Hard-Potato Routing

*
Costas Busch
Brown University

Providence, Rhode Island

cb@cs.brown.edu

ABSTRACT

We present the first hot-potato routing algorithm for the
n X n mesh whose running time on any “hard” (i.e., Q(n))
“many-to-one” batch routing problem is, with high proba-
bility, within a polylogarithmic factor of optimal. For any
instance [of a batch routing problem, there exists a well-
known lower bound LB; based on maximum path length
and maximum congestion. If LBy is Q(n), our algorithm
solves I with high probability in time O(LB; - log® n). The
algorithm is distributed and greedy, and it makes use of a
new routing technique based on multi-bend paths, a depar-
ture from paths using a constant number of bends used in
prior hot-potato algorithms.

1. INTRODUCTION

A hot-potato (or deflection) routing algorithm is a packet
routing algorithm in which nodes don’t have buffers to store
packets in transit: any packet that arrives at a node other
than its destination must immediately be forwarded to an-
other node. Hot-potato routing algorithms have been ob-
served to work well in practice and have been used in parallel
machines such as the HEP multiprocessor [17], the Connec-
tion machine [10], and the Caltech Mosaic C [16], as well as
high speed communication networks [14]. Hot-potato rout-
ing algorithms are well-suited for optical networks [1; 9; 14;
19; 20] because it is difficult to buffer optical messages.
The network we consider here is the two-dimensional n x n
mesh, one of the simplest networks for multiprocessor ar-
chitectures. The nodes in the network are synchronized,
namely, time is discrete and in each time step a node re-
ceives packets from its adjacent nodes, then makes routing
decisions, and then forwards the packets to the adjacent
nodes according to the routing decisions. At each time step
a node 1s allowed to send at most one packet per link.

*Supported by NSF grant DMS-9505949.
J[Supported by NSF grant DMS-9505949.

+
*Supported by the Swiss National Science Foundation.

. oo
Maurice Herlihy
Brown University
Providence, Rhode Island

herlihy@cs.brown.edu

+
Roger Wattenhofer
Brown University
Providence, Rhode Island

roger@cs.brown.edu

We consider “many-to-one” batch routing problems. In a
batch routing problem each node is the source of exactly
one packet at time zero. We are interested in finding how
much time is needed until all the n® packets reach their
destinations. Batch routing problems are “many-to-one” in
the sense that a node may be the destination of multiple
packets.

Figure 1: Packets with destinations in a region

Mansour and Patt-Shamir [13] have noted that there is a
trivial lower bound for problems of this kind. If a packet’s
source and destination are separated by distance d, then
no routing algorithm can deliver that packet in fewer than
d steps. The maximum such distance a packet must tra-
verse in a routing problem [is called the distance lower
bound, denoted Dr. Consider now the case where s pack-
ets have their destinations inside some region of the network
and these packets originate from outside the region (see Fig-
ure 1). All these packets must enter the region. If the region
has z incoming links in its perimeter, then at each time step
at most z packets can enter the region, and thus, no rout-
ing algorithm can deliver those s packets in fewer than s/z
steps. The maximum value of this ratio, taken over all the
regions in the network, for a problem instance I yields the
bandwidth lower bound, denoted Wi. The lower bound for
I, which we denote by LBy, is just Q(Dr+ Wr).

A family of routing problems is hard if the trivial lower
bound for each of its members is Q(n). This paper intro-
duces a new hot-potato routing algorithm that solves any

hard batch routing problem I with high probability (at least
1— L) in time O(LBr -log® n). This algorithm is the first
hot-potato algorithm whose performance, with high proba-
bility, lies within a polylogarithmic factor of optimal for a
non-trivial class of batch routing problems.

Qur algorithm is distributed: each node makes routing de-
cisions based on its local state, independently of the other
nodes. Moreover, nodes know nothing about the initial dis-
tribution of destinations (including the values of Dy, Wi,
and LBr).

