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Abstract. This article presents optimization results on the recent MOVA
undeniable signature scheme presented by Monnerat and Vaudenay at
PKC ’04 as well as its generalization proposed at Asiacrypt ’04 which is
based on a secret group homomorphism. The original MOVA scheme uses
characters on Z∗n and some additional candidates homomorphisms were
proposed with its generalization. We give an overview of the expected
performances of the MOVA scheme depending on the group homomor-
phism. Our optimizations focus on the quartic residue symbol and an
homomorphism based on the computation of a discrete logarithm in a
hidden subgroup of Z∗n. We demonstrate that the latter provides a sig-
nature generation which is three times faster than RSA.
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1 Introduction

Undeniable signatures, which have been introduced by Chaum and van Antwer-
pen in [1], differ from classical digital signatures in the verification process.
Contrary to classical digital signatures, where anyone holding the public key of
the signer is able to verify whether a given signature is valid or not, one has to
interact with the signer to be convinced of the validity or the invalidity of the
signature. This interaction enables the signer to control the distribution of the
signature verification. An undeniable signature scheme therefore consists of a key
setup algorithm and a signature generation algorithm, as well as an interactive
verification protocol. This protocol is composed of a confirmation and a denial
protocol which allow to prove the validity resp. the invalidity of the signature.

In March 2004, a new undeniable signature scheme called MOVA was pro-
posed by Monnerat and Vaudenay [12]. More recently, the same authors gener-
alized this scheme to the more general framework of group homomorphisms [13].
Namely, the MOVA scheme can be seen as the particular case where the underly-
ing homomorphism is a character on Z∗n. When the choice of the homomorphism
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is adequate (as for MOVA), this signature scheme allows signatures to be arbi-
trarily short (typically around 20–30 bits), depending on the required security
level.

The goal of this paper is to optimize the signature generation algorithm of
the generalized scheme based on group homomorphisms and to present a com-
parison of the signature generation efficiency between the group homomorphisms
considered as potential candidates. In particular, we focus on the optimization of
characters of order 4 which requires to deal with algorithms computing the quar-
tic residue symbol. Moreover, one quartic residue symbol variant is of particular
interest since it is the only homomorphism presenting the special property of
having two levels of secret. We propose an application of this property where a
delegate of a company needs to sign some pre-agreement of a transaction which
will be finalized later by the company using an additional level of secret. We
also analyze the case of a homomorphism proposed in [13] consisting of sending
elements of Z∗n to a cyclic subgroup followed by the computation of a discrete
logarithm. We give details on an implementation using a precomputed table of
discrete logarithms. A comparison with practical parameters (e.g., a modulus
n of 1024 bits) with the Jacobi symbol as well as RSA using standard efficient
methods is presented at the end of this article. Our implementations are done
in C using the large numbers library GMP [6].

2 The MOVA Scheme

For the sake of simplicity, the generalized scheme [13] will be called MOVA as
well. Below we review the main ideas and the signature generation algorithm of
this undeniable signature scheme.

First, let us recall some basic definitions from [13] related to the interpolation
of group homomorphisms.

Definition 1. Let G and H be two Abelian groups.

1. Given S := {(x1, y1), . . . , (xs, ys)} ⊆ G×H, we say that the set of points S
interpolates in a group homomorphism if there exists a group homomorphism
f : G −→ H such that f(xi) = yi for i = 1, . . . , s.

2. We say that a set of points B ⊆ G×H interpolates in a group homomorphism
with another set of points A ⊆ G × H if A ∪ B interpolates in a group
homomorphism.

