level
in the hierarchy cannot be implemented using any number
or combination of objects lower in the hierarchy. He gave
an example of an object such that k instances of the object
along with read-write registers can solve consensus for k + 1
processes. Thus, Herlihy’s hierarchy would not be robust if the
consensus number definition is restricted to use only a single
object.

A natural fix is to allow any number of instances of the
object in the definition of consensus number, which is also the
accepted definition and the one that we use [6]. Under this
definition, Chandra et al. [7] show that Herlihy’s hierarchy is
robust for two objects out of which one is a consensus object
and the other one is an arbitrary object. Ruppert [3] showed
that Herlihy’s hierarchy is robust for read-modify-write and
readable objects, where a readable object returns some part or
complete state of the object and a read-modify-write object
returns the complete current state of the object and updates
it according to a deterministic function in a single atomic
step. These objects capture a large class of synchronization
instructions but not all. All these results assume that when
a set of objects are used to implement another object, the
synchronization operations supported by different objects are
not merged onto a same object.

Ellen et al. [2] observed that if one relaxes the above assump-
tion and does not treat a set of synchronization instructions as
a set of individual objects but as a single object supporting the
set of synchronization instructions, then Herlihy’s hierarchy
is again not robust. They propose a space based hierarchy in
which the computational capability of set of synchronization
instructions is quantified by the minimum amount of space
required to solve obstruction free consensus among n processes.
Obstruction freedom guarantees that a process returns the
output eventually if it is allowed to take steps alone without
being obstructed by other processes. A set of synchronization
instructions is considered powerful if they require small space
to solve obstruction free consensus. Their work has led to

some more followup work to understand the capability of a
set of synchronization instructions from different perspectives
when the instructions are assumed to be supported on the same
register.

In [4], the authors give a lock-free implementation of a
log data structure by only using x86 instructions of consensus
number at most two. They report that the performance achieved
was similar to that of a compare-and-set based implementation.
Their log data structure can be used to implement any object,
including compare-and-set, but the progress guarantee is lock-
free and does not exclude starvation of a process unlike our
wait-free algorithm. The log data structure can be seen as
a universal construction and the question remains if specific
implementations using compare-and-set can also be done using
elementary instructions without any sacrifice. Also, we do
not restrict ourselves to instructions supported on modern
architecture as our goal is to find if it is even theoretically
possible to efficiently compete with an advanced instruction like
compare-and-set using elementary instructions only, regardless
of the task that we choose to do and not just a universal
construction. In [8], we observed that a set of low consensus
number instructions supported on the same register can help
to improve the step complexity of solving the fundamental
synchronization task of designing a wait-free queue from O(n)
to O(

√
n) for n processes.

In this paper, we look at the capability of a set of elementary
instructions supported on the same register with respect to
their ability to efficiently simulate an advanced instruction
like compare-and-set. We chose to simulate compare-and-set
not only because of its infinite consensus number but also
because it is ubiquitous and has been shown to yield efficient
implementations [9], [10], [11]. Our result then implies that
a set of elementary instructions can produce equally efficient
implementations like compare-and-set, if not better. In [12],
the authors give a blocking implementation of comparison
instructions, which includes compare-and-set, by just using
read-write registers and constant number of remote memory
references. Their focus is to use read-write registers and hence
wait-freedom is impossible to achieve. Overall, there is no
prior work that shows that a set of elementary instructions are
at least as good as compare-and-swap registers with respect
to the number of steps taken for completing any arbitrary
synchronization task.

III. AN OVERVIEW OF THE METHOD

Our method is based on the observation that if several
compare-and-set operations attempt to simultaneously change
the value in the register, only one of them succeeds. So, instead
of updating the final value of the register for each operation, we
first determine the single operation that succeeds and update
the final value accordingly. This is achieved by using two
consensus number one instructions: max-write and half-max.

The max-write instruction takes two arguments. If the first
argument is greater than or equal to the value in the first half
of the register, then the first half of the register is replaced
with the first argument and the second half is replaced with

the second argument. Otherwise, the register is left unchanged.
In any case, no value is returned. This instruction helps in
keeping a version number along with a value.

The half-max instruction takes a single argument and replaces
the first half of the register with that argument if the argument
is larger. Otherwise, the register remains unchanged. Again, no
value is returned in any case. This instruction is used along with
the max-write instruction to determine the single successful
compare-and-set operation out of several concurrent ones. The
task of determining the successful compare-and-set operation
can be viewed as a variation of tree-based combining (as in
[13], [14] for example). The difference is that we do not use
a tree as it would incur Θ(log n) overhead on step complexity.
Instead, our method does the combining in constant number
of steps as we will see later.

In the following section, we formalize the model and the
problem. In Section V, we give an implementation of the
compare-and-set operation using registers that support the half-
max, max-write, read and write operations. In Section VI,
we prove its correctness and show that the compare-and-set
operation takes O(1) steps for every process. In Section VII,
we argue that the consensus numbers of the max-write and
half-max instructions are both one. In Section VIII, we give
a couple of extensions of the basic algorithm. In Section IX,
we analyze the throughput of the half-max, max-write and
compare-and-set instructions under high concurrency. Finally,
we conclude and discuss the results in Section X.

IV. MODEL

A sequential object is defined by a set of operations that can
be performed on the object. Each operation takes zero or more
arguments, updates the state or value of the object according
to a specified set of rules and optionally returns a value. The
value of the object is a sequence of bits, or just an integer.