At the heart of our algorithm is a new technique based on
multi-bend paths, a departure from the paths using a con-
stant number of bends used in most other hot-potato algo-
rithms. Each time a packet is deflected (unable to advance
toward its destination), it may, with a certain probability,
become ezcited, increasing its priority over non-excited pack-
ets. An excited packet attempts to converge on its target
by choosing a logarithmic number of random intermediate
destinations (see Figures 2 and 4) in a sequence of squares
of decreasing size. As we will show in the analysis, a packet
during its multi-bend path has a good chance not to be in-
terrupted by other high-priority packets, and therefore, to
successfully reach its destination.

We proceed as follows. In Section 2 we present related work.
In Section 3 we give some necessary preliminary definitions
and notations. We present our algorithm in Section 4 and in
Section 5 we give its time analysis. We describe the perfor-
mance of our algorithm in terms of the trivial lower bound
in Section 6. We conclude in Section 7 with a discussion and
open problems.

2. RELATED WORK

Hot-potato routing was first proposed by Baran [2]. For
mesh-like networks, there are many hot-potato algorithms
tuned for the batch permutation and random destination
routing problems [7; 8; 11; 12; 15; 18]. In the permutation
problem every node is the source and destination of exactly
one packet, and in the random destinations problem every
packet chooses its destination at random.

In the more general setting of arbitrary many-to-one batch
routing problems, there are several known hot-potato algo-
rithms. Using potential function analysis, Ben-Dor et al. [5]
provide a simple algorithm for the 2-dimensional n x n mesh
with O(n\/l;) steps, where k is the total number of packets
to be routed. They generalized their techniques for the d-
dimensional mesh to obtain O(Gdnd_lkl/d:) steps. Borodin
et al. [6] present a hot-potato routing algorithm for the d-
dimensional mesh with Dy + 2(k — 1) steps, where Dy is
the distance lower bound for any routing problem instance
I. Similarly, Ben-Aroya et al. [3] give an algorithm that
finishes in Dr+ 2(k — 1) steps in the two-dimensional mesh.
For single target problems, Ben-Aroya et al. [4] give a ran-
domized algorithm for the d-dimensional mesh that finishes
in O(k/d) steps, with high probability.

For the problems we consider here, in which there are n?
packets to be routed, all these algorithms require O(n2)
steps, which can be achieved by a naive solution. The algo-
rithm presented here is the first that does better.

Solving arbitrary routing problems is difficult even for the
traditional store-and-forward routing algorithms. The best
store-and-forward algorithm is due to Mansour and Patt-
Shamir [13], and performs within a factor of log(D7) of the
lower bound LBy for any routing problem instance I. In

their algorithm the nodes have buffer of size log(D7). There
was no known similar result for hot-potato algorithms. It
was surprising to find that for hard routing problems, in
which Dr is §(n), our hot-potato algorithm matches this
bound within a polylogarithmic factor even though it uses
no buffers.

3. PRELIMINARIES

We are given an n X n mesh of nodes. We denote a node v
with its coordinates (z,y), 0 < z,y < n, where z is a column
and y a row. The lower-left corner of the mesh is the node
(0,0) and the upper-right corner (n —1,n — 1). Each node
(except at the edge of the mesh) is connected to its four
adjacent nodes by bidirectional links, denoted up, down, left
and right.

We denote the distance between nodes v = (z,y) and v' =
(z',y") as dist(v,v') and is the quantity

dist(v,v") = |z — 2’| + |y — ¥|.

This distance measures how long it takes an undeflected
packet to travel from v to v’. This distance is sometimes
called the Manhattan metric or Ls norm.

We denote a rectangle with lower leftmost node v and upper
rightmost node v as [v,v']. When necessary we distinguish
between the binary logarithm lg and the natural logarithm
In.

vertical band-4 square-8

IIIIIIIIIIII'[}'IIZ
|
\

U............

|

horizontal band-4

Figure 2: The squares and bands of a node

Take a node v = (z,y) and a number z = 2%, where k =
0,...,lgn —1. Consider the sub-mesh that is up and right
from v. The square-z of v is the z x z square whose lower
leftmost node is v’ = (z + z — 1,y + z — 1) (see Figure
2). If the square-z does not fit entirely into the mesh, it is
truncated at the mesh boundary. Note that square-1 is the
node v itself. The horizontal band-z of v is the rectangle
(z+2z—1,y4+2z—1),(n—1,y+ 2z — 1)] (see Figure 2).
The vertical band-z of v is the rectangle [(z+2z—1,y+ 2z —

1), (¢ + 2z — 1,n — 1)]. Note that all square-z, horizontal
band-z, vertical band-z, for z = 2% and k = 0, . .. Jgn —1,
partition the sub-mesh that is up and right from v (say, the
rectangle [v, (n — 1,n — 1)]). That is, every node in that
sub-mesh can be assigned to exactly one square or band.
By symmetry, we define the squares and bands of v in the
other three sub-meshes. Similarly, we define the squares and
bands for any node in the network.