The central idea of the generalized MOVA scheme is to consider a secret group
homomorphism Hom between two publicly known Abelian groups Xgroup and
Ygroup as the signer’s secret key. The order of the group Ygroup is public and
is denoted as d. The signer then chooses a set Skey ⊆ Xgroup×Ygroup of Lkey
points such that Skey interpolates in a unique homomorphism, namely Hom. The
signer chooses Skey := {(Xkey1, Ykey1), . . . , (XkeyLkey,YkeyLkey)} in varying
ways depending on the choice of one of the setup variants presented in [13]. The
size of the parameter Lkey depends on the setup variant choice too. Then, to



sign a given message m the signer computes Lsig values Xsig1, . . . , XsigLsig ∈
Xgroup from m by using a random oracle and computes Hom(Xsigi) := Ysigi

for 1 ≤ i ≤ Lsig. Finally, the signature of m with respect to the secret key Hom
is

σ := (Ysig1, . . . , YsigLsig).

In the verification step, the verifier will first send the message-signature
pair (m,σ) he would like to verify. If the pair is valid, the signer launches
a confirmation protocol with the verifier in which he proves that the set of
points {(Xkey1, Ykey1), . . . , (XkeyLkey, YkeyLkey)} interpolates in a group homo-
morphism (namely Hom) with the set {(Xsig1,Ysig1), . . . , (XsigLsig,YsigLsig)}.
Otherwise, the signer launches a denial protocol in which he proves that the
set of points {(Xkey1, Ykey1), . . . , (XkeyLkey,YkeyLkey)} does not interpolate in
a group homomorphism with the set {(Xsig1,Ysig1), . . . , (XsigLsig,YsigLsig)}.
More details about the confirmation and denial protocols can be found in [13].

We state the so-called “Group Homomorphism Interpolation Problem” in-
troduced in [13].

S-GHI Problem (Group Homomorphism Interpolation Problem)
Parameters: two Abelian groups G and H, a set of s points S ⊆ G×H.
Input: x ∈ G.
Problem: find y ∈ H such that (x, y) interpolates with S in a group

homomorphism.

It is shown in [13] that the resistance of this scheme against existential forgery
under a chosen-message attack relies on the hardness of the GHI problem with
parameters G = Xgroup, H = Ygroup and S = Skey. Hence, for a homo-
morphism (more formally a family of homomorphisms) for which the Skey-GHI
problem is hard, we can assume that there is no easier method to forge a signa-
ture than performing an exhaustive search. Furthermore, if the homomorphism
is such that it is hard to find any information bit on y in the Skey-GHI problem,
the security level against an existential forgery attack depends exactly on the
signature size which is Lsig · log2(d).

3 Homomorphisms

In this section, we briefly describe some instances of the group homomorphism
Hom considered in [13] such as characters on Z∗n [12], the RSA encryption ho-
momorphism [5, 14] or the discrete logarithm in a hidden subgroup [13].

3.1 Characters on Z∗
n

Definition 2. Let n be an integer. A character χ on Z∗n is a group homomor-
phism from Z∗n to C− {0} i.e.,

χ(ab) = χ(a)χ(b) for all a, b ∈ Z∗n.



The characters on Z∗n form a group with respect to the composition of func-
tions. The order of a character χ is its order with respect to the group of char-
acters. It is important to note that a character of order d maps any element to a
dth root of the unity. In the MOVA scheme, the study focused on the characters
of order 2, 3 and 4. In this article, we will not consider the case d = 3 since the
algorithmic issues are similar to the case d = 4.

For more details about characters, we refer to the article on the MOVA
scheme [12] and the textbook of Ireland and Rosen [7].

Jacobi Symbol We consider a public modulus n = pq where p, q are two large
secret primes. From the theory of characters, it directly follows that there exist
exactly 4 characters of order 2 on Z∗n, namely the Jacobi symbols (·/n)2, (·/p)2,
(·/q)2 and the trivial character. Note that the Jacobi symbol (·/n)2 and the
trivial character are not suitable for our purpose since they can be efficiently
computed without the knowledge of the factorization of n.

Quartic Characters The theory of the characters of order 4 naturally occurs
in the context of Gaussian integers. We recall the required background related
to our study. Most of these results are taken from [7].