A register is a sequential object and supports the operations
read, write, half-max and max-write. The read() operation
returns the current value of the register. The write(v) operation
updates the value of the register to v. The half-max(x) operation
replaces the value in the first half of the register, say a, with
max{x, a} and does not return any value. The max-write(x | y)
operation replaces the first half of the register, say a, with x
and second half of the register with y if and only if x ≥ a. In
any case, the operation does not return any value. The register
operations are atomic, i.e., if different processes execute them
simultaneously, then they execute sequentially in some order.
In general, atomicity is implied whenever we use the word
operation in the rest of the text.

An implementation of a sequential object is a collection
of functions, one for each operation defined by the object. A
function specifies a sequence of instructions to be executed
when the function is executed. An instruction is an operation
on a register or a computation on local variables, i.e., variables
exclusive to a process.

A process executes a sequence of instructions. The processes
have identifiers 1, 2, . . . , n. When a process executes a function,
it is said to call that function. A schedule is a sequence of

process identifiers. Given a schedule S, an execution E(S)
is the sequence of instructions obtained by replacing each
process identifier in the schedule with the next instruction to
be executed by the corresponding process.

Given an execution and a function called by a process, the
start of the function call is the point in the execution when the
first register operation of the function call appears. Similarly,
the end of the function call is the point in the execution
when the last register operation of the function call appears. A
function call A is said to occur before another function call B,
if the call A ends before the call B starts. Thus, the function
calls of an implementation of an object O form a partial order
PO(E) with respect to an execution E. An implementation of
an object O is linearizable if there is a total order TO(E) that
extends the partial order PO(E) for any given execution E so
that the actual return value of every function call in the order
TO(E) is same as the return value determined by applying
the specification of the object to the order TO(E). The total
order TO(E) is usually defined by associating a linearization
point with each function call, which is a specific point in the
execution when the call takes effect. An implementation is
wait-free if every function call returns within a finite number
of steps of the calling process irrespective of the schedule of
the other processes.

Our goal is to develop a wait-free and linearizable imple-
mentation of the compare-and-set register. It supports the
read operation and the compare-and-set operation. The read
operation returns the current value of the register. The compare-
and-set operation takes two arguments a and b. It updates the
value of the register to b if the value in the register is a and
leaves it unchanged otherwise. If the value is updated, a true
value is returned and false otherwise.

V. ALGORITHM

Figure 1 shows the (shared) registers that are used by the
algorithm. There are the arrays A and R of size n each. The
ith entry of the array A consists of two fields: the field c keeps
a count of the number of compare-and-set operations executed
by the process i, the field val is used to store or announce
the second argument of the compare-and-set operation that the
process i is executing. The ith entry of the array R consists
of the fields c and ret . The field ret is used for storing the
return value of the cth compare-and-set operation executed
by the process i. The register V stores the current value of
the compare-and-set object in the field val along with its
version number in the field seq . The fields seq , pid and c
of the register P respectively store the next version number,
the process identifier of the process that executed the latest
successful compare-and-set operation and the count of compare-
and-set operations issued by that process. For all the registers,
the individual fields are of equal sizes except for the register
P . The first half of this register stores the field seq where as
the second half stores the other two fields, pid and c.

Algorithm 1 gives an implementation of the compare-and-set
register. To execute the read function, a process simply reads
and returns the current value of the object as stored in the

A

R

c val

c ret

V

P seq pid c

seq val

Fig. 1. An overview of data structures used by Algorithm 1.

register V (Lines 2 and 3). To execute the compare-and-set
function, a process starts by reading the current value of the
object (Line 5). If the first argument of the function is not
equal to the current value, then it returns false (Lines 6 and
7). If both the arguments are same as the current value, then it
can simply return true as the new value is same as the initial
one (Lines 8 and 9).

Otherwise, the process competes with the other processes
executing the compare-and-set function concurrently. First,
the process increments its local counter (Line 10). Then, the
new value to be written by the process is announced in the
respective entry of the array A (Line 11) and the return value
of the function is initialized to false by writing to the respective
entry in the array R (Line 12). The process starts competing
with the other concurrent processes by trying to announce its
identifier in P using the max-write operation (Line 13). The
competition is finished by writing a version number larger than
used by the competing processes (Line 14).

Once the winner of the competing processes is determined,
the winner and the value announced by it is read (Lines 15 and
16), the winner is informed that it won after appropriate checks
(Lines 18, 17) and the current value is updated (Line 19). The
value to be returned is then read from the designated entry of
array R (Line 20). A closer look at the algorithm reveals that
the half-max and max-write operations are only combined on
the register P . All other registers either only use max-write
(and not half-max) or are only read-write registers.

In the following section, we analyze Algorithm 1 and
show that it is a linearizable and an O(1) step wait-free
implementation of the compare-and-set object.

VI. ANALYSIS

Let us first define some notation. We refer to a field f of
a register X by X.f . The term X.f i

k is the value of the field
X.f just after the process i executes Line k during a call. We
omit the call identifier from the notation as it will be always
clear from the context. Similarly, vik is the value of a variable
v, that is local to the process i, just after it executes Line k
during a call. The term X.fe is the value of a field X.f at the
end of an execution.

Algorithm 1: The compare-and-set and the read functions.
The symbol | is a field separator. The symbol is a
variable that is not used. The variable id is the identifier
of the process executing the function. At initialization, we
have c = 0 and V = (0 |x), where x is the initial value of
the compare-and-set object.