4. ALGORITHM

Our algorithm is greedy: in a node, a packet always tries to
follow any link that brings it closer to its destination. In case
a packet cannot follow any such link, because other packets
will occupy these links, then it is forced to follow some other
link that takes it further away from its destination, and in
this case we say that the packet is deflected. When two or
more packets are competing in a node for the same link we
say that there is a conflict.

Packet States Priority

TUNNINg highest
excited
normal lowest

Figure 3: Packet states and priority

In our algorithm there are three states for a packet: normal,
excited, running. A packet is in only one of these states.
Each packet state corresponds to a priority and the running
packets have the highest priority and the normal packets
have the lowest (see Figure 3). The priorities determine how
the conflicts are resolved in the nodes, namely, the higher
priority packets win over the lower priority packets. Con-
flicts between packets of the same priority are resolved in an
arbitrary way (except for the packets in the running state
for which we describe below how the conflicts are resolved).
For implementation purposes, each packet can be divided
into an immutable message part, and a mutable header con-
taining the packet’s priority (two bits suffice).
Initially, all the packets are in the normal state. A packet in
the normal state simply tries to follow any of the available
links that brings it closer to its destination. A normal packet
is deflected whenever other normal or higher priority packets
have already taken all the links that could bring it closer to
the destination.
Consider now a normal packet = which in the previous time
step was deflected from some node at distance d — 1 from
its destination, so that in the current time step it appears
at node v at distance d from its destination. The deflected
packet m becomes excited at node v with probability p, and
otherwise, it remains normal with probability 1 — p. The
probability p changes over time and it is given by the func-
tion

p(t) = CItH 3
where ¢ is a constant we will specify later. To avoid no-
tational clutter, we use p to denote p(t), when ¢ is clear
from context. Similarly, any packet becomes ezcited with
probability p whenever it is deflected.

Let’s assume now that packet m becomes excited in node v,
and that, without loss of generality, packet 7 has its desti-
nation node lower and left from v. The algorithm assigns
each excited packet a preferred link that brings it closer to
its destination. If the node v is in a horizontal band-z of
packet 7’s destination node, the packet w prefers to take the
left link first (see Figure 4). If the node v is in a vertical
band-z or in a square-z of packet 7’s destination node, the
excited packet 7 prefers to take the down link first.

The excited packet © will try to follow its preferred link.
There are only two cases that the excited packet = will not
be able to follow its preferred link. The first case is when the
excited packet 7 conflicts in node v with other excited pack-
ets that wish to follow the same preferred link. Such a con-
flict is resolved in an arbitrary way and packet = may lose.
The second case is when packet 7 conflicts with a running
packet, which has higher priority. The running packets have
also a preferred link. If the excited packet m conflicts with
a running packet for the same preferred link then packet =
always loses. In both cases, if packet 7 loses then it loses
its high priority and it enters immediately (the same time
step) the normal state, and it will be treated in node v as a
normal packet.

If the excited packet m succeeds in taking its preferred link,
then in the new node, one link closer to its destination, the
packet 7 changes its state again and it becomes a running
packet. (Notice that packet = stays in the ezcited state for
at most one time step.) Similar to the ezcited packets, any
running packet has a preferred link that brings it closer to
its destination. As long as the running packet succeeds in
following its preferred link it remains in the running state
until it reaches its destination, in which case the packet 7
is absorbed. If in some node the running packet is unable
to follow its preferred link, because of conflicts with other
running packets with the same preferred link, then it enters
immediately the normal state. The preferred links for a
running packet are chosen as follows (see Figure 4).

o If the running packet m was excited in a node in the
horizontal band-z of its destination, then it will go di-
rectly to a random node (1 of z) on the same row in
square-z by following the left links repeatedly. This
is the case of Figure 4. (From horizontal band-1, the
packet tries to go directly to its destination.)

o If the running packet m was excited in a vertical band-z
it will go to a random node in square-z /2 by following
a one-bend path. The first part of a one-bend path has
direction down and the second part has direction left.
(From wvertical band-1, the packet tries to go directly
to its destination.)

e If the node v is in a square-z of packet 7’s destination
node, it will go to a random node in square-z/2 by
following a one-bend path, first down then left.