The ring of the Gaussian integers is defined as

Z[i] := {a + bi | a, b ∈ Z}.
The norm of an element α = a + bi is defined as N(α) = α · ᾱ = a2 + b2, where
ᾱ denotes the complex conjugate of α. Z[i] is well known to be Euclidean which
implies that we can talk about the gcd of two Gaussian integers and there is an
Euclidean division: given α, β ∈ Z[i] with β 6= 0, there exists γ, δ ∈ Z[i] s.t.
α = γβ +δ and N(δ) < N(β). Note that γ and δ are not necessarily unique. The
units (invertible elements) of Z[i] are ±1, ±i. We say that two elements α, β are
associate if and only if α = uβ for a unit u. The gcd of two Gaussian integers is
uniquely defined up to an associate. Moreover, we say that two Gaussian integers
α and β are relatively prime iff the only common divisors are units, i.e., their gcd
is a unit. In this case we will use the notation gcd(α, β) ∼ 1. Any prime element
of Z[i] is of the following form or the associate of an element of this form:

1. 1 + i
2. q ≡ 3 (mod 4) a prime in Z
3. π such that N(π) ≡ 1 (mod 4) is a prime in Z

Any Gaussian integer has a unique decomposition into primes up to a unit.
For any prime σ ∈ Z[i], the quotient Z[i]/(σ) is a field with N(σ) element. This
allows to define the quartic residue symbol.
Definition 3. Let α, β ∈ Z[i] be such that (1 + i) - β and gcd(β, α) ∼ 1. The
quartic residue symbol is defined as χβ : Z[i]→ {±1,±i}

χβ(α) =





u such that α
N(β)−1

4 ≡ u (mod β), u ∈ {±1,±i}, if β is prime
∏

i χβi(α), if β =
∏

i βi, βi prime



The quartic residue symbols which are considered for MOVA [12] are chosen
as follows. Let p, q be two rational primes such that p ≡ q ≡ 1 (mod 4). There
exist π, σ such that p = ππ̄ and q = σσ̄. π and σ can be computed with the
help of the algorithms of Tonelli and Cornacchia (for more details see [3]). Then,
we choose Hom = χβ with β = π or β = πσ. Moreover, we take Xgroup := Z∗n
which is a natural choice since Z[i]/(πσ) ' Zn and Z[i]/(π) ' Zp.

From the properties of the quartic residue symbol and the Jacobi symbol,
we can show that (χπσ(a))2 = (a/n)2 for any a ∈ Z. Therefore, without the
knowledge of the factorization of n we can easily deduce one bit of χπσ(a). In
practice, we will compress this quartic residue symbol to one bit sending 1, i
to the bit 0 and −1,−i to the bit 1. To decompress, it suffices to compute the
Jacobi symbol to retrieve the right quartic residue symbol. Hence, with this
quartic residue symbol we have to perform two times more evaluations than
with χπ for the same level of security against an existential forgery. This shows
that the signature generation will be anyway less efficient for χπσ than for χπ.

A motivation for using χπσ is, that this character has two levels of secret,
namely the secret key πσ does not allow to factorize n. As mentioned in [13]
an expert group knowledge of the group Z∗n is required in order to convert a
signature into an ordinary one. Here, this expert group knowledge corresponds
to the ability to factorize. Hence, we can imagine an application where a mobile
delegate of a company is able to sign some pre-agreement of some contracts or
transactions using χπσ which can be confirmed by a server of the company. Later,
the delegate sends a report to his company, which then can issue an ordinary
signature for a final agreement by converting the signature of the delegate. In
such a scenario, even if the delegate loses his key or it is stolen, he can contact
his company before a confirmation of the signature is performed. In any case,
the company never converts a signature before it is convinced that the delegate
key was not lost or stolen.

3.2 RSA

Following the long tradition of the RSA based cryptography, an undeniable sig-
nature scheme based on RSA [14] was proposed in 1997 by Gennaro et al.[5].
This scheme can be seen as a special case of the generalized MOVA scheme when
the homomorphism is the RSA encryption function defined on a modulus of safe
primes. So, the signature is generated as for the regular RSA signature scheme.

