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ABSTRACT
The Bitcoin LightningNetwork is a layer 2 protocol designed to facil-
itate fast and inexpensive Bitcoin transactions. It operates by estab-
lishing channels between users, where Bitcoin is locked and trans-
actions are conducted off-chain until the channels are closed, with
only the initial and final transactions recorded on the blockchain.
Routing transactions through intermediary nodes is crucial for
users without direct channels, allowing these routing nodes to col-
lect fees for their services. Nodes announce their channels to the
network, forming a graph with channels as edges. In this paper, we
analyze the graph structure of the Lightning Network and inves-
tigate the statistical relationships between node properties using
machine learning, particularly Graph Neural Networks (GNNs). We
formulate a series of tasks to explore these relationships and provide
benchmarks for GNN architectures, demonstrating how topological
and neighbor information enhances performance. Our evaluation
of several models reveals the effectiveness of GNNs in these tasks
and highlights the insights gained from their application.

1 INTRODUCTION
Bitcoin is a digital currency that relies on a distributed ledger known
as the blockchain. This peer-to-peer network communicates via
gossip messages and operates without a central intermediary. To
ensure the security and integrity of transactions, the protocol uses
Proof of Work as Sybil resistance. Miners, i.e., the block builders,
are tasked with solving complex cryptographic puzzles to append
new blocks to the blockchain.

Traditional centralized payment providers, e.g., Visa, can process
tens of thousands of transactions per second. In contrast, Bitcoin
is limited by its block size and average block time, which restricts
its throughput to 3-10 transactions per second [2]. Theoretically,
these parameters can be adjusted to achieve higher throughput and
lower latency. However, this would increase the bandwidth and
hardware requirements for network participants and negatively
impact the network’s consistency, i.e., the guarantee that all honest
parties output the same sequence of blocks. This trade-off presents
a significant challenge for scaling Bitcoin to meet the demands of a
global payment system.

The limited transaction throughput of Bitcoin leads to longer
confirmation times and higher transaction fees, particularly during
periods of high network activity. Thus, a scalable solution is needed
to make Bitcoin practical for everyday use. Fundamentally, Bitcoin’s
scalability issue arises because every transaction is broadcast to the
entire network, and each transaction’s validity must be individually
verified by all participants. This decentralized verification process
is inherently inefficient for high-frequency transaction processing.

Layer-2 protocols, such as the Lightning Network, are designed
to address this scalability problem. The key insight behind these
protocols is that not all network participants need to be informed

about and validate every transaction. The Lightning Network op-
erates on the basis of payment channels. Two parties can open a
payment channel by spending a certain amount of Bitcoin in a joint
transaction called the funding transaction. Within this channel,
they can conduct an unlimited number of transactions without
immediately recording them on the blockchain. Only the funding
transaction and the channel’s closing transaction are recorded on
the blockchain. These two on-chain transactions also enable the
linking of payment channels to Bitcoin transactions and addresses.

The Lightning Network significantly reduces transaction fees
and enables near-instant transactions since payments do not need
to be confirmed by the Bitcoin blockchain. Another advantage is
scalability; because most transactions occur off-chain, the Lightning
Network can handle a substantially higher number of transactions
per second. The complete details of a payment made through a
channel are known only to the sender and receiver, offering greater
privacy compared to on-chain transactions.

Payment channels can be announced to the entire Lightning
Network via gossip messages, allowing transactions between nodes
that are not directly connected by a payment channel. The Light-
ning Network uses source routing based on the sender’s local view
of the network topology. However, routing is based on imperfect
information because the current balances of channels (i.e., the dis-
tribution of capacity between two nodes) are not publicly available.
This increases privacy but impacts routing efficiency. Moreover,
not all payment channels are announced to the network; private
channels exist, and little is known about their behavior and charac-
teristics. Private channels add another layer of complexity to the
network, making it challenging to obtain a complete picture of the
network’s topology and performance.