This procedure is repeated for squares z/2,z/4, ... until the
running packet reaches its destination node (that is, z = 1).
A running packet turns whenever the link it exits a node
is not opposite to the link the packet has entered the node.
Note that a running packet can conflict in a node with an-
other running packet, with the same preferred link, only
when it turns. In such a case we specify that a turning
packet loses to a non-turning packet. There are no conflicts
between non-turning packets, and conflicts between turning

normal deflected

.................
destination

excited

TUNNING excited

destination

Figure 4: A successful running path

packets are resolved in an arbitrary way. For convenience,
let us call a running packet before its first turn a runningA
packet; a running packet on or after its first turn is called a
runningB packet.

5. TIME ANALYSIS

In this section we give the time analysis of our algorithm.
Every randomized algorithm needs an adversary. In this
paper, we assume that every time a packet = becomes excited
and then running, the adversary can attempt to “launch”
normal packets on a collision course that will conflict with
w. The adversary launches a packet by deflecting it in the
hope it will become ezcited and proceed to collide with =.
If that packet fails to become excited, however, then it will
remain normal which has lower priority than =, and cannot
interrupt w. The key insight underlying this part of the
analysis is that the adversary has at most one chance to
launch any particular packet on a collision course with m,
thus the adversary’s “ammunition” is limited. Moreover,
as explained below, by making the adversary so powerful, a
packet’s chances of traveling uninterrupted to its destination
after successive excitations can be treated as independent
events.

A key term in the analysis is the parameter m which for any
batch problem instance has to do with the distribution of
the destinations in square regions of the network.

DeFINITION 5.1. Let S be a square subregion of the mesh,
and let dest(S) be the number of packets with destinations in
S. The parameter m is defined as the mazimum number so
that no k x k square has more than mk destination packets.
FExplicitly,

n 1 .
m = max - max dest(S)
as S ranges over all k x k square subsets of the mesh.

The parameter m is related to the bandwidth lower bound
and this relationship is explored in Section 6. Although our
complexity analysis depends on m, the value of m is not
known to the routing algorithm.

We immediately obtain the following lemma.

LEMMA 5.2. n <m < n?.

ProOF. There are n® packets to route, so the maximum
possible value of dest(S) is n®. Taking S to be the entire
mesh, m > dest(S)/n = n. Taking S to be a single node,
m < n?. O

In the analysis we will make use of the following inequalities.
For all n, t, such that n > 1 and |¢| < n,

et<1—g>g<1+£>nget. (1)

For all p, &k, such that 0 < p< 1 and k& > 1,

1-p<(1-2) ()

We continue in this section as follows. First we prove in
Subsections 5.1 and 5.2 that the probability there will be
an excited or running packet at a given node and time is
small. In Subsection 5.3 we will see that a deflected packet
has a good chance to be ezxcited and running to its desti-
nation without any interruptions. Finally, in Subsection 5.4
we prove that with high probability each packet will have
arrived at its destination after the promised time.

5.1 TheExcited State

To avoid notational clutter in this subsection and in Sub-
sections 5.2 and 5.3, we will assume that all events are hap-
pening after time ¢y, where the exact value of t; will be
specified in Subsection 5.4. Furthermore, we will assume
that the probability of becoming excited at time to — 2n is
p, and thus, after time ¢, —2n a packet becomes excited with
probability at most p (since this probability decreases with
time).

LEMMA 5.3. The probability that a particular node con-
tains no excited packel is at least (1 — p)*.

ProoF. A deflected packet becomes excited with proba-
bility at most p only if it was deflected in the preceding time
step. It will fail to become excited with probability at least
1 — p. Since at any time step a node contains at most four
packets, all four will fail to become excited with probability
at least (1 —p)*. O

5.2 TheRunning State

LEMMA 5.4. The probability that at node v and time t
there is no runningA packet is at least (1 — p)®"~*.