3.3 Discrete Logarithm in a Hidden Subgroup

Another homomorphism suitable for the generalized MOVA scheme is based on
the discrete logarithm in a hidden subgroup.

Let n be such that n = pq with p = rd + 1, q, d prime, gcd(q − 1, d) = 1,
gcd(r, d) = 1 and g generating a subgroup of Z∗p. We obtain g by choosing a
random element h ∈ Z∗n until h satisfies hr mod p 6= 1 and we set g = hr mod p.
Like this we find a homomorphism by “sending” the input in a hidden cyclic



subgroup of order d and then computing its discrete logarithm with respect to
the generator g,

φ : Z∗n −→ Zd

x 7−→ logg(xr mod p).

4 Quartic Residue Symbol

4.1 Background

We recall some properties of the quartic residue symbol which play a crucial
role in the algorithms we will consider. To this end, we introduce the notion of
“primarity”.

We say that a Gaussian integer α = a + bi is primary if and only if either
a ≡ 1 (mod 4), b ≡ 0 (mod 4) or a ≡ 3 (mod 4), b ≡ 2 (mod 4). It can be
shown that for any nonunit α ∈ Z[i] with (1 + i) - α, there is a unique associate
of α which is primary.

Theorem 4. Let β = a + bi, α and α′ be some Gaussian integers such that
gcd(β, α) ∼ gcd(β, α′) ∼ 1 and (1 + i) - β. The following properties hold.

1. Modularity: If α ≡ α′ (mod β) then χβ(α) = χβ(α′).
2. Multiplicativity: χβ(αα′) = χβ(α)χβ(α′).
3. Quartic Reciprocity Law: If α and β are primary,

χα(β) = χβ(α) · (−1)
N(α)−1

4 ·N(β)−1
4 .

4. Complementary Reciprocity Laws: If β is primary,

χβ(i) = i
N(β)−1

4 and χβ(1 + i) = i
a−b−b2−1

4 .

4.2 Basic Algorithm

Description To compute the quartic residue symbol χβ(α) directly, one has
to know the factorization of β into primes over Z[i] and the computation con-
tains an exponentiation. To avoid this factorization as well as the costly ex-
ponentiation we apply the properties of the quartic residue symbol iteratively.
First we reduce α to an element α̂ equivalent to α modulo β and that satisfies
N(α̂) < N(β). From now on, such a reduction of an element α modulo β will
be denoted Redβ(α). Note that the obtained α̂ ← Redβ(α) is not necessarily
unique. Then, we find the unique representation α̂ = ij · (1 + i)k · α′ with α′

primary and employ the multiplicativity property and the complementary laws
of the quartic residue symbol. Next, we interchange α and β according to the
law of reciprocity and start again. Hence, the size of both α and β decrease
progressively. We stop the iteration process when α or β is a unit. The detailed
algorithm is described in Algorithm 1.



Algorithm 1 Basic Algorithm Quartic Residuosity in Z[i]
Require: α, β ∈ Z[i] \ {0}, gcd(α, β) ∼ 1 and (1 + i) - β
Ensure: c = χβ(α) (c = 0⇔ χβ(α) is not defined)
1: α← Redβ(α)
2: if α = 0 then c = 0 end if
3: let primary α1, β1 ∈ Z[i] be defined by

α = (i)i1 · (1 + i)j1 · α1 and
β = (i)i2 · β1

4: let m, n ∈ Z be defined by β1 = m + ni

5: t← m−n−n2−1
4

j1 + m2+n2−1
4

i1 mod 4
6: replace α with β1, β with α1

7: t← t + (N(α)−1)(N(β)−1)
8

mod 4
8: while N(α) > 1 do
9: (LOOP INVARIANT: α, β are primary)