1 read()
2 (| val)← V.read();
3 return val ;

4 compare-and-set(a, b)
5 (seq | val)← V.read();
6 if a 6= val then
7 return false;

8 if a = b then
9 return true;

10 c← c + 1;
11 A[id].write(c | b);
12 R[id].write(c | false);
13 P.max-write(seq + 1 | id | c);
14 P.half-max(seq + 2);
15 (seq | pid | cp)← P.read();
16 (ca | val)← A[pid].read();
17 if seq is even and cp = ca then
18 R[pid].max-write(ca | true);
19 V.max-write(seq | val);

20 (| ret)← R[id].read();
21 return ret ;

To prove that our implementation is linearizable, we first
need to define the linearization points. The linearization point
of the compare-and-set function executed by a process i is
given by Definition 1. There are four main cases. If the process
returns from Line 7 or Line 9, then the linearization point is
the read operation in Line 5 as such an operation does not
change the value of the object (Cases 1 and 2). Otherwise,
we look for the execution of Line 19 that wrote the sequence
number V.seq i5 + 2 to the field V.seq for the first time. This is
the linearization point of the process i if its compare-and-set
operation was successful, as determined by the value of P.pid
(Case 3a). Otherwise, the failed compare-and-set operations
are linearized just after the successful one (Case 3b). The calls
that have not taken effect are linearized after all the other
linearization points (Case 4).

Definition 1. The linearization point of a compare-and-set
call by a process i is defined as follows.

1) If V.val i5 6= ai4, then the linearization point is the point
when i executes Line 5.

2) If V.val i5 = ai4 = bi4, then the linearization point is the
point when i executes Line 5.

3) If V.val i5 = ai4 6= bi4 and V.seqe ≥ V.seq i5 + 2, then let p
be the point when Line 19 is executed by a process j so

that V.seqj19 = V.seq i5 + 2 for the first time.
(a) If pid j

15 = i, then the linearization point is p.
(b) If pid j

15 6= i, then the linearization point is just after p.
4) If V.val i5 = ai4 6= bi4 and V.seqe < V.seq i5 + 2, then

the linearization point is at the end, after all the other
linearization points in some order.

Note that we assume in Case 3 that if V.seqe ≥ V.seq i5 + 2,
then there is an execution of Line 19 by a process j with the
value V.seqj19 = V.seq i5 +2. So, we first show in the following
lemmas that this is indeed true.

Lemma 1. The value of V.seq is always even.

Proof: We have V.seq = 0 at initialization. The modifica-
tion only happens in Line 19 with an even value.

Lemma 2. Whenever V.seq changes, it increases by 2.

Proof: If V.seq was changed to x by a process i, then x
must be even (Lines 19 and 17). So, a process j wrote x to
P.seq and either x = V.seqj5 + 1 or x = V.seqj5 + 2 (Lines 13
and 14). As V.seqj5 is even by Lemma 1 and x is even too,
it must be that x = V.seqj5 + 2. As V.seq always increases,
we have V.seq ≥ x − 2 before i modifies it. Also V.seq is
always even by Lemma 1, so we have V.seq = x− 2 before i
modifies it and the value increases by 2.

Lemma 3. The linearization point as given by Definition 1 is
well-defined.

Proof: The linearization point as given by Definition 1
clearly exists for all the cases except for Case 3. For Case 3,
we only need to show that if V.seqe ≥ V.seq i5 + 2, then
there exists an execution of Line 19 by a process j so that
V.seqj19 = V.seq i5 + 2. As V.seq i5 is even by Lemma 1 and the
value of V.seq only increases in steps of 2 by Lemma 2, it
follows from V.seqe ≥ V.seq i5 + 2 that V.seq i5 + 2 was written
to V.seq at some point.

To show that the implementation is linearizable, we need
to prove two main statements. First, the linearization point
is within the start and the end of the corresponding function
call. Second, the value returned by a finished call is same as
defined by the sequence of the linearization points up to the
linearization point of the call. In the following two lemmas,
we show the first of these statements.

Lemma 4. If the condition V.val i5 = ai4 6= bi4 is true for a
compare-and-set call by a process i, then the value of V.seq
is at least V.seq i5 + 2 at the end of the call.

Proof: We define a set of processes S = {j : V.seqj5 =
V.seq i5}. Consider the process k ∈ S that is the first one to
execute Line 17. As the first field of P.seq is always modified
by a max operation and process k writes V.seq i5+2 to that field,
we have seqk17 = seqk15 ≥ V.seq i5 + 2. If seqk15 > V.seq i5 + 2,
then V.seqk15 ≥ V.seq i5 + 2 and we are done.

So, we only need to check the case when seqk15 = V.seq i5+2.
As V.seq i5 is even by Lemma 1, so is seqk17 = seqk15. Moreover,
the process pidk

15 ∈ S as some process(es) (including k)

executed Line 13. As A[pidk
15].c always increases whenever

modified (Line 11), we have cak
16 ≥ cpk

15. But, if cak
16 > cpk

15,
then the process pidk

15 finished even before the process k, a
contradiction. So, it holds that cak

16 = cpk
15 and the process k

executes Line 19.
Now, the execution of Line 19 by the process k either

changes the value of V.seq or does not. If it does, then
V.seqk19 = V.seq i5 + 2 and we are done. Otherwise, someone
already changed the value of V.seq to at least V.seq i5 + 2
because of Lemma 2.

Lemma 5. The linearization point as given by Definition 1 is
within the corresponding call duration.

Proof: The statement is true for Cases 1 and 2 as the
instruction corresponding to the linearization point is executed
by the process i itself.

For Case 3, we analyze the case of finished and unfinished
call separately. Say that the call is unfinished. As V.seqe ≥
V.seq i5 + 2 and V.seq i5 is the value of V.seq at the start of the
call, the linearization point as given by Definition 1 is after the
call starts. Now, assume that the call is finished. We know from
Lemma 4 that the value of V.seq is at least V.seq i5 + 2 when
the call ends. So, the point when Line 19 writes V.seq i5 + 2
to V.seq is within the call duration.