Machine learning techniques offer a promising approach to gain-
ing deeper insights into the Lightning Network. For instance, a
model capable of predicting channel balances could enhance rout-
ing efficiency.

In this work, we present a benchmark based on Lightning Net-
work data, demonstrating that the network’s topological informa-
tion can indeed be leveraged to predict certain properties.

The Lightning Network can be interpreted as a graph, where the
nodes of the Lightning Network are the vertices, and the payment
channels are the edges of the graph. Various tasks can be defined on
this graph, including regression and classification tasks at both the
vertex and edge levels. As we demonstrate, Graph Neural Networks
(GNNs) are particularly well-suited for solving these tasks. We show
that GNNs can effectively utilize the topological information of the
network to make predictions.

2 RELATEDWORK
The topology of the Lightning Network has been analyzed in several
studies. For instance, Zabka et al. [17] and Seres et al. [10] have
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Figure 1: Channel Updates

examined its structural properties and centrality measures. Gossip
messages within the Lightning Network were utilized by Zabka et
al. [16] to determine the implementation of Lightning nodes.

Romiti et al. [9] demonstrated that the interconnection between
the Lightning Network and the Bitcoin Network could be exploited
to cluster Bitcoin addresses and link them to IP addresses. Addi-
tionally, Herrera-Joancomarti et al. [5] proposed a technique for
discovering the balance of a Lightning channel. The application
of machine learning techniques to predict channel balances was
investigated by Vincent et al. [12]. A dataset that links on-chain
and off-chain data was presented by Wang et al. [13]. Specifically,
data from Ethereum and Twitter were linked.

3 BENCHMARK INTRODUCTION
3.1 Gossip Messages
Nodes in the Lightning Network use a gossip message protocol to
exchange information about existing channels, facilitating pathfind-
ing across various channels not directly operated by their own node.
Through these gossip messages, information about the network’s
topology and details about individual nodes and channels are ex-
changed among the nodes. A Channel Announcement message
informs the network about a new channel. It includes the signatures
of both nodes involved, serving as proof that they agree on the
creation of the channel within the public network. Additionally, it
contains the Channel ID, which can be used to locate the on-chain
funding transaction and thus determine the channel’s capacity.

With Node Announcement messages, the nodes communicate
at which address they can be reached. In addition, nodes indicate
which features of the network the node supports and can also
specify metadata such as an alias that can be freely selected by the
node.

A Channel Announcement alone is not sufficient for a chan-
nel to be used for routing in the Lightning Network. Only when
both nodes involved in a channel publish details about the channel
through channel updates does it become operational for routing.
These Channel Updates communicate, among other things, the
fees a node charges for routing through the channel. Additionally,
they specify the minimum and maximum payment amounts that
can be routed through the channel. The details of the channels can

be regularly updated to reflect changes in the network topology or
to adjust fees to remain attractive in path selection.

3.2 Data Collection
Since historical gossip messages are not stored on the blockchain,
we have to rely on a source that has explicitly logged this data. By
default, old gossipmessages are also not stored by the nodes because
they are replaced by newer messages and are not necessary for the
functioning of the Lightning Network or the operation of a node.
Our dataset is based on the Lightning Network Research Topology
Dataset [3], which synchronized and stored gossip messages from
the perspective of several nodes to achieve comprehensive coverage
of the actual network.

Figure 1 shows the number of channel update messages over
time. Noticeable are the gaps; during these periods, data logging
did not function correctly. The red lines in the plot indicate the
snapshots of the Lightning Network that we have chosen. These
snapshots ensure that the gaps do not impact our dataset.

Additionally, we have extended the Lightning Network data.
Using the IP addresses that nodes share in the Gossip Messages,
we added location information for nodes that provided a valid IP
address. For mapping IP addresses to locations, we used ipinfo.io.
Moreover, we linked the Lightning Network data with blockchain
data. For each channel, we added the capacity by referencing the
funding transaction on the Bitcoin blockchain.

