
Development, Deployment, and Rating of Plug-Ins

Technical Report TIK-259

Keno Albrecht, Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich, 8092 Zurich, Switzerland
{kenoa, wattenhofer}@tik.ee.ethz.ch

August 2006

Abstract

In this paper, we present a lightweight but powerful
plug-in container which provides advanced features
such as dynamic class loading, dependency, configu-
ration, and security management. We highlight the
deployment mechanism which allows to publish, in-
stall, and update plug-ins from arbitrary sources at
runtime. Furthermore, we introduce the Trooth
voting and trust system which is used to assess
plug-ins but has been designed as a general rating
mechanism. Finally, we present the extensible ar-
chitecture of the Spamato spam filter framework
and show how it employs the plug-in mechanism
and the Trooth system in a real-world applica-
tion.

1 Introduction

With increasing complexity, large software projects
tend to get unwieldy, unmanageable, or even out of
control. Researchers and developers have tried to
counter this crisis with several approaches. Start-
ing with modularization techniques such as ab-
stract data types and object oriented programming,
today, component and service orientation, plug-
in architectures, and aspect oriented programming
are “en vogue.” The software development process
evolves to a software management process, where
more and more building blocks are developed sepa-
rately and connected subsequently.

The building block or black box metaphor offers
one chief advantage: a black box hides its actual im-

plementation behind a well-defined interface facade
which defines its functionality. In this paper, we
survey a particular extended type of black boxes:
plug-ins. More precisely, we examine frameworks
which manage a bundle of plug-ins and their in-
terdependencies. Traditionally, plug-ins have been
used to extend the functionality of existing soft-
ware. For instance, web browsers are extensible
to support custom MIME types, such as Java or
Flash, and imaging tools can support additional
filters. Here, plug-ins are not deployed with the
base product but integrated afterwards via a well-
defined interface and extension mechanism. We,
however, consider a more radical plug-in notion. In
our framework, everything is a plug-in. Besides a
small bootstrapper which initializes and connects
the runtime system, the complete application logic
is defined by cooperating plug-ins.

Open source projects such as the instant messag-
ing client Gaim and the spam filter system Spam-
Pal, which are still traditional frameworks, benefit
from third-party developers who contribute addi-
tional features that can be plugged into the exist-
ing host application. But only in “everything-is-a-
plug-in” frameworks such as Eclipse, the full power
of plug-in development becomes apparent: not re-
stricted to the default Java IDE, complete applica-
tions are built on top of the bare framework.

As the development of Eclipse has been driven
to provide an application framework for building
software, our plug-in framework has been shaped as
we implemented the Spamato spam filter system.
However, it proved to be useful in other projects as
well.

1

For Spamato, we expect the development of sev-
eral third-party spam filters and analyzing tools.
Therefore, an architecture that allows for the seam-
less integration of such plug-ins is a must. Fur-
thermore, we want a mechanism to publish, install,
and update plug-ins at runtime, that is, without a
restart of the application. This is particularly im-
portant for email filtering software since, otherwise,
malicious messages can slip through and harm a
user’s machine. However, since plug-ins themselves
come from unknown sources and, therefore, gener-
ally have to be suspected, a security mechanism has
to prevent possible damages. Furthermore, we do
not want plug-ins to be kept apart, but to interact
with each other. For this purpose, we adopt the
notion of hooking or extension points which are as-
sociated with well-defined tasks that contributing
plug-ins (extensions) can implement. Finally, we
want a handy, easy to use, and, most importantly,
lightweight framework, since applications are sup-
posed to run client-side with as little overhead as
possible.

The design of our framework and Spamato was
accompanied by the development of a rating sys-
tem which we call Trooth. For our work, we use
it in two distinct areas: First, as a utility to com-
fort the usage of foreign plug-ins and, second, as a
reputation management system in a collaborative
spam filtering process. For the first application,
we request users to rate a plug-in in terms of se-
curity (“does a plug-in really perform what it is
supposed to do?”) or usability (“does the usage of
a plug-in provide any benefit?”). In the second do-
main, we separate spam from legitimate messages
by requesting users to vote for them. Trooth has
been designed to be robust as it withstands mali-
cious users who try to deceive the system, partially
decentralized as clients are explicitly involved in
the voting and evaluation process, and collabora-
tive and personalized as users interact with each
other for collective benefits.

The remainder of this paper is organized as fol-
lows. In the next section, we discuss related work.
In Section 3, we describe our plug-in framework.
Section 4 introduces the Trooth rating system.
We show in Section 5 how to embed the plug-in
framework and the Trooth system in the Spam-
ato spam filter system. And finally, we draw a
conclusion in Section 6.

2 Related Work

In this section, we give an overview of related work,
separated into recent plug-in frameworks, recom-
mendation systems, and spam filter systems.

Plug-in Frameworks The Eclipse [1] framework
primarily focused on integrated development envi-
ronments (IDEs) and plug-ins which facilitate the
building of applications. With version 3.0, the Rich
Client Plattform (RCP) allows for the development
of any client applications. The Eclipse Runtime,
which reflects the minimum set of classes to build
a rich client application, is built on top of the OSGi
framework [2], that defines, for instance, the life cy-
cle of a plug-in. The orientation on business com-
patible solutions and the emphasis on rich client
applications clearly shows that Eclipse does not
aim to provide a lightweight plug-in container but a
powerful solution for all circumstances. A minimal
“Hello World” project in Eclipse has a footprint of
about 450 kB, while our plug-in framework creates
about 50 kB only. Our approach adopts some of
Eclipse capabilities. Mainly the notion of exten-
sions and extension points as well as the declara-
tion of plug-in interdependencies in a plugin.xml
file is shared by us. But while Eclipse employs a
service locator to connect plug-ins, we use the con-
structor injection pattern to automatically resolve
dependencies among plug-ins.

Apache Tomcat [3] is a container that supports
the Java Servlet and JavaServer Pages specifica-
tions, running J2EE web server applications. In
that, it differs from our approach that rather aims
to be embedded in client side applications. Using
Tomcat, dependencies can be modelled by using
globally shared directories, which is also reflected
in a simple class loader hierarchy. In contrast to
our approach, where each plug-in can share parts
of its classes (using a SharedClassLoader) and
use contributed classes from other plug-ins (using
a DependencyClassLoader), in Tomcat, only one
class loader exists that enables plug-ins to share
classes among each other. Furthermore, Tomcat
does not provide any means of extensions or exten-
sion points.

The Apache Avalon framework is implemented
in several projects, such as Phoenix, Fortress, Mer-
lin, or Codehaus’ Loom, see [4] for a description
of the project history. We compare our approach

2

to Fortress [5], the only project which provides a
lightweight plug-in container. In Fortress, plug-in
dependencies are declared as “inline” JavaDoc tags
directly in the source code. In contrast, we manage
all plug-in dependencies and information in a sepa-
rate file. Although the Fortress approach seems to
lead to less overhead, our scheme has the advantage
to encapsulate all dependencies in one single file.
Furthermore, Fortress does not provide extensions
and extension points and uses a service locator in-
stead of the constructor injection as we do.