We know from Lemma 4 that if the call finishes, then we
have V.seqe ≥ V.seq i5 + 2. So, if V.seqe < V.seq i5 + 2, then
the call is unfinished and it is fine to linearize it at the end as
done for Case 4.

Now, we need to show that the value returned by the calls
is same as the value determined by the order of linearization
points. We show this in the following lemmas.

Lemma 6. Assume that x = seq i15 = seqj15 for two distinct
processes i and j and that x is even. Then, it implies that
pid i

15 = pid j
15 and cpi

15 = cpj
15.

Proof: Without loss of generality, assume that the process
i executes Line 15 before the process j does so. As x =
seq i15 = seqj15 by assumption, the only way in which the field
P.pid can change until the process j executes Line 15, is by a
max-write operation on P with x as the first field. This is not
possible as x is even and the max-write on P is only executed
with an odd value of the first field (Line 13). So, it holds that
pid i

15 = pid j
15. Similarly, we have cpi

15 = cpj
15.

Lemma 7. As long as the value of V.seq remains the same,
the value of V.val does not change.

Proof: Say that a process i is the first one to write a
value x to V.seq . The value written to the field V.val by the
process i is val i16. To have a different value of V.val with x
as the value of V.seq , another process j must execute Line 19
with seqj15 = x but val i16 6= val j16. As seqj15 = x = seq i15, it
follows from Lemma 6 that pid j

15 = pid i
15 and cpi

15 = cpj
15.

As the condition in Line 17 is true for both the processes i and
j, it then follows that cai

16 = caj
16. As the field A[pid j

15].val
is updated only once for a given value of A[pid j

15].c (Line 11),
it holds that val i16 = val j16 and the claim follows.

Lemma 8. Say that seq i15 = x is even and pid i
15 = j during

a call by a process i, then V.seqj5 = x − 2 for some call by
the process j.

Proof: As seq i15 = x, some process h modified P by
executing Line 13 or Line 14 with x as the first argument. As x
is even and V.seqh5 is even by Lemma 1, the process h modified
P by executing Line 14. So, it holds that V.seqh5 = x − 2.
Also, process h executed Line 13 with x− 1 as the first field.
As pid i

15 = j, the process j also executed Line 13 with x− 1
as the first field after the process h did so. So, it holds that
V.seqj5 = x− 2.

Lemma 9. For every even value x ∈ [2, V.seqe], there is an
execution of Line 19 by a process i so that seq i15 = x and the
first such execution is the linearization point of some call.

Proof: Consider an even value x ∈ [2, V.seqe]. Then, we
know from Lemma 2 that x is written to V.seq by an execution
of Line 19. Let p be the point of first execution of Line 19
by a process j so that seqj15 = x. So, it holds for the process
pid j

15 = h that V.seqh5 = x− 2 using Lemma 8. As point p is
the first time when x is written to the field V.seq , it holds that
V.seqj19 = x. Thus, p is the linearization point of the process
h by Definition 1.

Lemma 10. The value V.val is only modified at a Case 3a
linearization point.

Proof: Let q be a Case 3a linearization point. Say that
the value of V.seq is updated to x ≥ 2 at q. Let p be the first
point in the execution when the value of V.seq is x− 2. Using
Lemma 9, we conclude that p is either a linearization point
(for x − 2 ≥ 2) or the initialization point (for x − 2 = 0).
Using Lemma 7, the value of V.val is not modified between
p and q.

We want to use the above lemma in an induction argument
on the linearization points to show that the values returned
by the corresponding calls are correct. First, we introduce
some notation for k ≥ 1. The term L.valk is the value of the
abstract compare-and-set object after the kth linearization point.
The terms V.seqk and V.valk, respectively, are the values of
V.seq and V.val after the kth linearization point. These terms
refer to the respective values just after the initialization when
k = 0. For k ≥ 1, the term L.retk is the expected return value
of the call corresponding to the kth linearization point. The
following two lemmas prove the correctness using induction on
the linearization points and checking the different linearization
point cases separately.

Lemma 11. After k ≥ 0 linearization points, we have
L.valk = V.valk except for Case 4 linearization points. For
k ≥ 1, the L.retk values are false for Case 1, true for Case 2,
true for Case 3a and false for Case 3b.

Proof: We prove the claim by induction on k. For the base
case of k = 0, the claim is true as V.val is initialized with the
initial value of the compare-and-set object. Let LPk be the
kth linearization point for k ≥ 1 and say that it corresponds

to a call by a process i. We have the following cases.
Case 1: Let LPk′ be the linearization point previous to

LPk. By induction hypothesis, it holds that L.valk′ = V.valk′ .
By Lemma 10, the value of V.val does not change until
LPk. As we have a read operation at LPk, it holds that
V.valk′ = V.valk. By Definition 1, we know that V.valk 6= ai

4.
So, it holds that L.valk′ = V.valk′ = V.valk 6= ai

4. Thus,
it follows from the specification of the compare-and-set
object that L.valk = L.valk′ = V.valk. Moreover, we have
L.retk = false as L.valk′ = V.valk 6= ai

4.
Case 2: Again, we let LPk′ to be the linearization point

previous to LPk. As argued in the previous case, it holds that
V.valk′ = V.valk. By Definition 1, we know that V.valk =
ai
4 = bi4. So, it holds that L.valk′ = V.valk′ = V.valk = ai

4.
Thus, it follows from the object’s specification that L.valk =
bi4 = V.valk. Further, we have L.retk = true as L.valk′ = ai

4.
Case 3a: Consider the point LPk′ when the value V.seqk−2

was written to V.seq for the first time. As V.seqk is even by
Lemma 1, it follows from Lemma 9 that LPk′ is a linearization
point or the initialization point. Using definition of Case 3a,
LPk is the first point when the value V.seqk was written to the
field V.seq . So, we have V.seq i5 = V.seqk′ . Thus, it holds that
V.val i5 = V.valk′ by Lemma 7. Therefore, V.val i5 = L.valk′

as L.valk′ = V.valk′ by induction hypothesis. Using definition
of Case 3a, it also holds that ai

4 = V.val i5. Thus, we have
ai
4 = L.valk′ and L.valk = bi4.