10: α← Redβ(α)
11: let primary α1 be defined by α = (i)i1 · (1 + i)j1 · α1

12: let m, n ∈ Z be defined by β = m + ni

13: t← t + m−n−n2−1
4

j1 + m2+n2−1
4

i1 mod 4
14: replace α with β, β with α1

15: t← t + (N(α)−1)(N(β)−1)
8

mod 4
16: end while
17: if N(α) 6= 1 then c← 0 else c← it end if

Computation of Related Subfunctions For this algorithm we have to im-
plement a few functions for calculating basic operations in the ring of Gaussian
integers (let α, β ∈ Z[i]):

1. Multiplication: α · β
2. Modular reduction: Redβ(α)
3. Norm: N(α)
4. Division by (1 + i)r

5. Primarisation: transforms α into its primary associate if possible

The multiplication and the norm are trivially implemented by performing
integer multiplications between the appropriate integer components.

The division of α by (1+ i)r can be done by first raising (1+ i) to the power
of r and then dividing α by the result. We propose a way of achieving the same
by only using shift operations, additions, and interchanging the imaginary and
real part if necessary. The following equations demonstrate our procedure. Let
α = a + bi,

α

(1 + i)
=

a + b

2
+

b− a

2
i,

α

(1 + i)r
=

i3k
(

a
2k + b

2k i
)

(1 + i)`
, r = 2k + `.



If r = 2k, k ∈ N we shift the real and the imaginary parts of α by k to the right
and multiply them by −1 and/or interchange them depending on the value of
3k. If r is odd, there is an additional subtraction and addition to perform.

The primarisation function we used consists of a few congruency tests and
it also determines the number of times we have to multiply α by i to get the
primary associate of α.

The computation of Redβ(α) is done according to [9] using an Euclidean
division and rounding appropriately.

To find the representation of α we proceed as follows. First calculate the
norm of α, N(α). Then find j maximal such that 2j | N(α). Divide α by (1+ i)j

and transform the result into its primary associate.
In the implementation of the algorithm we need to ensure (1 + i) - β and

gcd(α, β) ∼ 1. The first requirement is taken care of by applying the primarisa-
tion function on β. If we cannot find a primary associate, β is divisible by (1+ i)
and we terminate. For the second condition we check in every iteration whether
Redβ(α)→ 0. This would imply gcd(α, β) 6∼ 1 and we terminate.

4.3 Algorithm of Damg̊ard and Frandsen

Description The most expensive operation used in the algorithm described
above is Redβ(α). Damg̊ard and Frandsen present in [2] an efficient algorithm
for computing the cubic residue symbol in the ring of Eisenstein integers Z[ζ].
Their algorithm can be transformed into an algorithm for the quartic residue
symbol in the ring of Gaussian integers.

There are three main differences to the basic algorithm. Instead of using
Redβ(α) to reduce α, they suggest using α − β. This takes much less time but
increases the number of iterations needed. Furthermore they only interchange
α and β, if N(α) < N(β). It is not necessary to calculate N(·) exactly for
this purpose, an approximation Ñ(·) suffices. They demonstrate how one can
compute an approximate norm Ñ(α) in linear time. Instead of adding up the
squares of the real and the imaginary part of α, one replaces all but the 8 most
significant bits of the real and the imaginary part of α with zeroes and computes
the norm of the resulting Gaussian number.

Their algorithm takes O(log2 N(αβ)) time to compute χβ(α).

4.4 Other Algorithms

In addition to the above, we studied papers concerning algorithms for the quartic
residue symbol by Weilert. In [17] he presents a fast gcd algorithm for Gaussian
integers. Based on this gcd algorithm and using some properties of the Hilbert
symbol he demonstrates in [18] how to construct an algorithm for the quartic
residue symbol. This algorithm involves calculating an Euclidean descent and
storing some intermediate results for later use. This algorithm presents a very
fast asymptotic complexity which is even better than that of Damg̊ard and
Frandsen.