The Codehaus PicoContainer [6] offers a very
simple container facility with a footprint of about
50 kB. It provides the constructor and setter in-
jection patterns but has to be configured directly
in the source code. No separate descriptor file is
needed to model interdependencies among plug-ins
since all plug-ins run with the same class loader.

A NanoContainer [7] bundles several PicoCon-
tainers and allows for the usage of separate class
loaders. Additionally, dependencies can be de-
clared in many scripting languages, while we stick
to an XML description. The main differences to our
approach are that NanoContainer, first, does not
implement extensions and extension points, and
second, cannot be altered after the startup—it does
not provide install or update features as we use
them in our plug-in container.

Recommendation Systems Trooth has been
influenced by work in the domain of recommenda-
tion systems, also known as collaborative filtering,
see [8, 9, 10]. In these systems, the concept of pre-
dicting future user behavior or recommending suit-
able choices based on historical data is common.
We share this idea but focus on specific practical
aspects. For this purpose, we only provide a heuris-
tic to evaluate an item for a user, we do not provide
a mathematical analysis.

In contrast to offline algorithms, such as [11, 12,
8], that usually recommend a single item to a user
based on a fixed set of votes, we consider a con-
tinuous stream of items which a user has to assess.
These items can arrive at anytime, making predic-
tions time-dependent. Furthermore, users cannot
be asked to train a server-based system in order to
increase the rate of correct predictions; items are
always selected client-side. We also emphasize the
role of clients in that we store only a minimum of

data on the server and evaluate items on clients.
We differ from other online approaches, such as
[13, 14], in that we do not consider a round-based
synchronous model. Again, in Trooth, users can
vote for items at any time.

Spam Filter Systems One of the most well
known spam filtering tools is the Apache SpamAs-
sassin [15]. SpamAssassin uses an extendable rule
system to classify email messages. It is easy to ex-
tend SpamAssassin with custom rules that, for in-
stance, employ Bayesian filtering [16], query URL
blacklists [17], or exploit other filter systems such
as Razor [18]. In contrast to Spamato, it is run-
ning server-side, has no email client add-on, and,
thus, only rudimentarily supports a user feedback
channel—to report a missed spam message a com-
mand line call needs to be executed.

SpamGuru [19] is another server side filtering sys-
tem developed by IBM. Unlike SpamAssassin and
Spamato, SpamGuru is a closed source project
which cannot be extended by external develop-
ers. SpamGuru uses an optimized ordering of filter
mechanisms to maximize the message throughput
of a server. A plug-in for the Lotus Notes mail
client provides a convenient user feedback channel
that is used to report spam messages to a collab-
orative spam filter which is part of the SpamGuru
system. Clients other than Lotus Notes are cur-
rently not supported.

The Cloudmark Desktop [20] is a commercial Mi-
crosoft Outlook and Outlook-Express add-on. It
employs several filtering techniques to identify mes-
sages but mostly relies on collaborative filters. The
Cloudmark Desktop is the commercial spin-off of
Vipul’s Razor [18]. Both access the same central
spam database which collects (manual) spam re-
ports from all users of the system. Although Razor
is an open-source project, the server-side compo-
nents have not been published. Thus, it is not pos-
sible to extend the system to integrate additional,
custom collaborative filtering techniques. Further-
more, their trust system “Truth Evaluation Sys-
tem” (TeS) is kept secret to prevent manipulation.

On the client side, a variety of email filters are
available. Most of them use a Bayesian filter-
ing algorithm and are bound to a specific email
client, limiting their effectiveness and application
domain. SpamPal [21] is—besides Spamato—the

3

only client side filtering suite we know about which
is designed to support several spam filters and to be
email client independent. Instead of using a special
email client add-on, SpamPal acts as a transpar-
ent proxy between the email client and the email
server. SpamPal is an open source project and cus-
tom extensions have to be implemented in C. Un-
like Spamato, SpamPal runs on Microsoft Win-
dows only and does not provide a user feedback
channel making it impossible to employ collabora-
tive filters.

3 The Plug-in Framework
In this section, we describe our plug-in framework
which has originally been built to facilitate the de-
velopment of third-party filters for the Spamato
spam filter framework (see Section 5), but has ba-
sically been designed to ease the implementation of
any plug-in based application. However, some of
our examples are still described in the context of
Spamato for clearness without loss of generality.

When talking about plug-ins, on the one hand,
we mean software components that are rather inde-
pendent blocks of code. They usually do not provide
any features, such as classes or resources, to other
components, and do not make use of any shared fea-
tures. Independent components bundle everything
they need to perform a specific task and do not in-
teract with any other components. On the other
hand, we also think about open framework blocks
which generally do not only provide features to
other components but explicitly incorporates them,
exploiting their capabilities to fulfill a job. It is ob-
vious, that the latter is more powerful and thus
includes the former component type.

In the next section, we formulate the characteris-
tics of our plug-in framework and show how to meet
the requirements to support the component types
describe before. After that, we explain the general
process when starting, how plug-ins are connected,
loaded, and configured. Finally, we highlight the
deployment mechanism to publish, install, and up-
date plug-ins.

3.1 Plug-In Characteristics

A plug-in features some apparent characteristics
such as a name, a description, and a main class.
These parameters are generally necessary to man-
age plug-ins, provide information to users, or ini-

tialize them. Additional requirements include a
security facility to restrict the access to local re-
sources, a deployment mechanism to manage dif-
ferent versions of plug-ins, and a scheme to model
dependencies between plug-ins.

3.1.1 The plugin.xml Descriptor File

Most of these characteristics are mapped to a
plugin.xml file which describes a plug-in and
its dependencies. Listing 1 exemplifies the
plugin.xml descriptor of a dummy plug-in.

The aforementioned <name> and <description>
of a plug-in, which are solely of descriptive usage,
are listed in lines 2 and 3. The <class> denotes
a plain old Java object, it does not have to in-
herit from a “PlugIn” class or implement any in-
terface. In Section 3.3, we describe how plug-ins
are initialized and loaded. The <version> and
<update-url> tags provide information for the de-
ployment mechanism which is detailed in Section
3.6.

The <requires> section of the XML file spec-
ifies security requirements and dependencies on
other plug-ins. In this example, the Dummy Plu-
gIn requests "all" permissions meaning that the
plug-in must not be applied any restrictions en-
forced by a Java SecurityManager to which per-
missions are directly mapped. Therefore, this con-
cept also allows for a fine granular assignment of
permissions such as the read/write access to local
files from a user directory or the connection to a
specific web server only. This is particularly im-
portant when dealing with third-party, untrusted
plug-ins as described later. Additionally, in the
<requires> section, a plug-in defines its depen-
dencies on other plug-ins—either to get access to
"<share>"d classes or resources, or to subscribe to
offered “extension points.” We describe extensions
and extension points in Section 3.2.

The <share> part enables other plug-ins to ex-
tend or use the facilities provided by the sharing
plug-in. In this example, the “Dummy PlugIn” al-
lows other plug-ins to access all classes in the pack-
age ch.ethz.dcg.dummy .shared and additionally
the ImportantSharedClass. The sharing of re-
sources such as images or files can similarly be
achieved. Line 16 states the publishing of an ex-
tension point which is further described in the fol-
lowing section.