PROOF. Let’s assume that at a node v = (z,y) at time ¢
there is a runningA packet w. Packet m must have become
excited at some node v’ in the same row or column at time
t' =t — dist(v,v'), for ' —t =0,... ,n. From Lemma 5.3,

node v’ will not contain any excited packet at time ¢’ with
probability at least (1 —p(t'))* > (1 — p)*. All the nodes v’
(there are at most 2n — 1) will contain no excited packets
at the corresponding time steps ¢’ with probability at least
(p) (2n—1) 2 (1 _p‘)Sn—4. D

A runningB packet m can always be considered as being on
a one-bend path from square-z to square-z/2; we say that
the packet = is a runningB(z) packet.

LEMMA 5.5. A runningB(z) packet @ chooses a particular
row or column with probability at most 2/z.

Proor. If the runningB(z) packet w is on the first part
of the one-bend path (thus the preferred link is a column
link), then it has chosen randomly one of z columns. If
the runningB(z) packet 7 is on the second part of the one-
bend path (thus the preferred link is a row link), then it has
chosen randomly one of z/2 rows. []

For the rest of this subsection, we will assume that the pack-
ets have destinations down and left.

LEMMA 5.6. A runningB(z) packet © at node v = (z,y)
has its destination inside the square

Si=[(r—224+2,y—2242),(z—2/2+1,y—2/2+1)].

PRrOOF. The current position v of packet # must be some-
where in the square S’ = [v,v"], with v’ being the lower left
corner of square-z/2 and v"’ being the upper right corner of
square-z of packet 7’s destination. If v coincides with node v’
then the destination has coordinates (z—z/241,y—z/2+1).
If v coincides with node v” then the destination has coordi-
nates (z — 2z 4+ 2,y — 2z +2). Subsequently, the destination
of packet 7 is inside the square S. [

Let m be a packet in the runningB(z) state. We say that =
might arrive at node v if there is some execution in which
m arrives at v in the runningB(z) state.

LEMMA 5.7. The number of runningB(z) packets that might
arrive at node v is at most 3/2 - mz.

Proor. With Lemma 5.6 only packets with destination
inside square S can be runningB(z) packets at node v. The
size of this square is smaller than 3z/2x 3z/2. By Definition
5.1 the square S cannot have more than m-3z/2 destination
packets. [

LEMMA 5.8. A node v contains no runningB(z) packet at
time t with probability at least (1 — 2p/z)3/2'mz‘

ProoF. Consider a runningB(z) packet = that is at a
node v at time t. Packet m has at most one chance to get
excited and appear in v at time ¢. This chance is given to
packet 7 at some time ' < t and at a node v’ with distance
t — t' from v. Packet m must have been deflected at time
t'—1 and at time ¢’ in node v’ it becomes ezcited and follows
a running path to node v. If packet = loses this chance and
becomes ezcited in a subsequent deflection then it will fail
to arrive at node v at time ¢t and it will arrive there some
time after ¢, since any subsequent deflection takes packet =
further from node v by a link.

The probability of 7 getting excited at v’ is at most p(t') < p.
If the runningB(z) packet m enters node v when it is in the

column part of its path from square-z to square-z/2, then
from Lemma 5.5 it chooses the column of node v with prob-
ability at most 2/z, and similarly for the row part. Subse-
quently, the probability that packet = appears in v at time
¢t is at most 2p/z and the probability that it doesn’t appear
in v at all is at least 1 — 2p/z. According to Lemma 5.7,
the number of possible packets like 7 is at most 3/2 - mz.
Therefore, none of them will be in node v and time ¢ with
probability at least (1 — 2}7/,2*)3/2'7"27 as needed. [

LeMMA 5.9. The probability that at a node v there is no
runningB packet at time t is at least (1 p)3m lg n=2),