Algorithm 2 Damg̊ard and Frandsen’s Algorithm Quartic Residuosity in Z[i]
Require: α, β ∈ Z[i] \ {0}, gcd(α, β) ∼ 1 and (1 + i) - β
Ensure: c = χβ(α) (c = 0⇔ χβ(α) is not defined)
1: let primary α1, β1 ∈ Z[i] be defined by

α = (i)i1 · (1 + i)j1 · α1 and
β = (i)i2 · β1

2: let m, n ∈ Z be defined by β1 = m + ni

3: t← m−n−n2−1
4

j1 + m2+n2−1
4

i1 mod 4
4: replace α with α1, β with β1

5: if Ñ(α) < Ñ(β) then
6: interchange α and β and adjust t

t← t + (N(α)−1)(N(β)−1)
8

mod 4
7: end if
8: while α 6= β do
9: (LOOP INVARIANT: α, β are primary)

10: let primary α1 be defined by α− β = (i)i1 · (1 + i)j1 · α1

11: let m, n ∈ Z be defined by β = m + ni

12: t← t + m−n−n2−1
4

j1 + m2+n2−1
4

i1 mod 4
13: replace α with α1

14: if Ñ(α) < Ñ(β) then
15: interchange α and β and adjust t

t← t + (N(α)−1)(N(β)−1)
8

mod 4
16: end if
17: end while
18: if α 6= 1 then c← 0 else c← it end if

However, as mentioned by Damg̊ard et al. in [2], the fastest algorithms for
practical inputs in the case of the Jacobi symbol are based on binary gcd al-
gorithms [11]. Weilert proposed a binary gcd algorithm for Gaussian integers
in [16] as well, but did not adapt it to the computation of the quartic residue
symbol. Algorithms for cubic and quartic residue symbols taking this approach
was proposed by Damg̊ard et al. in [2] arguing that this is likely to provide a
more efficient algorithm than the asymptotically fast variant of Weilert [18] in
practice. Therefore, we have chosen to implement Algorithm 2 which takes this
binary approach since we need a fast algorithm for practical inputs rather than
the best asymptotic complexity.

5 Discrete Logarithm in a Hidden Subgroup

One suitable homomorphism for the generalized MOVA scheme is the one men-
tioned in Subsection 3.3. This homomorphism φ satisfies φ(x) = logg(xr mod p).
It consists of a modular exponentiation followed by a discrete logarithm compu-
tation. The modular exponentiation can be implemented by the classical meth-
ods such as the square-and-multiply method. For the discrete logarithm compu-
tation we consider three variants which are the use of a precomputed table of all
discrete logarithms, the Baby Step Giant Step (BSGS) algorithm and Pollard’s



Rho method. The choice of the algorithm will strongly depend on the amount of
memory the signer has at disposal, namely the Pollard’s Rho method requires
almost no memory while the BSGS method is a time-memory tradeoff. Below we
discuss the method of precomputed table and we refer to [10] for a description
of the two other methods.

Given p prime, g a generator of a cyclic group G, subgroup of Z∗p, and d = |G|,
we construct a table with entries (gj , j) for 0 ≤ j ≤ d. Building this table is a
very time and memory consuming task, but once the table exists, finding the
discrete logarithm consists of a simple look up operation.

There are several ways of constructing such a table. One can use a two dimen-
sional array and sorting it by the first component. Finding the discrete logarithm
is then reduced to a binary search. Alternatively, one can use conventional hash-
ing on the first component to store the entries in a hash table, in which case
placing an entry and searching for an entry in the table takes constant time.
Another advantage is the fact, that we do not need space for gi. Especially when
p À d, this can save an enormous amount of memory. The only difficulties are
finding a suitable hash function and dealing with collisions without losing too
much time.

Time complexity of the construction of the table is O(d) multiplications (plus
O(d log d) comparisons to sort). Space complexity is O(d(log d + log p)) for the
sorted table, resp. O(d log d) for the hash table. The running time for the sorted
table is O(log d), for the hash table O(1).