3.3 Dataset
2019-10 2020-09 2021-06 2022-04 2023-06

nodes 4,740 5,990 10,835 18,746 15,287
edges 51,414 52,187 81,389 151,092 116,067
avg. degree 10.85 8.71 7.51 8.06 7.59
weakly cc 4 9 35 76 29
diameter 7 8 9 9 9

Table 3.3 shows an overview and important properties of the
graphs of our dataset at the respective points in time. Whereby
for all snapshots over 99% of the nodes are in the largest weakly
connected component. The fact that there are several connected
components does not have a significant influence on the perfor-
mance of the models, because the other connected components are
negligible compared to the largest connected component.

In this section, we aim to provide a detailed description of all
the features used in the benchmark:

• CLTV Expiry Delta the CLTV (Check Lock Time Verify) ex-
piry delta is the number of blocks a node can wait before the
node risks losing BTC in the event of a delayed transaction
on the Lightning Network.

• MinimumHTLC is the minimum value in millisatoshis per
HTCL (Hashed Timelock Contract) that can be routed via
this channel.

• Maximum HTLC is the maximum value in millisatoshis
per HTCL that can be routed via this channel.

• Base Fee is the fixed amount in millisatoshis charged by a
node for forwarding a payment, regardless of the payment
size.
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• Proportional Fee is the amount in millisatoshis charged by
a node for forwarding a payment, per transferred Satoshi.

• RGB Color This value can be freely selected by each node.
The value is not relevant for the protocol itself but can be
used to visualize the network. Since different implementa-
tions of the LightningNetwork software have varying default
RGB color values, these values can offer insights into the
specific implementation a node might be using.

• Country The country of a node can be identified if the node
provides an IP address via gossip messages.

• Capacity in mBTC is the amount with which a channel is
created on-chain through a funding transaction. This value,
therefore, indicates the size of the channel but does not
indicate the current distribution of capacity between the two
nodes involved in a channel.

In summary, CLTV Expiry Delta, Minimum HTLC, Maximum
HTLC, Base Fee, and Proportional Fee are channel values that can be
extracted from the Lightning gossip messages. The capacity is also
a value that relates to a channel but is extracted from the Bitcoin
blockchain. The country and the RGB color value are properties of
the nodes and can be extracted from gossip messages or, in the case
of the country, derived from the IP address using additional data
sources. There are also additional features that can be extracted
from the gossip messages. However, we have deliberately limited
our focus to these features because they are particularly informative
and facilitate a straightforward interpretation of the tasks, even
without detailed knowledge of the exact mechanics of the Lightning
Network.

4 BENCHMARK EVALUATION
We evaluated different models for each task, including graph con-
volution network [7], graph attention network [11], graph isomor-
phism network [14], the modified graph isomorphism network ca-
pable of incorporating edge features [6], and a variant where edge
features are concatenated with the embeddings of the involved
nodes only after the final message passing layer. Additionally, we
included the GraphSAGE network [4] and residual gated graph
ConvNets[1]. Furthermore, we evaluated Graph Transformer mod-
els from the GRAPHGPS [8] framework.

As a baseline, we used anMLPmodel, and for tasks utilizingmean
absolute error (MAE) as a criterion, we also employed the median as
a naive predictor. The evaluation was conducted on a fixed 10/20/70
validation/test/train split, with three runs using different seeds.
Due to the number of different models, tasks, and snapshots of the
data, we did not perform an exhaustive search for hyperparameters.
Instead, we conducted a controlled random search using GraphGym
[15] and the recommended design dimensions. For all tasks, the
performance of the GNN models is better than the baseline.

4.1 Tor Classification
The Lightning Network supports both IP addresses and Tor ad-
dresses. Figure 2 illustrates this, with the number of nodes using
an IP address depicted in blue and the number of nodes exclusively
using a Tor address shown in orange. The data reveal a notable
increase over time in the number of nodes that exclusively use a
Tor address in our snapshots. The hypothesis for the task is that

Figure 2: Node Address

Figure 3: Tor Classification

nodes that only specify a Tor address are particularly interested
in privacy and can be distinguished from nodes that specify an
IP address based on their behavior and topology in the Lightning
Network.