PROOF. A runningB packet can be a runningB(z) packet,
with z = 2" and k is one of 1,... ,lgn — 1. Considering all
the values of z, by Lemma 5.8 and applying Equation 2 we
have that there will be no runningB packet at node v and
time ¢t with probability at least

lg n—1 % 2.m2k lg n—1 » 3m.ok—1
[T (1- 2k = 11 (1_ 2k—1)
k=1 k=1

lgn—1

k=1

3m(lg n—2
= (1-p)ten?,

E[

5.3 OnePacket

LEMMA 5.10. At a node v at time t there is no excited or
running packet with probability at least (1 — p)*?™8 ™,

PRrROOF. The probability that no ezcited or running (run-
ningA or runningB) packet is at node v and time ¢ is the
product of the probabilities that each of them is not at node
v and time ¢.

e By Lemma 5.3, there is no ezcited packet at node v
and time ¢ with probability at least (1 — p)*.

e By Lemma 5.4, there is no runningA packet at node v
and time ¢ with probability at least (1 — p)®*~*.

e By Lemma 5.9, there is no runningB packet with des-
tination down and left at node v and time ¢ with prob-
ability at least (1 p)3m 167=2) " Gince there are four
symmetric cases, the probablhty to have no runningB
packet at all is at least (1 p)12m lgn—2)

From Lemma 5.2 we know that m > n. Therefore we can
bound the product (for the sake of simplicity)

(1—p)' - (1=p)* ™" (1-
O

p:)12m(lg n—2))12mlgn

>(1-p

We say that an excited packet travels uninterrupted to its
destination if it becomes running and reaches its destination
without encountering any conflicts.

THEOREM 5.11. When a packet becomes excited it will
travel uninterrupted to its destination with probability at least

(1 _ p)24m1g2 n.

ProOF. By Lemma 5.10 there is no other ezcited or run-
ning packet at any specific node v and time t with proba-
bility at least

q:= (p)12mlgn

After a packet m becomes excited it will become running and
it will turn at most 2(lgn — 1) times before arriving at the
destination. FEach of those turns, and the single transition
from excited to running, will be successful with probability
at least g, since with at least this probability it will not con-
flict with other packets. Whenever the running packet = is
not turning, it will successfully take its preferred link since
it is the only packet entering from the opposite link. There-
fore, an excited packet will succeed to reach its destination
with probability at least

21g n—1 \24mlg?
q gn q:(l_p) mlg n.

O
5.4 All Packets

Our algorithm satisfies some interesting properties with high
probability (at least 1 — 1/n). We use the following con-
stants.

c=18e ¢'=3.24clg’e

to = cmin®n + 2n t, = 3c'mIn® n

Recall that the probability of becoming excited is p(t) =
cln t/t. If the value of m were known to the algorithm, then
p would not need to vary with time.

LeMMA 5.12. If packet m becomes excited at time t > to,

then the probability of reaching its destination is al least
1/2e.

ProOF. Any packet conflicting with packet = must have
been excited at most 2n steps before w. The probability that
such a packet became excited was at most

. cln(¢'mn®n
p=p(to —2n) = g 3)

c¢'mln® n

By Theorem 5.11, packet m will reach its destination with

probability at least (1 —p)24mlg2". Since n < m < n?
(Lemma 5.2), by taking n to be sufficiently large, such that

¢ In® n < n (thus ¢/'mIn® n < n®), and by Equation 1 we get

eln(c’ mln® n)>24mlg "

¢min®n

@ s (i

> < 3clnn)24m1g2n
- ¢'mn® n
24m1g2n
- ('~ 5mrs)
24mlg n
> Yo L
e 24mlg n
1
>
- 2e

O

LEMMA 5.13. FEach time t (with to <t < t,) a packet is
deflected, it will arrive uninterrupted at its destination with
probability at least

¢

6ec'mIn?n

PrOOF. The probability of becoming ezcited is at least

cln(3¢'mIn® n
p(tl) = (3)

3¢'mlIn® n

clnn
3c'mIn® n

¢

3¢'mIn®n’
The probability of a packet arriving at its destination with-
out interruptions when becoming ezcited is according to
Lemma 5.12 at least 1/2e. Therefore, the probability of
the packet arriving at its destination without interruptions
when being deflected is at least

c B c
3¢'/mIn®n-1/2

Gec'mIn® n

|

LEMMA 5.14. If a packet 7 is deflected x times, then it
will reach its destination in at most 2o + 2n — 2 steps.