Now, assume that the instruction at LPk was executed by
a process j. Using definition of Case 3a, we have i = pid j

15.
As LPk is the first time when the value of V.seq is V.seqk =
V.seq i5 + 2, we conclude that the process i is not finished until
LPk by using Lemma 4. As seqj15 = V.seqk = V.seq i5 + 2,
it is true that some process i′ has V.seq i

′

5 = V.seq i5 and that
the process executed Line 13 until LPk. As i = pid j

15, the
process i′ = i. Moreover, the process i did this during the call
corresponding to the linearization point LPk as it follows from
Lemma 4 that there is a unique call for any process h given
a fixed value of V.seqh5 . Thus, the process i already executed
Line 11 with bi4 as the value of the second field. This field has
not changed as the call by process i is not finished until LPk.
So, we have val j16 = bi4 and that V.valk = bi4 as well. Because
ai
4 = L.valk′ as shown before, we also have L.retk = true .

Case 3b: Let LPk′ be the first point when the value V.seqkis
written to V.seq (LPk′ is just before the point LPk as defined
by Case 3b). Let i and j be the processes that execute the
calls corresponding to the points LPk and LPk′ respectively.
By definition of Case 3b, we have V.seq i5 = V.seqk′ − 2. As
process j wrote V.seqk′ to V.seq , we have V.seqj5 = V.seqk′−
2 as well. So, we have V.val i5 = V.val j5 using Lemma 7.
Using definition of Case 3a and Case 3b, respectively, we have
aj
4 = V.val j5 6= bj4 and ai

4 = V.val i5. So, we have ai
4 6= bj4 .

We have bj4 = L.valk′ as argued in the previous case, so
L.valk = L.valk′ . By induction hypothesis, we have L.valk′ =
V.valk′ . Moreover, there are no operations after LPk′ and until
LPk by definition of Case 3b. So, we have V.valk′ = V.valk
and thus L.valk = V.valk. Also, we have L.retk = false as
ai
4 6= bj4 = L.valk′ .

Lemma 12. If the kth linearization point for k ≥ 1 corre-
sponds to a finished call by a process i, then the value returned
by the call is L.retk.

Proof: Say the kth linearization point is a Case 1 point.
Using its definition, the value returned by the corresponding call
is false as the condition in Line 6 holds true. Using Lemma 11,
we have L.retk = false as well for Case 1. Next, assume that
the kth linearization point is a Case 2 point. Then, the value
returned by the corresponding call is true as the condition
in Line 8 is true by definition. Using Lemma 11, we have
L.retk = true as well for Case 2.

Now, consider that the kth linearization point is a Case 3a
point. Say that the process j executes the operation at the
linearization point. As pid j

15 = i by definition of Case 3a,
the process i already executed Line 13 with the first field
as V.seqk − 1. So, the process i also initialized R[i] to
(cpj

15 | false) in Line 12. Moreover, the process j wrote
the value (cpj

15|true) to R[i] afterwards using a max-write
operation. Thus, the value of R[i].ret after LPk is true . This
field is not changed by i until it returns. And, other processes
only write true to the field. So, the call returns true which is
same as the value of L.retk given by Lemma 11.

Next, consider that the kth linearization point is a Case 3b
point. Let p be the point when the process i initializes R[i] to
a value (x | false) during the call (Line 12). Consider a process
j that tries to write true to R[i].ret after p (by executing
Line 18). So, it holds that pid j

15 = i and that seqj15 is even.
Now, we consider three cases depending on the relation between
seqj15 and V.seqk. First, consider that seqj15 > V.seqk. As
pid j

15 = i and seqj15 is even, we have V.seq i5 = seqj15 − 2
using Lemma 8. So, we have V.seq i5 > V.seqk − 2. This
cannot happen until i finishes as V.seq i5 = V.seqk − 2 for
the current call by i using definition of Case 3b. Second,
consider that seqj15 = V.seqk. Using definition of Case 3b,
there is a process h so that pidh

15 6= i and seqh15 = V.seqk.
As seqj15 = V.seqk by assumption, we have pid j

15 6= i using
Lemma 6. This contradicts our assumption that pid j

15 = i.
Third, consider that seqj15 < V.seqk. As pid j

15 = i and seqj15
is even, we have V.seq i5 = seqj15 − 2 using Lemma 8. So, we
have V.seq i5 < V.seqk − 2. This corresponds to a previous call
by the process i as V.seq i5 = V.seqk − 2 for the current call
by i. So, it holds that caj

16 < x and execution of Line 18 has
no effect. Thus, the process i returns false for Case 3b which
matches the L.retk value given by Lemma 11.

If the kth linearization point is a Case 4 point, then we
know from Lemma 4 that the call is unfinished and we need
not consider it.

We can now state the following main theorem about
Algorithm 1.

Theorem 1. Algorithm 1 is a wait-free and linearizable
implementation of the compare-and-set register where both
the compare-and-set and read functions take O(1) steps.