Figure 3 shows the performance of the models for this task using
the AUROC score as the criterion. We observe that the models can
indeed distinguish nodes that exclusively provide a Tor address
from those that provide an IP address. GNNs that utilize edge fea-
tures performed slightly better than GNNs without edge features
across all snapshots. Among the models with edge features, Gat-
edGCNConv was the best model for all snapshots, while among
the models without edge features, GINConv consistently had the
best performance except for the snapshot from June 2021, where
GATConv performed slightly better

4.2 Capacity Regression
Figure 4 illustrates the distribution of channel capacities at our
earliest (left) and latest (right) snapshots. The average capacity was
0.0231 BTC at the earliest snapshot and increased to 0.0609 BTC
at the latest snapshot. This indicates that the capacity of channels
has grown over time. However, the majority of channels still have
a capacity of less than 0.1 BTC, with 94.62% at the earliest snapshot
and 89.97% at the latest snapshot.

Figure 5 shows the MAE for various models across different
snapshots. The capacity and consequently the MAE are given in
mBTC (1 BTC = 1000 mBTC). We observe that the MAE increased
over time, which can be explained by the rise in the average capacity
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Figure 4: Capacity Distribution

Figure 5: Capacity Regression

and the expanding range of capacity values. Furthermore, we note
that the GNN models utilizing edge features perform better across
all snapshots compared to those without edge features. Except for
the earliest snapshot, the best-performing GNNmodel without edge
features was consistently GINConv, while for the first snapshot,
GraphSAGE performed slightly better. The best performance for
GNN models using edge features was predominantly delivered by a
GPS model with GatedGCN and Laplacian as positional encodings.
However, for the first snapshot, the GPS model with random-walk
structural encoding performed better, and for the second snapshot,
GINConv with edge features concatenated after the last message
passing layer was superior.

4.3 Base Fee Regression

Figure 6: Base Fee Regression

The base fee influences routing within the Lightning Network.
Our observations indicate that extremely high base fee values oc-
casionally occur. The network’s specifications allow for a base fee
value of type uint32. In some cases, even the maximum value of
uint32 was used, which would make transactions through these
channels significantly more expensive than regular Bitcoin trans-
actions. We exclude channels with extremely high base fees as
they are irrelevant for routing. However, over 99% of channels are
retained in all snapshots.

Figure 6 displays the MAE in millisatoshis for the prediction
of the base fee. Across all snapshots, the GINConv model without
edge features performed the best. Among the models with edge
features, a GINConv model where edge features were added after
the last message-passing layer performed the best for the first four
snapshots. In the final snapshot, a GatedGNCConv model had the
best performance.

4.4 Proportional Fee Regression
Similar to the base fee, the proportional fee also influences rout-
ing within the Lightning Network. We have observed issues with
high values here as well and have filtered out these extreme cases.
Nevertheless, over 99% of channels are still included in this scenario.

Figure 7 shows the performance of the models measured in
MAE in millisatoshis. Similar to the prediction of the base fee, the
performance of GINConv models is particularly good here. Only in
the first snapshot was a GraphSAGE model slightly better. Among
the models with edge features, a GINConv model with edge features
was the best in all snapshots.

Figure 7: Proportional Fee Regression

4.5 Maximum HTLC Regression
The HTLC maximum value can be freely chosen by nodes for each
channel but must not exceed the channel’s capacity. In our dataset,
it is observed that the HTLC maximum value is predominantly very
close to the channel’s capacity. Therefore, the distribution of HTLC
maximum values is quite similar to the distribution of capacity
values. Consequently, the model performance is similar to that in
(4.2) capacity regression.