4

Listing 1 A Dummy plugin.xml Descriptor File
1 <plugin>

2 <name>Dummy PlugIn</name>

3 <description>This is a very simple dummy plug-in.</description>

4 <class>ch.ethz.dcg.dummy.DummyPlugin</class>

5 <version>1.0</version>

6 <update-url>http://spamato.ethz.ch/update</update-url>

7 <requires>

8 <permission type="all"/>

9 <plugin key="another_dummy"/>

10 <extension point="dummy_point" param="hello world" class="ch.ethz.dcg.dummy.DummyExtension"/>

11 </plugin>

12 </requires>

13 <share>

14 <package name="ch.ethz.dcg.dummy.shared"/>

15 <class name="ch.ethz.dcg.dummy.ImportantSharedClass"/>

16 <extension-point id="my_dummy_point"/>

17 </share>

18 </plugin>

3.2 Extensions and Extension Points

The concept to extend other plug-ins has been bor-
rowed from Eclipse. Plug-ins offer well defined ex-
tension points which other plug-ins as extensions
can register with. This concept resembles a pub-
lish/subscribe mechanism but is much more pow-
erful: Registered extensions are not only notified
to handle an event, but are expected to extend the
capability of the extension point or to perform an
expected job.

In Eclipse, for instance, many plug-ins add in-
formation or views to the user interface by hook-
ing into extension points that are called when the
GUI is shown. Thus, new visible elements with
associated tasks are embedded into the default ed-
itor. The Spamato system offers several extension
points (see Section 5), one for plug-ins which per-
form a spam filtering task. Whenever a new email
arrives, it is checked by each registered extension
which returns whether it is classified as spam or
not. In this case, the filtering process is extended
or rather relies on what registered extension con-
tribute; the control flow runs through registered
filters. In Section 3.6, we describe an extension
point that enables the deployment mechanism to
support additional update protocols.

In Listing 1, <extension-point>s are defined in
the <share> section of a plug-in descriptor file (line
16). The "id" can be referenced in the <requires>
part of another plug-in. Besides the <class> that
implements the <extension>, additional static val-

ues can be assigned to parameterize the registra-
tion (line 10). Usually, the main class of an ex-
tension implements an interface which is shared by
the plug-in that offers the extension point. In the
Spamato example above, a plug-in that registers
as a spam filter also implements the SpamFilter
interface that belongs to the offering plug-in.

3.3 Dependency Modeling and Class
Loading

Our plug-in mechanism basically represents a light-
weight container component which loads plug-ins in
a specific format from a specified directory. Plug-
ins provide their class files in a classes directory,
additional jar files in a lib directory, and static
resource files, such as documentation files, in an
etc directory. These directories are located below
a bin directory which also holds the plugin.xml
file. Further dynamic content which is created at
runtime, such as user defined config files, are saved
in the root directory of each plug-in.

All plug-ins are located in a directory which is
recursively traversed when the container is started.
As mentioned earlier, a plugin.xml file character-
izes the interaction (required plug-ins for shared
classes and extension points) with other plug-ins.
These files are parsed in order to build a directed,
acyclic graph which reflects all dependencies of all
plug-ins. The graph is used, for example, to de-
termine a start-up and a shutdown order, to have

5

plug-ins available when dependent ones need them.
Please notice that the container is partly imple-
mented as a plug-in itself (the Runtime plug-in). It
shares classes and resources, offers extension points,
and exhibits all other features of a normal plug-in.
Thus, the Runtime is also contained in the graph
but does not depend on any other plug-in.

This graph is also reflected in a similar hierar-
chically organized set of Java ClassLoaders. Gen-
erally, each plug-in is managed by its dedicated
class loader. By default, no plug-in can use or
even knows about other plug-ins; they are totally
shielded in their personal namespaces. This results
in four nice features. First, developers do not have
to worry about other plug-ins. They can label their
packages without considering problems due to any
name collisions even though all plug-ins are dynam-
ically loaded into the same JVM. More precisely,
developers can even prohibit the access to their
classes. Second, we can easily assign different in-
dividual security permissions as mentioned earlier.
Third, the testing and analysis of plug-ins with dif-
ferent parameters is facilitated. In the Spamato
system for instance, spam filters, which are them-
selves plug-ins, can be used multiple times in one
Spamato instance with different settings just by
copying them into different directories in the plug-
ins directory. Thus, it is possible to easily compare
the results of the same filters running at the same
time with different settings. And finally, using sep-
arate class loaders provides the capabilities to up-
date plug-ins without the need for a restart of the
whole container component. Instead, only the up-
dating plug-in and its dependent plug-ins need to
be restarted which can be performed at runtime.
We further detail this point in Section 3.6.

On the other hand, though, we still have to pro-
vide the sharing of classes, resources, and exten-
sion points. This means, we need some facility to
let other plug-ins make use of the shared informa-
tion. Additionally, hooking into an extension point
entails the plug-in which offers the extension point
to call methods of the extending plug-ins, mutually
connecting both plug-ins with each other.

To allow for such interactions, the default class
loader scheme has to be adapted. In our plug-
in system, each plug-in is backed by four differ-
ent types of class loaders: the FileClassLoader, the
SharedClassLoader, the DependencyClassLoader,
and the CombinedClassLoader. The interaction of

two plug-ins and their class loaders is depicted in
Figure 1.

ContextClassLoader

Plug-in 1

CombinedClassLoader

DependencyClassLoader

FileClassLoader

SharedClassLoader

Plug-in 2

CombinedClassLoader

FileClassLoader

DependencyClassLoader

SharedClassLoader

Figure 1: The class loader hierarchy of two plug-
ins.

The FileClassLoader is responsible to load files
from the file system, restricted to the associated
plug-in directory. The SharedClassLoader wraps
the FileClassLoader. It restricts the access for
other plug-ins to those files which are declared
as “shared” in the plug-in descriptor file. The
DependencyClassLoader enables plug-ins to access
shared classes of other plug-ins by using their
SharedClassLoader, provided that a dependency is
declared. And finally, the CombinedClassLoader
combines the FileClassLoader and the Dependency-
ClassLoader and provides all class files, resources,
and libraries accessible through them to the as-
sociated plug-in. Furthermore, there is a single
ContextClassLoader. It enables all CombinedClass-
Loaders to access the default Java classes, the boot-
strap plug-in classes, which are not part of any
plug-in, and all other classes and libraries that can
be found in the default CLASSPATH.

Also note that our class loading mechanism dif-
fers from the default “first parent/then child”-
scheme. We first browse the directly associated
FileClassLoader, and only if the class or resource
can not be accessed, the parent CombinedClass-
Loader is called.

3.4 The Life Cycle of a Plug-in

The life cycle of a plug-in in our framework is quite
simple. It can be extended by implementing spe-
cific interfaces instead of hooking into an extension
point.