PRrROOF. Initially, the distance from 7 to its destination
is no more than 2n — 2. Each time 7 is deflected, the dis-
tance increases, and each time it follows a good link, it de-
creases. [

LeEMMA 5.15. With probability at least 1 —1/n®, a packet
will reach its destination in t1 steps.

Proor. By Lemma 5.13, each time that a packet = is
deflected in the time interval [to,¢1], packet m will arrive
at its destination without interruptions with probability at
least

. ¢
= Bec'mIn®n’
Because the adversary is allowed to redistribute the other
packets at each deflection, successive probabilities are in-
dependent. By Lemma 5.14, the number of deflections of
packet 7 that can fit in the time interval to < ¢t < ¢; is at
least

(tl — to — 271)
2
m1In® n(3¢’ —¢')
2
= Jmln®n.
Packet 7 will fail to reach its destination after z deflections
with probability at most (1 — q)”. By Equation 1 we get

(1-9° = (1— °

)c mln® n
Gec'mIn? n

< 3lnn)c’mlnsn
c¢'mlIn®n

—3lnn
€

= 1/n

IA

|

THEOREM 5.16. For any batch problem instance, with high
probability (at least 1 —1/n), all packets reach their destina-
tion nodes in at most O(mIn® n) steps.

PRroOOF. By Lemma 5.15, a packet will arrive at its desti-
nation in #; steps with probability at least 1 — 1/n®.
Since we have made a worst case analysis for each packet by
assuming that the adversary can reorganize all other packets
whenever one is deflected, we can safely assume that the
packets are independent of each other in the analysis.
Therefore, the probability that all n? packets will arrive at
their destinations within ¢; steps is at least (applying Equa-

tion 2)
1\ 1/n\" 1
n
1——) =(1-2£2) >1--.
(1-5) =(-%) =13
O

6. LOWER BOUND

In this section, we show how our algorithm relates to the
trivial lower bound

LBr = Q(D] =+ VV]).

Recall that for any batch problem instance I the bandwidth
lower bound W; for a region S is defined by taking the
number of packets s; with origins outside S and destinations
inside S, divided by the perimeter of .S, the number of edges
leading into S.

DEFINITION 6.1. For any instance I of a routing prob-
lem, and any region S of the mesh, let dest(S) be the num-
ber of packets in I with destinations in S (independently of
their origins), perim(S) the perimeter of S, and M(S) =
dest(S)/perim(S).

M1 = max(M(S)) where S ranges over all regions S.

It is immediate that m/4 < M7, since m/4 is the maximum
M7 taken over square regions only (see Definition 5.1).

For any region S, let so be the number of packets in I with
sources within S, and s; be the number of packets with
sources outside S.

v S0t s
Mi(S) = perim(S)
s $1
" perim(S) perim(S)
_ S0 N
= perim(S) +Wi(S)

< n+ Wi(S).

Subsequently,
Mr<n+Wr.

It follows that m/4 differs from W; by an additive term of
at most n.
If the problem [is hard then LBy is (n), so Wi = (n) or
Dr = Q(n). If Wi = Q(n), then
Q(f\l}) < Q(n + VV]) = Q(VV]) < Q(LB])
If Dr = Q(n), then
Q(ﬂl}) < Q(n + VV]) = Q(D] —+ VV]) = Q(LB])
In either case,
Q(m) < QM) < Q(LBg).

Substituting in Theorem 5.16, we obtain our main result.

COROLLARY 6.2. For any hard batch problem instance I,
with high probability, all packets reach their destination nodes
in at most O(L By In? n) steps.

7. DISCUSSION

So far we have considered only the n x n mesh. In the n x n
torus, each node (i,n — 1) has a link to node (7,0), and each
node (n—1, i) has a link to node (0, 7). Our algorithm carries
over to the torus with a slight (constant-factor) improve-
ment in the time bounds, because all worst-case distances
are shorter.

This algorithm raises a number of open problems. The
most obvious concerns “easy” batch problems with sub-
linear lower bounds. We do not know whether the class
of easy routing problems would yield to the same (or sim-
ilar) algorithm with a more refined complexity analysis, or
whether a different algorithm is needed. It would also be
interesting to consider whether this kind of multi-bend al-
gorithm could be adapted to networks of dimension higher
than two, or to networks with a different topological struc-
tures. (Note that the distance and bandwidth lower bounds
apply to arbitrary networks.)