6 Implementation

The implementation of all algorithms has been written in C using the GNU
Multiple Precision Arithmetic Library (GMP) [6]. This library provides highly
optimized arithmetic functions on large numbers. Most of the basic computations
in Z have been performed using GMP such as integer multiplication or the
modular exponentiation. For all implemented homomorphisms, we focused on
the case where the modulus n is of size of 1024 bits.

6.1 Quartic Residue Symbol

Our principal optimization effort focused on the two algorithms computing the
quartic residue symbol. In particular, we minimized the number of function calls,
used some of the more sophisticated GMP functions, reduced the number of
mpz t (C data type for a multiple precision integer) variables whenever possible
and applied general C optimization techniques such as described in [4, 8]. In
addition, we used profiling and tried out different compiler optimization levels.

The basic algorithm has been implemented using the above remarks as well
as the methods for computing the subfunctions which are explained in Subsec-
tion 4.2. We proceed in the same way for the algorithm of Damg̊ard and Frand-
sen. Additionally, we tested whether the use of an approximative norm allows to
obtain effective improvements. We implemented both the standard norm and the



norm Damg̊ard and Frandsen suggest. The standard norm consists of only two
GMP functions: one multiplication and one combined addition/multiplication
whereas the approximate norm involves one bit scan to determine the size of the
real part, one shift operation to extract the 8 most significant bits, one multi-
plication for the squaring of these 8 bits and another shift operation to put the
result back to its correct position. We apply the same procedure on the imagi-
nary part and we add the two approximate squarings up. In short, we need four
additional operations to reduce the size of the numbers we have to multiply.

As GMP is a highly optimized library, computing the standard norm takes
little time and the additional operations of the approximate norm only amortise
if the real and the imaginary part are larger than 2048 bits. This and the fact
that the norm of α and β decreases with each iteration convinced us to use the
standard norm instead.

6.2 Discrete Logarithm

Here, we would like to present how we manage the computation of the discrete
logarithm in the case of the precomputed table.

In this suggested variant of the generic homomorphic signature scheme, p is
typically a 512 bit and d a 20 bit prime. Creating a table with d entries of size
532 bits is impossible on a usual desktop computer. Therefore we decided to use
a hash table (key 512 bits, data 20 bits, 220 entries). We found some existing
hash table data structures written in C, but they do not fulfill our requirements.
They are either too slow, support C types only, do not allow tables that large
and/or they store the key as well.

To avoid problems, we did not adapt any of the existing data structures,
but implemented a hash table ourselves providing enough storage and a collision
handling mechanism suitable for our needs. Our solution is a hash table consist-
ing of an array of unsigned integers. This array is of maximal length (224) to
reduce collisions.

An unsigned integer is 32 bits long, so it was possible to store the data for
the logarithm as well as using one of the higher order bits as a flag for collisions.
Because the key is large and we wanted to avoid any unnecessary computation,
we chose to use the 24 least significant bits of the key as the index into the hash
table, in case of collision the next 24 bits, etc. By selecting 24 bits instead of
the possible 20 bits, we minimize the occurrence of collisions. Tests have shown
that most collisions are resolved by choosing the next 24 bits. We tried out other
hash functions, but we did not achieve a gain of speed. This way, the size of the
table is 64 MB.

To find the correct discrete logarithm for y ∈ G, one has to check if the
collision flag at the corresponding array field is set, to decide if one can return
the logarithm stored in the field or if one has to continue with the next field.

The implementation of the BSGS was done in a similar way. As the table
contains much less entries, collisions hardly ever occur. The implementation of
the Pollard’s Rho method did not require any special treatment.



7 Results

In this section we present the results of the timing measurements we conducted
to determine how well the different algorithms perform. In order to measure the
running time precisely, we used functionalities offered by frequence cpu.h by
Victor Stinner [15]. The tests have been done on an Intel(R)4 1.4 GHz Desktop
Computer with 256 MB RAM. Our results are average values produced by test
series of 1000 tests.