6

The plug-in descriptor file is loaded and parsed
in the initialization phase by a Plugin Handler ; for
each plug-in exists one handler. After all plug-ins
have been initialized, they are loaded respecting
the order of the directed acyclic graph described in
Section 3.3. Thus, whenever a plug-in is loaded,
its required plug-ins are available. The loading and
instantiation of classes is performed using the De-
pendency Injection pattern (IoC) or more precisely,
the constructor-based injection variant of it. Thus,
references to required plug-ins are automatically as-
signed through constructor parameters which are
resolved using Java Reflection.1 The start and dis-
pose phase can optionally be implemented by im-
plementing the correspondent interfaces.

3.5 Configuration

An interfaces unifies the access to configuration set-
tings from various sources. The settings of a plug-in
can automatically be assigned as a constructor pa-
rameter by the plug-in framework during the start-
up phase as described in the previous section.

Currently, text, Java properties, and XML files
are supported; additional formats can be con-
tributed using the correspondent extension point
of the runtime plug-in. For instance, a database
implementation would be more appropriate to sup-
port a large number of users for a server-side Spam-
ato version.

3.6 The Deployment Mechanism

Oreizy et al. [22] identify three types of architec-
tural changes in the life-time of plug-ins in a frame-
work: the addition of plug-ins, the removal of plug-
ins, and the replacement of plug-ins. We refer to
these types as the installation, deletion, and update
of plug-ins respectively. Furthermore, we extend
our framework to allow for another aspect: the pub-
lication of new plug-ins by any user.

The Runtime plug-in provides four extension
points to implement these four aspects in our
framework; this is illustrated in Listing 2. Plug-ins

1We also provide the service locator approach by allowing
plug-ins to access the plug-in container. But we regard the
constructor injection method to be easier to maintain—and
a reference to the service locator can only be accessed in this
way.

can contribute to these extension points by imple-
menting corresponding interfaces.

Listing 2 The Runtime plug-in offers extension
points to provide deployment handlers and regis-
ters default ones.

<plugin>

<name>Runtime</name>

...

<share>

...

<extension-point id="deploy.search"/>

<extension-point id="deploy.download"/>

<extension-point id="deploy.upload"/>

<extension-point id="deploy.publish"/>

</share>

<extension point="deploy.search"

id="http" handler="HttpSearchHandler"/>

<extension point="deploy.download"

id="http,ftp,file" handler="..."/>

...

</plugin>

Search handlers are used to find plug-ins that
can be installed or updated. We provide default
search handlers for HTTP and FTP servers as well
as for the local file system (see Section 3.6.1). The
search provides a list which contains fragments of
the plugin.xml of a plug-in: informative data,
such as the name and the description, as well as
important data, such as the version number and
the download mechanism. Download handlers fetch
plug-ins from a download server. As an additional
plug-in, the tracker-based Peerato system allows to
download directly from other users [23]. Upload
handlers store plug-ins on a download server, and
publish handlers update the list of available plug-
ins accessed by search handlers.

Please notice that the Runtime plug-in only pro-
vides the basic capability to manage the deploy-
ment cycle of plug-ins. But to employ it in a user
friendly way in an application, further steps have
to be taken. In the Spamato system, we use a
browser-based approach to cope with this issue.

3.6.1 The Profile Deployment Scheme

On multi-user platforms, such as Linux and Win-
dows XP, it is often feasible to install an applica-
tion based on our framework for all users only once.
This eases the application maintenance, for in-
stance, when updating plug-ins. Still, users should

7

be able to configure their environment, for instance,
by installing custom plug-ins or removing default
ones.

We address this issue in our profile deployment
scheme. Usually, an administrator installs an ap-
plication to a directory which users can only read
from, the default installation directory. To allow
for the configuration of a user-specific environment,
plug-ins are installed to the user’s profile directory
the first time a user starts an application. Any
modification can now be performed in the profile
directory instead of the read-only installation di-
rectory. Nevertheless, administrators can update
the default installation and our profile deployment
scheme applies the changes to each user profile.

4 The Trooth System

In this section, we introduce Trooth as a robust,
partially decentralized, collaborative, and person-
alized rating system. Most examples will be given
in the context of spam filtering as we apply it in the
Spamato spam filter system (see Section 5). But,
generally, it has been designed to be independent
of Spamato and, for instance, has been used to
comfort users to employ foreign plug-ins as well.

4.1 Preliminaries

In this section, we describe some basic aspects
which we use and refine in the next sections.

The general aim of our rating system is to express
the evaluation of items, such as people, plug-ins,
or emails, to be either good, bad, or unknown by
allowing users to classify the item (in some context)
as good or bad.2 In a nutshell, given an item, a
user first tries to revert to a recommendation of the
rating system to check whether it is good or bad. If
the evaluation calculated by the rating system has
been unknown, she has to manually assess the item.
Afterwards, she casts a vote to express her personal
assessment.

In this section, we assume that a pre-defined,
globally valid evaluation for an item exists which
has to be exposed for each item. In Section 4.2, we
revise this assumption and instead calculate indi-
vidual opinions about each item for each user.

2We assume that a user who does not know how to clas-
sify an item does not vote at all.

4.1.1 Evaluation Functions

A global evaluation of an item can be derived from
all user votes in various ways. For instance, using a
simple majority evaluation, the overall categoriza-
tion of an item is good if a majority of all users
(> 50%) votes in favor of the item, bad if a ma-
jority votes against the item, and unknown if the
number of good and bad votes are equal. For the
more general threshold evaluation function, we clas-
sify an item to be good (bad) if the fraction of good
(bad) votes of all votes is larger than a threshold
value hg (hb) and unknown otherwise.

It is easy to extend this simple voting scheme
from the set {good, bad, unknown} to a range where
votes and evaluations can be in the interval [0, 1].
In this case, we can define the result of an evalua-
tion to be the average of all vote values.

4.1.2 Weighting Votes With Trust Values

So far, votes or rather users have been considered
to be equally important. In real life, however, it can
be beneficial to apply different weights to votes or,
in other words, to consider some users to be “more
equal than others.” Since we assume the existence
of a single, pre-defined evaluation for each item,
users who often agree with the majority of user
should be trusted more than those who regularly
dissent.

Ideally, this means trying to separate users into
two groups: One group contains those users who
are trustworthy and the other group those who are
malicious. Practically, it is possible to approximate
these groups by introducing trust values for each
user that are adjusted whenever new information
is available. Then, instead of simply summing up
equal good (and bad) values as before, each vote
is previously weighted with the trust value of the
associated user. For this approach to make sense,
we generally assume that the group of trustworthy
users are a majority, or more precisely: that those
users who agree with the majority are trustworthy.

The Additive Increase, Multiple Decrease
(AIMD) approach takes user specific and automat-
ically adjusted trust values into account. When
all users have cast their votes, the trust values are
modified. Using AIMD, users who voted correctly,
that means in accordance with the majority, are
awarded by slightly increasing their trust values.

8

On the other hand, users whose votes do not
comply with the majority are punished by harshly
decreasing their trust values.