Figure 8 shows the MAE for different snapshots and models.
For better comparability with section 4.2, the HTLC maximum
values and thus the MAE are given in mBTC. For the first three
snapshots, GINconv was the best-performing model without edge
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features, whereas for the last two snapshots, GraphSAGE performed
slightly better. Among the models utilizing edge features, the GPS
model with GatedGCNConv and Laplacian encoding showed the
best performance for the last two snapshots. A GINconv model,
which adds edge features after the message-passing layer, had the
best performance for the earliest snapshot, while GatedGCNconv
performed best for the snapshots in 2020-09 and 2021-06.

Figure 8: Maximum HTLC Regression

4.6 Link Prediction
In this task, the goal is to predict whether a channel exists between
two nodes. For our ground truth, we limit ourselves to public chan-
nels. However, good models could potentially be used in the future
to find candidates for private channels.

Figure 9 shows the accuracy achieved by the models in this task.
Notably, the models with edge features perform worse than those
without.

The highest accuracy for models with edge features was achieved
by a GatedGCNconv model for all snapshots. Without edge fea-
tures, the performance was best for the first three snapshots with a
GraphSAGE model and for the remaining snapshots with a GIN-
Conv model.

Figure 9: Link Prediction

5 CONCLUSION
In conclusion, we have linked Lightning Network data with Bitcoin
data and demonstrated that this combined dataset is well-suited as
a benchmark for Graph Neural Networks. We defined and evaluated
various tasks, including regression and classification at both vertex
and edge levels. Our findings indicate that GNNs can effectively
leverage topological and neighborhood information to enhance per-
formance in these tasks. The diversity of tasks and the real-world
data from a payment network make this benchmark particularly
well-suited for testing and comparing different GNN models. More-
over, robust models developed through this benchmark could pro-
vide deeper insights into the dynamics of the Lightning Network
in the future.
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A APPENDIX
The following tables provide the results for the tasks described in the paper. Each entry includes the model’s performance and the standard
deviation.

2019-10 2020-09 2021-06 2022-04 2023-06
Model MAE MAE MAE MAE MAE

GPS + GatedGCNConv w/ LapPE 14.378±0.100 16.750±0.038 17.880±0.220 23.605±0.407 33.349±0.055
GPS + GatedGCNConv w/ RSWE 14.230±0.169 16.875±0.045 18.196±0.309 24.118±0.315 33.811±0.575
GPS + GINE w/ RSWE 14.551±0.114 16.808±0.118 18.143±0.205 24.160±0.147 34.500±0.172
GATConv 15.890±1.063 18.763±0.944 20.803±0.653 27.781±0.798 36.009±0.246
GatedGCNConv 17.489±0.525 20.708±0.581 22.174±0.202 29.270±0.092 38.671±0.427
GCNConv 15.332±0.245 18.318±0.479 20.185±0.794 28.153±0.278 36.691±0.823
GINConv 14.789±0.368 16.558±0.620 18.920±1.007 26.918±0.822 34.207±0.307
GINConv w/ Edge Features 14.339±0.132 16.178±0.263 18.882±0.572 26.022±0.685 34.592±1.231
GINEConv 19.973±0.036 24.284±0.927 23.553±0.211 30.819±0.411 43.786±0.484
MLP 18.921±0.162 23.324±0.150 24.297±0.038 33.202±0.017 45.117±0.085
MLP w/ Edge Features 16.763±0.135 21.142±0.306 22.782±0.032 32.038±0.697 43.349±0.265
GraphSAGE 14.659±0.397 17.061±0.655 19.062±0.450 27.130±0.230 35.564±0.872
Naive 20.8140 25.9383 27.0931 36.3631 50.7388

