
Distributed

 Computing

Prof. R. Wattenhofer

Evaluating Performance Limits of BFT Protocols

A distributed system consists of n nodes. The system is byzantine
fault tolerant (BFT) if it can tolerate at most f < n

3 arbitrarily ma-
licious (byzantine) nodes. BFT protocols have been studied in great
detail since many decades, both in theory and practice. Nowadays,
BFT protocols are the key to building “permissioned blockchains”,
an area traditionally known as “state machine replication” [9, 10].

In practice, BFT protocols have many applications ranging from
online shopping to credit card transactions, cryptocurrencies and
stock market trades; whenever a set of clients makes concurrent re-
quests for (or with) limited resources, the service providers have an
interest to both prevent fraudulent and tolerate faulty behaviour in
the system.

From a research perspective, the interest in BFT systems has first been reignited by
Castro and Liskov when they presented their “Practical” BFT (PBFT) system [2]. Af-
ter PBFT, a large number of other BFT systems emerged [8, 11, 5, 12, 13, 1, 7, 3, 4, 6].

Many of these systems try to minimize the delay
until transactions are committed. The aim of this
research domain is to design systems that are prac-
tical, that is, systems that provide strong theoretic
safety guarantees (e.g. may cope with arbitrary bad
networking conditions), but do not incur an unpro-
portional overhead during “normal operation” [2].
However, they do not specifically consider the im-
pact of different network topologies and practical
circumstances affecting the latency and throughput
of the system. They simply show that, eventually,

a non-byzantine leader will be in charge of driving progress for a sufficiently long time period
such that the system does not stall completely.

In this project we aim to evaluate the peak performance limits of a multi-leader BFT
system that was developed at our group. To that end, we will adapt an existing BFT
protocol’s implementation for fair comparison of the protocols’ throughput and latency on
the same set of machines. Practical optimizations to reach exceptional throughput may also
be part of this project.

Requirements: The expected outcome of this project is of practical nature; hence, you
should be comfortable with programming in C++. Progress, open problems and new ideas
will be discussed in weekly meetings!

Contacts

• Roland Schmid: roschmi@ethz.ch, ETZ G94

• Zeta Avarikioti: zetavar@ethz.ch, ETZ G95

mailto:Roland Schmid <roschmi@ethz.ch>
mailto:Zeta Avarikioti <zetavar@ethz.ch>

References

[1] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on bft consensus. arXiv
preprint arXiv:1807.04938, 2018.

[2] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

[3] T. H. Chan, R. Pass, and E. Shi. Pala: A simple partially synchronous blockchain,
2018.

[4] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling byzantine
agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 51–68. ACM, 2017.

[5] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K. Reiter, D.-A.
Seredinschi, O. Tamir, and A. Tomescu. SBFT: a scalable decentralized trust infras-
tructure for blockchains. arXiv preprint arXiv:1804.01626, 2018.

[6] M. M. Jalalzai, C. Busch, and G. Richard III. Proteus: A scalable BFT consesus
protocol for blockchains. arXiv preprint arXiv:1903.04134, 2019.

[7] A. Kiayias and A. Russell. Ouroboros-BFT: A simple byzantine fault tolerant consen-
sus protocol. Technical report, Cryptology ePrint Archive, Report 2018/1049, 2018.
https://eprint.iacr.org, 2018.

[8] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: speculative byzan-
tine fault tolerance. In ACM SIGOPS Operating Systems Review, volume 41, pages
45–58. ACM, 2007.

[9] L. Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM
Transactions on Programming Languages and Systems (TOPLAS), 6(2):254–280, 1984.

[10] F. B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[11] Y. J. Song and R. van Renesse. Bosco: One-step byzantine asynchronous consensus. In
International Symposium on Distributed Computing, pages 438–450. Springer, 2008.

[12] J. Sousa, E. Alchieri, and A. Bessani. State machine replication for the masses with
bft-smart. 2013.

[13] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. Hotstuff: Bft consensus
in the lens of blockchain. arXiv preprint arXiv:1803.05069, 2018.

2