Please note that we are rating now in two differ-
ent domains: On the one hand, we want to evaluate
items by having unknown users vote good or bad
for them. On the other hand, we want to calcu-
late trust values for unknown users to make votes
more reliable. The voting (and thus also the eval-
uation) is actively performed; trust values are im-
plicitly generated. While in principle it is possible
to let users choose whom they want to trust, in
reality this is considered too involved.

4.1.3 Implementation Issues

For applications like the collaborative spam fil-
ter system Spamato, the voting for an item (in
this case, a message) and the categorization of it
(spam/not spam) will not take place at a single
point in time. Instead, users can always vote for an
arbitrary message, and Spamato classifies a mes-
sage whenever it arrives in a user’s inbox. Addi-
tionally, not all users vote for all items, since not
all users receive the same messages.

In the context of plug-in assessment, a user is free
to select a plug-in whenever she likes and wants to
know whether it is a useful plug-in from a trust-
worthy developer (good) or not (bad). And clearly,
not all users will necessarily select all plug-ins since
user interests are not the same.

Therefore, user votes have to be stored for later
usage and the evaluation of an item has to be re-
calculated whenever a new vote has been cast. In
other words, evaluations are time-dependent. Fur-
thermore, users must not be able to vote more than
once for the same item or a scheme must exist to
handle multiple votes in a reasonable way. Finally,
users casting a vote have to be authenticated to
prevent manipulation.

Implementing the AIMD approach or weighting
algorithms in general entails some difficulties. As
users can vote at any time, the update of trust val-
ues either has to be conducted at a specific point
in time, or needs to consider earlier changes asso-
ciated with the same item. While an algorithm for
the former solution can calculate the new values
by knowing few variables only, such as the time of
the first vote, the current time, and the number of
votes so far, it obviously ignores later votes and

thus important information to provide fair trust
values. On the other hand, adjusting the trust
values only once reduces the complexity of the sys-
tem and saves server resources. The latter solution,
however, means that we need to manage extensive
historic information about the voting process. Ad-
ditionally, trust values have to be updated every
time a new vote is called, thus, increasing the de-
mand for server resources. In both cases, the server
has to store the trust values for each user and the
overall evaluation of each item—to avoid instant
time- and resource-consuming calculations when-
ever these values become necessary.

4.2 Motivation for Trooth

In the previous section, we have assumed that it
is possible to globally evaluate an item—that an
overall evaluation exists which coincides with the
votes of all trustworthy users. But the separation
of users into groups of trustworthy and malicious
users, as described in Section 4.1.2, often is too
harsh. In fact, the assumption that an objective
overall categorization can always be calculated is
the weakest point in the ideas described so far.

Instead, we believe it is more reasonable to indi-
vidually evaluate an item for each user separately.
A user does not distinguish between trustworthy
and malicious users anymore, but between users
who generally vote in accordance and those who do
not. Thus globally seen, users are implicitly sep-
arated into several special interest groups (SIGs)
who share a “similar opinion” rather than to dis-
criminate them with the “black & white” scheme
described before.

Please notice that we still believe that trustwor-
thy and malicious users exist. While the former de-
scribe users who really try to express their opinion,
the latter usually vote against the common sense
and try to deceive the system, probably for personal
benefits. We also consider users who make failures
and others who just do not understand how to op-
erate a voting system. So generally, from a user’s
point of view, all these categories can be reduced
to assenting and dissenting users only. For simplic-
ity, in this section we use the term malicious for
byzantine as well as incautious and unaware users.

Depending on the voting domain, the number of
groups might vary significantly between only a few
and tens or more. Although we expect groups to be

9

rather large and overlapping, in the extreme, each
user might trust only herself so that the number of
groups equals the number of users. But this espe-
cially expresses the strength of our system: Even
if all except one user are malicious, this one will
(eventually) figure out not to trust anybody except
herself. Thus, the system can even serve different
minorities with satisfying results while approaches
that assume the existence of an objective evalua-
tion cannot.

Since Trooth does not compute a global eval-
uation of an item for all users, it is possible to
reduce the consumption of server-side resources
to a minimum. Therefore, in Trooth we store
only (item,user,vote)-tuples server-side and calcu-
late user specific trust values client-side as we show
in the next two sections. In Section 4.5, we sketch
how to extend Trooth in several directions, in-
cluding a complete peer-to-peer solution.

4.3 Managing Votes and Trust

As in structured peer-to-peer systems, we assign
each item and each user a unique identifier from an
interval [0, ..., N], organized as a “ring.” Thus, we
can use the notions of clockwise and anti-clockwise
to denote neighbors on the ring. In Section 5.3, we
show how user IDs (and signatures to authenticate
users) are generated in Spamato.

4.3.1 The Voting Process

When a user votes for an item, she sends her opin-
ion (good or bad) to the Trooth server and locally
adapts the trust values for other users who voted
for the same item. In more detail, the voting pro-
cess takes the following steps:

• User u0 sends a vote v0 for an item i to the
server where the (i, u0, v0)-tuple is stored.

• The server assembles two lists which are pop-
ulated with the identifiers of other users who
voted good (list G) and bad (list B) for item
i before. Each list contains a maximum of k
user IDs that are numerically nearest to u0 in
respect to the ring formation. The lists G and
B are sent to the client.

• User u0 locally adapts the trust values of the
users sent to her by increasing the trust values

of those users who agreed with her own vote v0

and decreasing the trust values of those users
who voted against it (using the AIMD ap-
proach described in Section 4.1.2 or any other
weighting scheme).

The user can adjust this process by sending the
value for k to the server.

4.3.2 The Evaluation Process

To classify an item, good and bad votes from the
server are weighted with the client-side stored trust
values. In detail, the following steps are performed
for the evaluation process:

• User u0 sends a query for item i to the server.

• The server returns two lists containing identi-
fiers of users who voted good (list G) and bad
(list B) as in the second step of the voting pro-
cess described above.

• User u0 extracts the l ≤ k most trustworthy
users of each list, resulting in the lists G′ ⊆ G
and B′ ⊆ B.

• Finally, the classification can be calculated us-
ing the threshold evaluation function described
in Section 4.1.2 with V ′ = G′ ∪ B′ (or rather
all weighted votes of the selected users).

Again, the user can adjust this process by send-
ing the values for k and l to the server.

4.3.3 Discussion

In the second step of both algorithms, the server re-
turns about k/2 clockwise and anti-clockwise neigh-
bors of user u0 for each list. If there are less then
k other users who voted good (bad) for item i, we
return only that many without any loss in qual-
ity. Assuming that users usually vote for the same
type of items3, it is reasonable to believe that the
total number of trust values that have to be han-
dled client-side is bounded. This means that each

3Regarding e-mails, for instance, users who are collected
on the same e-mail address list often get the same spam mes-
sages. Regarding plug-ins or products, Amazon-like “Users
who bought this product also bought...” statements also un-
derline our assumption that users will often vote for the same
type of items.

10

Item User Vote

1 0 good

1 1 good

1 4 good

1 22 bad

1 83 good

1 114 bad

1 189 good

1 242 good

2 1 bad

… … …

`

Trooth Client “0”Trooth Server User Trust

1 0.3

22 12.0

114 2.7

242 4.4

User Trust

1 0.15

4 0.5

22 13

114 3.7

242 2.2

(22,bad)

(114,bad)

(1,good)

(4,good)

(242,good)

vote(1,0,bad)

Figure 2: This figure exemplifies the voting process. User “0” casts a bad vote for item “1” and adjusts
her trust values.