7.1 Quartic Residue Symbol

We have considered the quartic residue symbol χβ(α) where α is a Gaussian
integer with real and imaginary part of 1024 bits and β = πσ a product of two
primes and of size of 512 bits in each component. In such a situation, we have to
consider a variant of the Damg̊ard and Frandsen algorithm, we call the mixed
algorithm. Namely, since α is much bigger than β it is more efficient in this case
to compute first α̂← Redβ(α) and apply the Damg̊ard and Frandsen algorithm
on χβ(α̂). Timed results and number of iterations are given in Table 1.

time in ms iterations

Basic algorithm 32.12 248.81
Damg̊ard’s algorithm 50.63 766.12
Mixed algorithm 24.65 511.92

Table 1. Quartic Residue Symbol with β = πσ

The mixed algorithm is then the most judicious choice for fast implementa-
tions. The same phenomenon occurs for the case β = π as well.

7.2 Signature Generation

Here, we finally compare the time required for generating a MOVA signature
with the different homomorphisms. We consider a signature size of 20 bits. We
omit the time required by the generation of the values Xsigi’s. Hence, we just
have to compare the time required for computing 20 Jacobi symbols (·/p)2 (or
(·/q)2), 20 quartic residue symbols with β = πσ, 10 quartic residue symbols with
β = π, 1 homomorphism based on the discrete logarithm in a hidden subgroup
and 1 RSA homomorphism. We recall that for all these homomorphisms, we take
a modulus n of size of 1024 bits. Results are given in Table 2.

We have implemented the Jacobi symbol using a similar algorithm as Al-
gorithm 1 and the basic GMP subroutines in order to have a fair comparison
with our implementation of the quartic residue symbol. We note that the highly
optimized GMP implementation of the Jacobi symbol mpz jacobi provides the
fastest signature generation and that the quartic residue symbol χπ is about 4



Homomorphism time in ms

Quartic Residue Symbol (β = πσ) 493.01
Quartic Residue Symbol (β = π) 90.32
Jacobi Symbol (ordinary algorithm) 25.22
Jacobi Symbol (mpz jacobi) 2.32
Discrete Logarithm (Precomputed Table) 9.66
Discrete Logarithm (BSGS) 19.47
Discrete Logarithm (Pollard’s rho) 74.93
RSA 33.87

Table 2. Results Comparison Signature Schemes

times slower than our implementation of the Jacobi symbol. This is mainly due
to the fact that all operations are performed in Z[i] instead of Z. We remark
that the variant χπσ is much slower than for χπ since we have to perform two
times more quartic residue computations and that β is two times greater. The
variants of the discrete logarithm offer a very competitive homomorphism. In
particular, except for the variant using the Pollard’s rho method this homomor-
phism is even more efficient than RSA. Finally, we can see that a 20-bit MOVA
signature can be three times faster than a regular RSA signature.

8 Conclusion

We provided an overview of the implementation of the different candidates ho-
momorphisms for the generalized MOVA scheme. Our principal case study con-
cerned the quartic residue symbol, since the literature dedicated to its imple-
mentation is poor. We showed that the signature generation of the most efficient
variant of the quartic residue symbol takes a little bit more than three times our
implementation of the Jacobi symbol. The principal reason is that arithmetic
operations are performed in Z[i] which are more costly than in Z. We motivated
the use of another variant of quartic residue symbol with two levels of secret
by showing an application. This variant is the least efficient homomorphism of
our comparison and requires about half a second to perform a signature gener-
ation on a classical workstation. When the signer has at least 64 MB memory,
we demonstrated that using the homomorphism based on the discrete logarithm
gives the most efficient signature generation after the Jacobi symbol implemen-
tation of GMP. However, if we take into account the cost of the confirmation
protocol, this homomorphism is preferable to the characters. Finally, it is worth-
while to note that this implementation is about three times faster than a regular
RSA signature scheme. We provided a clear overview of expected MOVA per-
formances depending on the choice of the group homomorphism. Future work
should further consider implementations with protection against side channels.
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