Proof: We conclude that the compare-and-set function as
given by Algorithm 1 is linearizable by using Lemma 5 and

Lemma 12. The read operation is linearized at the point of
execution of Line 2. Clearly, this is within the duration of the
call. To check the return value, let LPk be the linearization
point of the read operation and LPk′ be the linearization
point previous to LPk. Then, we have V.valk = V.valk′ using
Lemma 10. So, it holds that V.valk = L.valk′ using Lemma 11.
Moreover, both the compare-and-set and read functions end
after executing O(1) steps and the implementation is wait-free.

VII. CONSENSUS NUMBERS

In this section, we prove that each of the max-write and
the half-max instructions has consensus number one. Note that
these are two separate claims. One, that it is impossible to
solve consensus for two processes using read-write registers
and registers that support the max-write and read operation.
Second, that it is impossible to solve consensus for two
processes using read-write registers and registers that support
the half-max and read operation. Trivially, both operations can
solve binary consensus for a single process (itself) by just
deciding on the input value. To show that these operations
cannot solve consensus for more than one process, we use an
indistinguishability argument.

First, we define some terms. A configuration of the system
is the value of the local variables of each process and the value
of the shared registers. The initial configuration is the input
0 or 1 for each process and the initial values of the shared
registers. A configuration is called a bivalent configuration if
there are two possible executions starting from the configuration
so that in one of them all the processes terminate and decide
0 and in the other all the processes terminate and decide 1. A
configuration is called 0-valent if in all the possible executions
starting from the configuration, the processes terminate and
decide 0. Similarly, a configuration is called 1-valent if in all
the possible executions starting from the configuration, the
processes terminate and decide 1. A configuration is called a
univalent configuration if it is either 0-valent or 1-valent. A
bivalent configuration is called critical if the next step by any
process changes it to a univalent configuration. Consider an
initial configuration in which there is a process X with the
input 0 and a process Y with the input 1. This configuration is
bivalent as X outputs 0 if it is made to run until it terminates
and Y outputs 1 if it is made to run until it terminates. As the
terminating configuration is univalent, a critical configuration
is reached assuming that the processes solve wait-free binary
consensus.

Assume that the max-write operation can solve consensus
between two processes A and B. Then, a critical configuration
C is reached. Without loss of generality, say that the next
step sa by the process A leads to a 0-valent configuration
C0 and that the next step sb by the process B leads to a 1-
valent configuration C1. In a simple notation, C0 = Csa and
C1 = Csb. We have the following cases.

1) sa and sb are operations on different registers: The config-
uration C0sb is indistinguishable from the configuration
C1sa. Thus, the process B decides the same value if it

runs until termination from the configurations C0sb and
C1sa, a contradiction.

2) sa and sb are operations on the same register and at
least one of them is a read operation: Without loss of
generality, assume that sa is a read operation. Then, the
configuration C0sb is indistinguishable to C1 with respect
to B as the read operation by A only changes its local
state. Thus, the process B decides the same value if it
runs until termination from the configurations C0sb and
C1, a contradiction.

3) sa and sb are write operations on the same register:
Then, the configuration C0sb is indistinguishable from the
configuration C1 as sb overwrites the value written by sa.
Thus, the process B will decide the same value if it runs
until termination from the configurations C0sb and C1, a
contradiction.

4) sa and sb are max-write operations on the same register
R: Say that the arguments of these operations are a |x and
b | y for A and B respectively. Without loss of generality,
assume that b ≥ a. Then, there are following two cases.

a) Operation sb does not modify the register R. Thus,
operation sa will also leave it unchanged as b ≥ a. Also,
the contents of R in C1sa is same as in C0 because sb
did not modify R by assumption. So, the configuration
C1sa is indistinguishable from the configuration C0

with respect to A and it will decide same value if
run until termination from the two configurations, a
contradiction.

b) Operation sb modifies the register R. In this case, the
configurations C0sb is indistinguishable from C1 as
b ≥ a and the operation sb will overwrite both the fields
of the register R. Thus, the process B will decide the
same value from these configurations, a contradiction.

So, the critical configuration cannot be reached and the
processes A and B cannot solve consensus using the max-
write instruction. Thus, its consensus number is one.

For the half-max instruction, we do a similar case analysis.
The first three cases are the same as in the case of max-write
instruction. For the last case, assume that sa and sb are half-max
operations on the same register R. Say that the argument of
these operations are a and b for processes A and B respectively.
Assume without loss of generality that b ≥ a. Say that (v|w)
is the value of register R in C. Then, the value of R in both
the configurations C0sb and C1 is (max{v, b}|w) whether or
not B modifies R in sb. So, B will decide the same value if
run until termination from these configurations, a contradiction.
Thus, the critical configuration cannot be reached and the
processes A and B cannot solve consensus using the half-max
instruction. Thus, its consensus number is one as well.

VIII. EXTENSIONS

In this section, we discuss couple of extensions of the
previous algorithm. First, we note that the compare-and-set
instruction returns either true or false depending on whether
the value is updated or not. Instead, one may want to return the
value of the register prior to the application of the instruction.

This is also known as the compare-and-swap operation. The
presented algorithm can be easily modified to accommodate
this requirement. The algorithm just needs to return the value
val read from the register V at the start of the operation. Thus,
we have the following corollary.

Corollary 1. There is a wait-free and linearizable implemen-
tation of the compare-and-swap register using elementary
instructions so that both the compare-and-swap and read
functions take O(1) steps.