Item User Vote

2 1 bad

2 4 good

2 22 good

2 83 bad

2 114 good

2 129 good

2 189 bad

2 242 bad

`

Trooth Client “0”Trooth Server

User Trust Vote

189 1 bad

242 2.2 bad

22 13 good

114 3.7 good

(1,bad)

(189,bad)

(242,bad)

(4,good)

(22,good)

(114,good)

eval(2,0)

User Trust

1 0.15

4 0.5

22 13

114 3.7

242 2.2

1 + 2.2 = 3.2 bad

13 + 3.7 = 16.7 good

=> 16.7 / 19.9 = 0.84 > hg => good

Figure 3: This figure exemplifies the evaluation process. User “0” requests the votes for item “2” and
evaluates it as good.

11

user generally stores only a small subset of all users
who share the same opinion. It is also an advan-
tage that a user’s vote can only affect those users
in the implicit neighborhood. Thus, the impact of
a possibly malicious user trying to cheat the sys-
tem is limited. On the other hand, though, the
rather high consumption of bandwidth for each vot-
ing and evaluation operation can be regarded as a
drawback.

By choosing only the most trustworthy users in
the third step of the evaluation process, we decrease
the influence of unwanted users to a minimum. As
an additional optional step, trust values can be ad-
justed after the evaluation process similar to the
last step in the voting process. Doing so would am-
plify the influence of trust values even more. Fur-
thermore, the calculated evaluations should auto-
matically be sent as a personal vote to the server.
If the user does not agree with the evaluation, she
would (immediately or after a short while) send her
correct opinion rejecting the old one.

Please note that a malicious user who tries to
gain a high trust value in order to manipulate the
evaluation process, previously would have to “play
by the rules” for a long time and, thus, helping
other users more than harming the system. Fur-
thermore, to manipulate a particular user (or a
group of users with assenting opinions), it is nec-
essary to, first, get an ID that is near to that of
the user, and second, to know which items the user
is “interested” in. While attacking one particular
user will be hard, it is almost impossible to op-
pose against many groups or even all users at once.
Thus, Trooth significantly reduces the impact of
malicious users in the evaluation process.

4.3.4 Example

Figure 2 exemplifies the voting process (k = 3,
AIMD will add 1 to the trust value of assenting
users and multiply the trust value of dissenting
users by 0.5, and the user identifier space is in the
range of 0 to 255). First, client “0” sends her vote
“bad” for item “1” to the Trooth server. The
server inserts the vote into the voting table and
populates two lists for good and bad votes of users
whose identifiers are numerically nearest to 0. Since
only 2 users have voted bad, this list is returned
with these two entries only (22 and 114), while the
list of good votes contains three entries (1, 4, and

242). Next, user 0 adjusts the trust values using
the AIMD approach. Since she voted bad, users 22
and 114 are awarded, and users 1, 4, and 242 are
punished by increasing or decreasing their trust val-
ues respectively. For instance, user 22 has an old
trust value of 12.0 which results in a value of 13.0
after increasing it by 1. Similarly, user 242 has an
old trust value of 4.4 which is decreased to 2.2 af-
ter multiplying it with 0.5. User 4 has not been in
the trust table before, therefore, she is rated with
a default value of 1 before being punished.

In Figure 3, an example of the evaluation process
is depicted (k = 3, l = 2, and the threshold for a
good decision is hg = 2

3). After sending an evalu-
ation request for item “2” to the server, user “0”
receives two lists as described before. The client
extracts l = 2 votes of each list which have been
cast by users she trusts most (189 and 242 for bad,
and 22 and 114 for good). Again, one user (189)
has been unknown and was therefore rated with the
default value 1, which was chosen since this value is
higher than the third bad choice (user 1 with a trust
value of 0.15). The trust values are accumulated
and the evaluation is performed using the “thresh-
old” evaluation method. Since the good votes are
more trusted (16.7 to 3.2), the overall classification
is good.

4.4 The Majority Heuristic

We introduce the majority heuristic which can be
applied as a special case when many users have al-
most unanimously decided about an item. To use
it, one should have ruled out the chance of mali-
cious users being a majority.

In the voting process, the server still stores the
vote of a user for an item. But the server does not
return any data and the client, therefore, cannot
adjust any trust values.

In the evaluation process, the server sends only
the number of good and bad votes to the client.
Therefore, the client is not able to select her most
trusted users anymore; all votes count the same.
The evaluation for the item is calculated using the
majority or threshold evaluation function.

The user can completely configure the processes:
The total number of voters and the fraction of dis-
senting voters have to be sent to the server; the pa-
rameters for the threshold evaluation function can
be adjusted in the client.

12

The majority heuristic clearly simplifies the vot-
ing and evaluation processes by sending less infor-
mation between client and server and, thus, also
saving bandwidth. By doing so, it reduces the re-
liability of the classification since trust values are
not considered anymore. But this can be neglected
since there are almost none dissenting votes, and
malicious users cannot be a majority.

4.5 Extending Trooth

In this section, we provide two extensions of the
Trooth system aiming in orthogonal directions.
While the first one describes a system which centers
all activities at one server, the second sketches the
idea of a completely decentralized approach.

4.5.1 Server-Side Trust Values

In the Trooth system described so far, each user
stores a list of trust values of other users on the
client. As we previously explained, although it is
possible that this list contains a trust value for all
other users, it is more likely to hold only a small
subset of neighbors.

In contrast to our earlier motivation, we could
store and adjust trust values and determine the
classification of an item on the server. By send-
ing (or storing) the parameters of the voting and
evaluation processes from the client to the server,
the user would still be able to adjust the outcome
as before. Therefore, running Trooth server-side
is no problem.

Having trust values stored on a single server also
allows for a global view on this data. Consolidating
the trust values of each user could disclose a va-
riety of interesting information—for instance, how
groups of assenting users look like or whether ma-
licious users or rather users that nobody trusts ex-
ist. Another advantage is that users can now share
their trust values between different machines or ac-
counts. Furthermore, aggregated trust values could
be used to provide a new user with some initial
data. On the other hand, processing Trooth on a
server drastically increases the resource demand for
CPU and storage (while the bandwidth consump-
tion is lowered).

We want to emphasize that a server-side
Trooth system is not similar to approaches sum-
marized in Section 4.1. The main difference is that

we manage trust values for each user separately,
still assuming that it is more promising to rely on
several groups of assenting users than on trustwor-
thy and malicious (in its original sense) ones.

4.5.2 Distributed Trooth

Trooth shifts most of the work to the client, keep-
ing only the storage of (item,user,vote)-tuples on
the server. This is a good basis to completely de-
centralize the Trooth system.

We propose the usage of a distributed hash ta-
ble (DHT) such as Chord [24] or Kademlia [25] to
obtain a server free Trooth system. In such sys-
tems, the “lookup” operation is the most important
command which maps a key to the peer being re-
sponsible for it. Besides this, the “store” operation
stores the value associated with a key at the man-
aging peer.