8. REFERENCES

[1] A. S. Acampora and S. I. A. Shah. Multihop lightwave
networks: a comparison of store-and-forward and hot-
potato routing. In Proc. IEEE INFOCOM, pages 10-19,
1991.

[2] P. Baran. On distributed communications networks.
IEEFE Transactions on Communications, pages 1-9,

1964.
[3] I. Ben-Aroya, T. Eilam, and A. Schuster. Greedy

hot-potato routing on the two-dimensional mesh. Dis-

tributed Computing, 9(1):3-19, 1995.

[4] 1. Ben-Aroya, I. Newman, and A. Schuster. Randomized
single-target hot-potato routing. Journal of Algorithms,
23(1):101-120, Apr. 1997.

[5] A. Ben-Dor, S. Halevi, and A. Schuster. Potential func-
tion analysis of greedy hot-potato routing. Theory of
Computing Systems, 31(1):41-61, Jan./Feb. 1998.

[6] A. Borodin, Y. Rabani, and B. Schieber. Determin-
istic many-to-many hot potato routing. IFEFE Trans-
actions on Parallel and Distributed Systems, 8(6):587—
596, June 1997.

[7] C. Busch, M. Herlihy, and R. Wattenhofer. Random-
ized greedy hot-potato routing. In Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 458-466, Jan. 2000.

[8] U. Feige and P. Raghavan. Exact analysis of hot-potato
routing. In IEEE, editor, Proceedings of the 33rd An-
nual Symposium on Foundations of Computer Science,
pages 553-562, Pittsburgh, PN, Oct. 1992. IEEE Com-

puter Society Press.

[9] A. G. Greenberg and J. Goodman. Sharp approximate
models of deflection routing. /FEE Transactions on
Communications, 41(1):210-223, Jan. 1993.

[10]

[11]

[12]

[13]

[14]

(17]

W. D. Hillis. The Connection Machine. MIT press,
1985.

C. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato
routing on processor arrays. In Proceedings of the 5th
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 273-282, Velen, Germany, June
30-July 2, 1993. SIGACT and SIGARCH.

M. Kaufmann, H. Lauer, and H. Schroder. Fast de-
terministic hot-potato routing on meshes. In Springer-
Verlag, editor, Proc. of the 5th International Sympo-
stum on Algorithms and Computation (ISAAC), Lec-
ture Notes in Computer Science, volume 834, pages

333-341, 1994.

Y. Mansour and B. Patt-Shamir. Many-to-one packet
routing on grids. In Proceedings of the Twenty-Seventh
Annual ACM Symposium on the Theory of Computing,
pages 258267, 29 May—1 June 1995.

N. F. Maxemchuk. Comparison of deflection and store
and forward techniuques in the Manhattan street and
shuffle exchange networks. In Proc. IEEE INFOCOM,
pages 800-809, 1989.

I. Newman and A. Schuster. Hot-potato algorithms for
permutation routing. [EFE Transactions on Parallel

and Distributed Systemns, 6(11):1168-1176, Nov. 1995.

C. L. Seitz. The caltech mosaic C: An experimen-
tal, fine-grain multicomputer. In 4th symp. on Paral-
lel Algorithms and Architectures, June 1992. Keynote
Speech.

B. Smith. Architecture and applications of the HEP
multiprocessor computer system. In Proc. Fourth Symp.
Real Time Signal Processing IV, pages 241-248. SPIE,
1981.

P. Spirakis and V. Triantafillou. Pure greedy hot-potato
routing in the 2-D mesh with random destinations. Par-

allel Processing Letters, 7(3):249-258, Sept. 1997.

T. Szymanski. An analysis of “hot potato” routing in a
fiber optic packet switched hypercube. In Proc. IEFE
INFOCOM, pages 918-925, 1990.

Z. Zhang and A. S. Acampora. Performance analysis of
multihop lightwave networks with hot potato routing
and distance age priorities. In Proc. IEEE INFOCOM,
pages 1012-1021, 1991.