Table 1: Capacity Regression

2019-10 2020-09 2021-06 2022-04 2023-06
Model MAE MAE MAE MAE MAE

GPS + GatedGCNConv w/ LapPE 13.012±0.106 15.642±0.237 16.166±0.159 23.571±0.302 32.220±0.366
GPS + GatedGCNConv w/ RSWE 13.050±0.047 15.948±0.119 16.563±0.190 24.607±0.386 33.066±0.231
GPS + GINE w/ RSWE 13.377±0.277 16.036±0.223 16.888±0.223 24.579±0.343 33.929±0.369
GATConv 15.115±0.270 17.873±0.150 18.717±0.227 28.264±0.265 38.941±0.847
GatedGCNConv 12.670±0.071 14.120±0.333 15.669±0.183 24.112±0.442 32.522±0.404
GCNConv 14.281±0.180 16.650±0.320 18.617±0.365 27.636±0.060 36.915±0.536
GINConv 13.066±0.187 14.558±0.039 16.152±0.127 25.151±0.315 33.645±0.149
GINConv w/ Edge Features 12.405±0.119 14.558±0.479 16.134±0.576 25.349±0.193 33.845±0.717
GINEConv 19.027±0.297 23.897±0.157 24.004±0.469 31.932±0.414 44.552±0.342
MLP 17.770±0.018 22.192±0.020 23.189±0.022 32.868±0.019 43.868±0.076
MLP w/ Edge Features 16.079±0.086 20.175±0.071 21.690±0.234 31.918±0.141 42.784±0.136
GraphSAGE 13.423±0.163 14.584±0.321 16.178±0.241 24.993±0.422 33.438±0.471
Naive 19.7165 24.8738 25.6508 35.4004 47.5202

Table 2: Maximum HTLC Regression
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2019-10 2020-09 2021-06 2022-04 2023-06
Model Accuracy Accuracy Accuracy Accuracy Accuracy

GPS + GatedGCNConv w/ LapPE 0.723±0.007 0.748±0.019 0.713±0.002 0.758±0.012 0.704±0.008
GPS + GatedGCNConv w/ RSWE 0.716±0.013 0.734±0.003 0.739±0.013 0.765±0.003 0.736±0.001
GPS + GINE w/ RSWE 0.733±0.012 0.732±0.007 0.738±0.008 0.734±0.003 0.734±0.005
GATConv 0.641±0.050 0.642±0.042 0.667±0.039 0.730±0.026 0.651±0.021
GatedGCNConv 0.743±0.002 0.750±0.002 0.755±0.018 0.774±0.005 0.766±0.008
GCNConv 0.764±0.009 0.764±0.009 0.784±0.004 0.795±0.007 0.776±0.003
GINConv 0.761±0.001 0.775±0.005 0.777±0.003 0.790±0.007 0.774±0.004
GINEConv 0.700±0.024 0.687±0.011 0.727±0.005 0.755±0.007 0.737±0.017
MLP 0.627±0.008 0.648±0.005 0.681±0.001 0.668±0.019 0.649±0.013
GraphSAGE 0.793±0.005 0.793±0.009 0.783±0.007 0.774±0.008 0.771±0.007

Table 3: Link Prediction

2019-10 2020-09 2021-06 2022-04 2023-06
Model AUROC AUROC AUROC AUROC AUROC

GPS + GatedGCNConv w/ LapPE 0.632±0.013 0.721±0.005 0.788±0.020 0.864±0.003 0.725±0.013
GPS + GatedGCNConv w/ RSWE 0.700±0.010 0.741±0.002 0.824±0.015 0.881±0.011 0.715±0.010
GPS + GINE w/ RSWE 0.705±0.014 0.761±0.019 0.840±0.003 0.896±0.002 0.757±0.019
GATConv 0.723±0.008 0.795±0.008 0.867±0.007 0.904±0.006 0.782±0.033
GatedGCNConv 0.752±0.012 0.804±0.004 0.876±0.007 0.918±0.001 0.807±0.001
GCNConv 0.728±0.005 0.767±0.007 0.844±0.006 0.897±0.002 0.794±0.004
GINConv 0.737±0.007 0.797±0.006 0.855±0.002 0.907±0.002 0.794±0.007
GINEConv 0.717±0.017 0.764±0.011 0.821±0.006 0.857±0.009 0.772±0.004
MLP 0.621±0.001 0.706±0.002 0.709±0.001 0.798±0.000 0.656±0.000
GraphSAGE 0.714±0.021 0.786±0.010 0.858±0.004 0.897±0.004 0.782±0.003