Regarding Trooth, user votes have to be man-
aged in the DHT. Therefore in the voting process,
(item,user, vote)-tuples are the values to be stored
at the peer responsible for the item. For this ap-
proach to work, the mentioned DHTs have to be
adapted only slightly to support the storage of mul-
tiple values for one key. Similarly in the evaluation
process, a user performs a lookup for an item ID
and the responsible peer has to return a subset of all
votes that have previously been cast. Thus, a fully
decentralized, peer-to-peer styled Trooth system
can generally be realized.

There are, however, some difficulties. The vot-
ing and evaluation processes will take more time
due to the nature of a DHT where the responsible
peer has to be looked up by routing to several in-
termediate stations. Furthermore, a DHT has to
manage other issues such as the handling of join-
ing and leaving peers, counter measurements for
hot spots, and caching and replication mechanisms.
While trust among peers can also be regarded as a
key task of DHTs, we want to describe this problem
shortly in relation to Trooth.

In Trooth, we assume the existence of unique
user identifiers as well as the possibility to ver-
ify which user has cast which vote. In Subsec-
tion 5.3, we describe how we guarantee these as-
sumptions in the Spamato system by generating a
public/private-key pair for each user which is used
to sign votes. Although this approach is server-
based, we could still employ it for generation and

13

verification of keys only. For a pure distributed
approach, though, it is necessary to abandon this
server, too.

Another drawback is that peers cannot be
trusted. A peer is able to alter information in any
way before sending it to a user. Thus, votes can be
modified, coined, or deleted at will. While the sign-
ing of votes will help to detect modified or coined
votes, peers cannot be kept from concealing them.
One solution to this problem is to store votes not
only at one peer but at many. Similarly, a lookup
would have to return votes from several different
peers. Although this increases the amount of data
in the system and the effort to store and lookup it
by the replication factor, the reliability of the result
will be increased accordingly.

5 Spamato

In this section, we present the spam filter system
Spamato which has initially been introduced in
[26] with a focus on spam filtering strategies. Here,
we highlight the systems aspects of Spamato, in
particular, how it utilizes the plug-in framework
and Trooth.

First, we give a rough overview of Spamato in
Section 5.1. In Section 5.2, we exemplarily show
how the plug-in framework is employed. After that,
we describe the Spamato Authentication and Au-
thorization System in Section 5.3 which we use to
generate unique user identifiers for Trooth. Next,
we show in Section 5.4 how Trooth is integrated
into our collaborative spam filter to distinguish be-
tween spam and legitimate messages. And finally,
we sketch in Section 5.5 how the plug-in mechanism
employs Trooth to classify plug-ins.

5.1 The Spamato Spam Filter
System

Spamato is a flexible, client-side spam filter sys-
tem. As an add-on, it can be embedded in com-
mon email clients such as Outlook or Thunderbird,
or can run independently as an email proxy. Emails
arriving in a user’s inbox are automatically checked
by several spam filters, and detected spam messages
(evaluated as bad) are moved to a special folder.
The user can interact with Spamato by manually
reporting messages which have not been identified

as spam and revoke messages which have falsely
been identified as such. This way, a user collabo-
rates with the system, sending feedback (votes) to
filters and the Trooth system.

Spamato has been in use for almost 18 months
now. It is available for download at: http://www.
spamato.net.

5.2 Using the Plug-In Framework in
Spamato

Spamato consists of several plug-ins which imple-
ment different aspects of a collaborative spam filter
system. The obvious key functionality of a spam fil-
ter system is to check whether incoming messages
are spam. This task is performed in the Spamato
Filtering Process (SFP) and is implemented by the
Spamato Base plug-in. The SFP is depicted in Fig-
ure 4.

Spamato Base

Filter 1

PreCheck(msg)

Checkpoint PreCheck

veto(msg) = veto1(msg) || veto2(msg) || … || vetoN(msg)

Filter 2

PreCheck(msg)

Filter N

PreCheck(msg)

veto1(msg) veto2(msg) vetoN(msg)

.

Decision

isSpam(msg) = globalDecision(isSpam1(msg), isSpam2(msg), …, isSpamN(msg))

Post Check

Filter1

Filter2

.

.

.

FilterN

msg msg msg

isSpam1(msg) isSpam2(msg) isSpamN(msg)

isSpam(msg)

msg msg msg

Filter 1

Check(msg)

Filter 2

Check(msg)

Filter N

Check(msg)

isSpam(msg)

veto(msg) == true

ignore this msg

.

msg isSpam(msg)

Figure 4: The filtering process consists of five
phases which are mapped to extension points.

14

The SFP is separated into five phases. Gener-
ally, the procedure is triggered if a new message ar-
rives. Then, each registered plug-in has the chance
to pre-check the message in order to denote if the
message has to be filtered at all. Subsequently, the
real checks are performed and their results are accu-
mulated to calculate the overall spam probability.
Finally, the decision is returned to the user, and
plug-ins can adapt to the decision in the post-check
stage.

These phases are mapped to extension points
which PreCheckers, Filters, DecisionMakers, and
PostCheckers can contribute to. This is illustrated
in Listing 3.

Listing 3 The Spamato Base offers several exten-
sion points to control the Spamato Filtering Pro-
cess

<plugin>

<name>Spamato Base</name>

...

<share>

...

<extension-point id="sfp.filters"/>

<extension-point id="sfp.precheckers"/>

<extension-point id="sfp.postcheckers"/>

<extension-point id="sfp.decision_makers"/>

</share>

</plugin>

Several other plug-ins exist and collaborate with
each other. For instance, the Web Config plug-in
is a local web server which offers users and plug-
ins an easy-to-use configuration mechanism using a
common web browser. The Activity Manager plug-
in collects information about the SFP and offers
emails and results to filters and statistic tools. The
complete list and their interactions can be found
on our homepage.

5.3 The Spamato Authentication
and Authorization System

The Spamato Authentication and Authorization
System (SAAS) is used to create unique iden-
tifiers for users who want to interact with the
Trooth system. Additionally, SAAS generates a
public/private key pair with which users (automat-
ically) sign their votes to prevent any cheating and
manipulation attempts.

Since Spamato (and therefore SAAS) is embed-
ded into an email client, SAAS can make use of the
authentication process between the email client and
the server. In other words, if a user is able to re-
ceive an email that has been sent to him via SAAS,
the user is “authenticated” also for Trooth.

In more detail, the first time Spamato is started,
the SAAS client locally generates a public/private
key pair. The public part of this pair and the user’s
email address is sent to an SAAS server (using a
TCP connection) which in turn sends a random
challenge email to the stated address. On receiving
this challenge email, the client signs the message
with its private key and sends it back to the server
(again using a TCP connection). After that, the
user is fully registered with the SAAS server which
stores the user’s public key and the (hashed) email
address.