Second, the algorithm that we presented simulates a single
compare-and-set register using O(n) registers that support the
half-max, max-write, read and write instructions. If m compare-
and-set registers are to be simulated, then a straightforward
approach requires O(mn) registers. However, we can improve
this if we observe that there is at most one pending operation
per process even if m compare-and-set registers have to be
simulated. The arrays A and R store the information about the
latest pending call per process so there is no need to allocate
them for every compare-and-set register. Only the registers P
and V need to be allocated separately. As the counter value c
used in the first half of each entry of array A or R is always
increasing, we will be conceptually running m instances of
the presented algorithm using O(m + n) registers. Actually, if
one observes closely, the three fields used in the register P
are useful only when multiple compare-and-set registers are
implemented. Otherwise, we can use a single counter replacing
both c and seq . So, we also have the following corollary.

Corollary 2. There is a wait-free and linearizable implementa-
tion of m compare-and-set registers using O(n + m) registers
supporting elementary instructions so that both the compare-
and-set and read functions take O(1) steps.

IX. THROUGHPUT

In this section, we analyze the throughput of compare-and-
set versus half-max and max-write in a highly concurrent
setting. We assume that there are n processes in the system
that communicate to the memory via an interconnect. We
compare the throughput of the following two scenarios.

1) Each process executes a sequence of m compare-and-set
operations to the same memory location.

2) Each process executes a sequence of operations so that a
read operation alternates with either max-write or half-max
to the same memory location. The number of non-read
operations is m for each process.

In the second scenario, we assume that a process executes a
read operation after each of the elementary operations as they
do not return a value in our case. We assume that a batch of
instructions — at most one instruction from each process —
can enter the interconnect in each step for updating the memory.
The interconnect takes tb steps to process a batch of instructions.
We call an instruction as compact if the corresponding function
satisfies the following: given any sequence S of function calls,
there is a smaller sequence S′ of function calls from S and

having the same effect as the sequence S. Thus, we have the
following result.

Lemma 13. Half-max and max-write are compact instructions
whereas compare-and-set is not.

Proof: Consider a sequence S of half-max operations. We
consider a smaller sequence S′ so that an operation with the
largest argument, say half-max(l), is in S′. Let the current
value of the register be (a|b). Thus, applying the sequence S
or S′ results in the same value (max{a, l}, b) of the register.

Consider a sequence S of max-write operations. Let
max-write(l |w) be the last operation in S with the largest
value of the first argument. We construct a smaller sequence
S′ where max-write(l |w) is the last operation with the value
l as the first argument. Let the current value of the register
be (a|b). If l ≥ a, then applying the sequence S or S′ results
in the same final value (l|w) as l is the largest value of the
first argument and max-write(l |w) is the last operation in S
or S′ with l as the first argument. If l < a, then neither the
operations in S or S′ change the value of the register as the
first argument of all the operations is strictly smaller than a.

Consider a set S of compare-and-set operations so that all the
2|S| arguments of the operations are unique values. Assume for
contradiction that compare-and-set is compact. Then, there is a
smaller sequence S′ that has the same effect as the sequence S.
So, there is a compare-and-set operation that is in the sequence
S but not in the sequence S′. Let (af , bf) be the argument of
that operation. If the current value of the register is af , then
applying the sequence S results in the final value bf , since
all the argument values are unique and consequently, all the
operations before and after the one with the argument (af , bf)
are unsuccessful. However, applying the sequence S′ does not
change the value of the register as none of those operations
have first argument as af . So, the final value remains af 6= bf ,
a contradiction.

Say that the underlying interconnect is such that the time
tb to process a batch of instructions is composed of stages,
where the batch size decreases in subsequent stages and the
stages are pipelined. We define the concurrent throughput of
compare-and-set as the average number of instructions that
are processed and applied to the memory in a single step
of the first scenario. Similarly, the concurrent throughput of
half-max and max-write is the average number of instructions
that are processed and applied to the memory in a single step
of the second scenario. The following theorem quantifies the
concurrent throughput of the instructions.

Theorem 2. The concurrent throughput of compare-and-set
is n

tb
and that of half-max and max-write for a pipelined

interconnect is n
6+tb/m

.

Proof: For compare-and-set, each process executes a
sequence of m operations so a total of mn operations are
executed. However, the next batch of instructions cannot enter
the interconnect unless the current batch of instructions is
processed and the resulting value is returned since compare-
and-set is not a compact instruction by Lemma 13. Thus, each

batch takes tb steps and mtb steps are taken in total. So, the
throughput is mn

mtb
= n

tb
.

Consider the case of half-max and max-write operations.
Each process executes 2m operations including the read
operations. We divide each batch of instructions to be processed
into three batches so that each batch contains only a single
type of instruction, i.e., read, half-max or max-write. As these
are compact instructions by Lemma 13, the next batch of
instructions can enter the pipeline without waiting for the
current batch of instructions to finish processing. Thus, the
total number of steps to process all the mn non-read operations
is 3 · 2m + tb. So. the throughput is mn

6m+tb
= n

6+tb/m
.

If m >> n, then the throughput values are approximately n
6

for the elementary instructions versus n
tb

for compare-and-set,
which is lower by a factor of tb

6 . The quantity tb is usually
proportional to the number of processes for current systems
[15].

X. CONCLUSION

One issue with the presented algorithm is that it uses
unbounded sequence numbers. Thus, the algorithm only works
if the size of the registers is at least logarithmic in the total
number of compare-and-set operations executed. Actually, the
growth in sequence numbers can be much slower as out of the
two unbounded counter types, one of them counts the total
number of compare-and-set operations executed per process and
the other one counts the total number of successful compare-
and-set operations only. We still think that the result helps us
to understand the capability of a set of elementary instructions
with respect to their ability to efficiently simulate compare-
and-set.