Table 4: Tor Classification

2019-10 2020-09 2021-06 2022-04 2023-06
Model MAE MAE MAE MAE MAE

GPS + GatedGCNConv w/ LapPE 537.199±49.986 423.320±15.841 620.814±25.198 789.047±49.129 325.947±3.285
GPS + GatedGCNConv w/ RSWE 584.988±16.159 413.693±19.733 651.881±13.142 790.772±49.424 326.789±5.033
GPS + GINE w/ RSWE 566.279±3.424 452.159±21.018 646.356±2.688 978.579±5.791 346.237±6.307
GATConv 475.971±9.179 366.554±14.257 621.617±11.276 991.366±60.510 313.897±18.376
GatedGCNConv 412.994±30.591 306.872±14.778 521.986±11.463 810.773±9.201 218.660±8.609
GCNConv 443.883±3.210 350.189±2.765 589.511±1.946 898.937±7.084 292.707±13.659
GINConv 220.686±25.346 243.477±8.686 416.764±20.211 739.607±15.774 223.311±4.583
GINConv w/ Edge Features 182.940±19.996 268.526±14.195 414.922±13.856 790.090±40.303 232.136±2.961
GINEConv 540.510±7.611 473.277±0.024 792.366±0.001 1155.582±21.106 504.282±1.290
MLP 378.040±45.908 400.791±10.217 601.548±5.009 1089.004±1.040 429.026±0.209
MLP w/ Edge Features 392.683±40.950 361.775±24.395 616.062±0.351 980.669±36.470 322.344±12.817
GraphSAGE 264.330±23.160 295.983±6.726 438.151±12.335 843.571±5.587 262.662±5.161
Naive 722.3765 605.6976 792.3601 1316.7023 571.5372

Table 5: Base Fee Regression
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2019-10 2020-09 2021-06 2022-04 2023-06
Model MAE MAE MAE MAE MAE

GPS + GatedGCNConv w/ LapPE 278.849±102.170 133.641±0.954 162.458±0.973 214.890±0.478 264.229±0.286
GPS + GatedGCNConv w/ RSWE 302.676±85.778 135.228±6.113 160.678±0.802 215.577±0.877 263.368±0.962
GPS + GINE w/ RSWE 826.913±345.514 136.108±2.317 161.940±1.751 213.538±1.347 261.932±0.426
GATConv 140.708±14.914 131.415±2.625 124.310±7.679 190.759±4.481 238.401±8.236
GatedGCNConv 98.690±6.548 76.813±1.609 81.613±0.957 117.268±2.085 152.864±3.057
GCNConv 101.823±5.475 126.858±2.030 181.321±0.015 226.995±1.786 222.385±3.118
GINConv 100.084±1.270 49.865±0.846 79.917±0.567 113.666±3.647 151.524±2.024
GINConv w/ Edge Features 84.233±11.907 55.574±2.125 80.354±2.317 109.152±2.366 150.404±1.507
GINEConv 194.182±0.000 134.098±0.000 180.553±0.225 235.490±0.862 300.852±1.435
MLP 159.498±1.295 126.164±0.655 154.766±3.522 198.318±4.784 261.541±14.565
MLP w/ Edge Features 106.416±6.856 116.920±1.513 134.780±0.914 188.119±9.057 217.067±1.568
GraphSAGE 97.343±11.966 94.297±9.293 85.964±2.142 135.467±4.117 175.291±7.586
Naive 194.1822 134.0981 181.3260 240.1717 306.1413

Table 6: Proportional Fee Regression
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