Please notice that the actual implementation is
slightly more complicated to allow for a reregistra-
tion of users who want to use the same SAAS user
account, for instance, on several machines. Addi-
tionally, the Trooth and SAAS servers need to
exchange data so that the Trooth server can val-
idate a user’s signature. See [27] for a detailed de-
scription.

5.4 Collaborative Spam Filtering

The Earl Grey filter is a collaborative URL filter.
When receiving a new message, it collects all URLs
in the message, extracts the domains, and calcu-
lates a hash value of them. This hash value is sent
to the Earl Grey server which queries a database
to find out whether the message is spam or legit-
imate. Entries in the database are collaboratively
inserted by users who report “spam” or revoke “le-
gitimate” emails (or rather the calculated hashes).
Thus, users help each other to filter spam messages.

Since not all users define the term “spam”
equally—some also declare unwanted newsletters to
be spam while others like to read about online drug
stores—clearly, a system like Trooth is necessary
to handle these different opinions.

In the context of Trooth, the hash values are
the identifiers for items, users are identified with
their email addresses (or their SAAS public key),
and reports and revokes correspond to bad and good
votes. As said before, to prevent malicious users
from harming the system, votes are signed with
a user specific private key. Additionally, the Earl

15

Grey server ignores multiple reports/revokes and
removes contrary votes for the same message and
user.

5.5 Plug-In Evaluation

A dynamic plug-in system allows for the exten-
sion of Spamato even during runtime. All filters,
statistics, sound, logging, and several other com-
ponents are connected as plug-ins to the Spamato
core. Currently, the system consists of “trustwor-
thy” plug-ins only, which are plug-ins that are bun-
dled with the installation version of Spamato and
are written by the same authors. The Peerato plug-
in facilitates the publication of “third-party” plug-
ins, such as custom filters [23]. These plug-ins can
be provided by any foreign developer neither asso-
ciated nor known to the authors of Spamato, so
that plug-ins from these sources have generally to
be suspected first.

Using Trooth, filter developers (or plug-ins in
general) can gain a good reputation by having users
vote in favor of them. The primary goal is to eval-
uate a plug-in in terms of usability or security, that
is, whether it harms (bad votes) the system in any
way or not (good votes). If the usability should be
rated, votes in the range of [0, 1] are of more use.

The email address of a developer (or the hash
value of a plug-in) as identifier on the one hand
and the SAAS identifiers for a user on the other
hand merge the plug-in mechanism and Trooth
to a powerful system to evaluate third-party con-
tributions.

6 Conclusions

In this paper, we have presented a lightweight but
powerful plug-in container. It is incorporated in
the Spamato spam filter system and significantly
helps to manage a well-organized software architec-
ture. Furthermore, we employ the Trooth rating
system to assess plug-ins as well as emails.

Spamato has been in use for almost 18 months
now. It is available for download at: http:
//www.spamato.net, the source code is pub-
lished on SourceForge: http://sf.net/projects/
spamato.

References

[1] “Eclipse Foundation,”
http://www.eclipse.org.

[2] “OSGi Alliance,” http://www.osgi.org.

[3] “Apache Tomcat,” http://tomcat.apache.org.

[4] “The Story of the Avalon Containers,”
http://wiki.apache.org/avalon/ContainerStory.

[5] “Apache Excalibur Fortress,”
http://excalibur.apache.org/fortress.

[6] “PicoContainer,”
http://picocontainer.codehaus.org.

[7] “NanoContainer,”
http://nanocontainer.codehaus.org.

[8] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins, “Recommendation systems: a
probabilistic analysis,” in Proceedings of 39th
IEEE Symposium on Foundations of Com-
puter Science (FOCS), 1998.

[9] J. L. Herlocker, J. A. Konstan, A. Borchers,
and J. Riedl, “An Algorithmic Framework
for Performing Collaborative Filtering,” in
Proceedings of the 1999 Conference of the
American Association of Artificial Intelligence
(AAAI), 1999.

[10] B. Awerbuch, Y. Azar, Z. Lotker, B. Patt-
Shamir, and M. R. Tuttle, “Collaborate With
Strangers To Find Own Preferences,” in Pro-
ceedings of 17th Annual ACM Symposium on
Parallelism in Algorithms and Architectures
(SPAA), 2005.

[11] J. Kleinberg and M. Sandler, “Convergent Al-
gorithms for Collaborative Filtering,” in Pro-
ceedings of ACM Conference on Electronic
Commerce (EC), 2003.

[12] B. Sarwar, G. Karypis, J. Konstan, and
J. Riedl, “Analysis of Recommendation Al-
gorithms for E-Commerce,” in Proceedings
of ACM Conference on Electronic Commerce
(EC), 2000.

16

[13] P. Drineas, I. Kerenidis, and P. Raghavan,
“Competitive Recommendation Systems,” in
Proceedings of 34th ACM Symposium on The-
ory of Computing (STOC), 2002.

[14] B. Awerbuch, B. Patt-Shamir, D. Peleg, and
M. Tuttle, “Improved Recommendation Sys-
tems,” in Proceedings of 16th ACM-SIAM
Symposium on Discrete Algorithms (SODA),
2005.

[15] “SpamAssassin,”
http://spamassassin.apache.org.

[16] Paul Graham, “A Plan for Spam,”
www.paulgraham.com/spam.html.

[17] “SURBL - Spam URI Realtime Blocklists,”
www.surbl.org.

[18] “Vipul’s Razor,” http://razor.sourceforge.net.

[19] R. Segal, J. Crawford, J. Kephart, and
B. Leiba, “SpamGuru: An Enterprise Anti-
Spam Filtering System,” in Proceedings of the
First Conference on E-mail and Anti-Spam,
2004.

[20] “Cloudmark Desktop,” www.cloudmark.com.

[21] “SpamPal,” www.spampal.org.

[22] P. Oreizy, N. Medvidovic, and R. N. Taylor,
“Architecture-based Runtime Software Evo-
lution,” in Proceedings of 20th International
Conference on Software Engineering (ICSE),
1998.

[23] M. Ackermann, “Spamato Goes P2P,” Master
Thesis, Federal Institute of Technology Zurich
(ETHZ), 2005.

[24] I. Stoica, R. Morris, D. Karger, M. F.
Kaashoek, and H. Balakrishnan, “Chord: A
Scalable Peer-to-peer Lookup Service for Inter-
net Applications,” in Proceedings of the 2001
ACM SIGCOMM Conference, 2001.

[25] P. Maymounkov and D. Mazieres, “Kademlia:
A Peer-to-peer Information System Based on
the XOR Metric,” in Proceedings of the 1st
International Workshop on Peer-to-Peer Sys-
tems (IPTPS), 2002.

[26] K. Albrecht, N. Burri, and R. Wattenhofer,
“Spamato – An Extendable Spam Filter Sys-
tem,” in Proceedings of 2nd Conference on
Email and Anti-Spam (CEAS), 2005.

[27] S. Schlachter, “Spamato Reloaded,” Master
Thesis, Federal Institute of Technology Zurich
(ETHZ), 2004.

[28] R. Meier, “Spamato Plug-in Architecture,”
Semester Thesis, Federal Institute of Technol-
ogy Zurich (ETHZ), 2005.

17