Using our result, one can transform any O(T) step algorithm
that uses compare-and-set and read-write registers into an
O(T) step algorithm that uses reasonably large registers and
support the instructions half-max, max-write, read and write.
As the transformation is wait-free, it even works for algorithms
that are not wait-free. But, is it also true that any O(T)
step algorithm using registers that support half-max, max-
write, read and write instructions can be transformed into
an O(T) step algorithm using compare-and-set and read-write
registers? There is an Ω(log n) lower bound [16] on information
aggregation among n processes which applies to compare-and-
set and read-write registers but not to registers that support
half-max, max-write, read and write instructions. Thus, it may
be possible that there are tasks that take o(log n) steps using
max-write, half-max, read and write registers but Ω(log n)
steps using compare-and-set and read-write registers. Simple
max registers were introduced in [17], [18] and were used
to build a wait-free implementation of any monotone circuit,
which is a generalization of a non-decreasing function on a
single input to a function that transforms multiple inputs into
a single output in stages and in a non-decreasing fashion.

There are other practical factors too other than step com-
plexity and number of shared registers used. For example, the
half-max and the max-write operations do not return a value.
Thus, they can spend lesser time in traversing the interconnect

and have lesser latency. In this paper however, we show that a
set of two elementary instructions can be at least as good as
compare-and-set with respect to step complexity, the number
of shared registers used and also the throughput in a highly
concurrent setting. This highlights the capability of a set of
elementary instructions and shows another aspect in choosing
the best synchronization instructions to support in general.

REFERENCES

[1] M. Herlihy, “Wait-free Synchronization,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 1991.

[2] F. Ellen, R. Gelashvili, N. Shavit, and L. Zhu, “A Complexity-Based
Hierarchy for Multiprocessor Synchronization: [Extended Abstract],” in
Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing (PODC), Chicago, IL, USA, Jul 2016.

[3] E. Ruppert, “Determining Consensus Numbers,” in 16th Annual ACM
Symposium on Principles of Distributed Computing (PODC), Santa
Barbara, California, Aug 1997.

[4] R. Gelashvili, I. Keidar, A. Spiegelman, and R. Wattenhofer, “Brief
Announcement: Towards Reduced Instruction Sets for Synchronization,”
in 31st International Symposium on Distributed Computing (DISC),
Vienna, Austria, Oct 2017.

[5] P. Jayanti, “On the robustness of Herlihy’s hierarchy,” in 12th Annual
ACM Symposium on Principles of Distributed Computing (PODC), Ithaca,
New York, Aug 1993.

[6] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[7] T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg, “Wait-freedom
vs. t-resiliency and the robustness of wait-free hierarchies (extended
abstract),” in 13th Annual ACM Symposium on Principles of Distributed
Computing (PODC), Los Angeles, California, Aug 1994.

[8] P. Khanchandani and R. Wattenhofer, “On the Importance of Synchro-
nization Primitives with Low Consensus Numbers,” in 19th Interna-
tional Conference on Distributed Computing and Networking (ICDCN),
Varanasi, India, Jan 2018.

[9] P. Jayanti and S. Petrovic, “Efficient and Practical Constructions of LL/SC
Variables,” in 22nd Annual Symposium on Principles of Distributed
Computing (PODC), Boston, Massachusetts, 2003 Jul.

[10] M. M. Michael, “Practical Lock-Free and Wait-Free LL/SC/VL Imple-
mentations Using 64-Bit CAS,” in 18th International Symposium on
Distributed Computing (DISC), Amsterdam, Netherlands, Oct 2004.

[11] P. Jayanti and S. Petrovic, “Logarithmic-Time Single Deleter, Multiple
Inserter Wait-Free Queues and Stacks,” in 25th International Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), Hyderabad, India, Dec 2005.

[12] W. Golab, V. Hadzilacos, D. Hendler, and P. Woelfel, “Constant-RMR
Implementations of CAS and Other Synchronization Primitives Using
Read and Write Operations,” in 26th Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC), Portland,
Oregon, Aug 2007.

[13] F. Ellen and P. Woelfel, “An Optimal Implementation of Fetch-and-
Increment,” in 27th International Symposium on Distributed Computing
(DISC), Jerusalem, Israel, Oct 2013.

[14] P. Khanchandani and R. Wattenhofer, “Brief Announcement: Fast Shared
Counting using O(n) Compare-and-Swap Registers,” in ACM Symposium
on Principles of Distributed Computing (PODC), Washington, DC, USA,
Jul 2017.

[15] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always
wanted to know about synchronization but were afraid to ask,” in 24th
ACM Symposium on Operating System Principles (SOSP), Farminton,
Pennsylvania, Nov 2013.

[16] P. Jayanti, “A Time Complexity Lower Bound for Randomized Imple-
mentations of Some Shared Objects,” in 17th Annual ACM Symposium on
Principles of Distributed Computing (PODC), Puerto Vallarta, Mexico,
Jun 1998.

[17] J. Aspnes, H. Attiya, and K. Censor, “Max Registers, Counters, and
Monotone Circuits,” in Proceedings of the 28th ACM symposium on
Principles of Distributed Computing (PODC), Calgary, AB, Canada,
Aug 2009.

[18] J. Aspnes, H. Attiya, and K. Censor-Hillel, “Polylogarithmic Concurrent
Data Structures from Monotone Circuits,” Journal of the ACM, 2012.

	Introduction
	Related Work
	An Overview of the Method
	Model
	Algorithm
	Analysis
	Consensus Numbers
	Extensions
	Throughput
	Conclusion
	References

