
Facility Location: Distributed Approximation

Thomas Moscibroda
Computer Engineering and

Networks Laboratory, ETH Zurich
8092 Zurich, Switzerland

moscitho@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory, ETH Zurich
8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

ABSTRACT
In this paper, we initiate the study of the approximability of
the facility location problem in a distributed setting. In par-
ticular, we explore a trade-off between the amount of com-
munication and the resulting approximation ratio. We give a
distributed algorithm that, for every constant k, achieves an

O(
√

k(mρ)1/
√

k log (m + n)) approximation in O(k) commu-
nication rounds where message size is bounded to O(log n)
bits. The number of facilities and clients are m and n, re-
spectively, and ρ is a coefficient that depends on the cost val-
ues of the instance. Our technique is based on a distributed
primal-dual approach for approximating a linear program,
that does not form a covering or packing program.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
facility location, distributed approximation, linear program-
ming, primal-dual algorithms

1. INTRODUCTION
During the last few years, the study of distributed approx-

imation has attracted a lot of attention and has resulted
in several fundamental results that shed new light into the
possibilities and limitations of distributed computing [6].
The interest in distributed approximation appears natural
considering that it lies on the boundary between two well-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05, July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-59593-994-2/05/0007 ...$5.00.

established and important areas in computer science: dis-
tributed computing and approximability. In the same way as
the theory of approximation has lead to an understanding
of principles in complexity theory, the study of distributed
approximation has the potential of providing a deeper un-
derstanding of the underlying distributed models [19, 5, 16].

In this paper, we investigate the distributed approxima-
bility of one of the most studied problems in operations re-
search and the theory of approximation, the facility location
problem. In the facility location problem, there is a set of
clients (a.k.a. cities or demands) and a set of possible server
locations, called facilities. Every client must be connected
to a facility that serves the client’s demand. Opening a fa-
cility i causes opening costs fi and connecting a client j to
an opened facility i incurs connection costs cij . The goal is
to open a subset of the facilities and connect each client to
an opened facility in such a way that minimizes the sum of
connection costs and opening costs.

The facility location problem captures a large variety of
important application scenarios. Traditionally, it has been
used to model the problem of finding the best geographic
location for the construction of industrial facilities or ware-
houses. While this classic application can be satisfactorily
solved by a centralized algorithm, there are numerous ap-
plications that explicitly demand for distributed algorithms.
Consider for instance the problem of dynamically setting up
servers or placing caches in the Internet for a certain appli-
cation. Setting up a server at a host in the Internet incurs
overhead, traffic, and maintenance costs at that particular
host. On the other hand, every client demands to access
its data from a server that is as close as possible in order
to minimize its delay. The resulting trade-off between the
number of servers to be installed and the propagation delay
maps precisely to the facility location problem.

Another example comes from the world of battery pow-
ered wireless ad hoc and sensor networks that typically fea-
ture tight energy constraints. In this context, structuring
the network into energy-efficient clusters plays a key role for
prolonging the networks lifetime, e.g., [10, 15]. Only selected
cluster-leaders must remain active, while all other nodes can
go into an energy-efficient sleep mode thus saving valuable
battery power. Again, the trade-off to be optimized follows
along the same lines. It is desirable to have as few cluster-
leaders as possible since this in turn allows more nodes to
go into sleep mode. However, having few cluster-heads nat-
urally increases the distance between clusterheads and their
associated nodes. This forces nodes to set their transmission
power to higher values in order to reach their clusterhead.

In both of the above examples, centralized algorithms
based on maintaining a global view of the network cannot be
applied because no node in the network has total knowledge.
In large-scale distributed Internet applications or wireless
sensor networks, collecting and maintaining a global view
of the network would cause a horrendous overhead in terms
of both time and message complexity. Hence, nodes must
come up with a solution in a distributed way.

The study of distributed approximation explores the trade-
off between the amount of communication between nodes
in the network, and the quality of the global solution they
achieve. Specifically, we want to be able to come up with an
algorithm that gives a non-trivial approximation ratio for
any (even constant!) number of communication rounds k.
From a theoretical point of view, having such a complete
characterization of the above mentioned trade–off yields a
deeper understanding of the nature of the problem. More-
over, algorithms having a constant running time indepen-
dent of the size of the problem instance are often the only
acceptable choice in distributed settings. This is the case if
either individual nodes do not know about the size of the
entire solution or, as in the case of mobile wireless networks,
low bandwidth and high dynamics preclude algorithms with
high running time.

Our algorithm is based on approximating the LP relax-
ation of the facility location problem in a distributed way.
In fact, it follows a kind of distributed primal-dual approach.
Starting with a sub-optimal but feasible primal solution and
an infeasible dual solution, the nodes successively increase
the primal optimality and reduce the dual infeasibility. In
a second step, the obtained fractional solution to the LP
is then rounded in a distributed way to a feasible integer
solution to the original facility location problem.

Initiated by Papadimitriou and Yannakakis in [23], the
distributed approximation of linear programs has attracted
the interest of researchers for some time, e.g., [3, 17, 16].
All of these papers consider the special class of covering
or packing linear programs. The distributed complexity of
more general linear programs has remained a long-standing
open problem since [23]. Moreover, of the above works, only
[17] gives a complete characterization of the communication-
quality of the solution trade-off.

In contrast, in this paper, we take a step towards under-
standing a more general case of LPs by presenting a charac-
terization for the facility location problem, which does not
form a covering or packing pair of LPs. To the best of our
knowledge, our paper is the first to provide a result on the
distributed approximability of non-positive linear programs
in a constant number of communication rounds. Specifi-
cally, we consider the classic bounded message size model in
which every message is restricted to O(log n) bits and the
ID space is assumed to be polynomial in n, e.g. [24, 25,
5, 20]. We present an algorithm that, for arbitrary positive
integers k, in O(k) communication rounds, obtains an ap-

proximation ratio of O(
√

k(mρ)1/
√

k log (m + n)), where m
and n are the number of facilities and clients, respectively,
and ρ is a parameter that depends on the coefficients of the
given facility location instance. Furthermore, at the cost of
a slightly worse approximation, it is possible to get rid of the
dependency on ρ. This result shows that even in a constant
number of communication rounds, the facility location prob-
lem can be approximated with a non-trivial approximation
ratio.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview over related work and discusses the
reasons why existing centralized solutions cannot be easily
adapted to serve our needs. In Section 3, we introduce our
model of computation and formally define the facility loca-
tion problem and its linear program relaxation. The dis-
tributed approximation algorithm for the LP is presented
and analyzed in subsequent Sections 4 and 5. We give a
procedure for rounding the fractional LP solution to a fea-
sible integer solution in Section 6. Section 7 generalizes the
problem and shows how the dependency on ρ can be avoided.
Subsequent Section 8 discusses an extension to the problem
before Section 9 concludes the paper.

2. RELATED WORK
Its wide applicability and appealing simplicity have ren-

dered uncapacitated facility location one of the most well-
studied optimization problems in the literature [2, 11, 4].
It has not only occupied a central place in operations re-
search, but has recently attracted a lot of attention from
the perspective of approximation theory [27, 14, 13, 12, 9].

For the general non-metric case, Hochbaum [11] showed
that the greedy algorithm is an O(log n) approximation. Set
cover being a special case of facility location, this is asymp-
totically optimal unless NP ⊆ DTIME(nO(log log n)) [22,
7]. The filtering technique introduced by Lin and Vitter
[18] yields another O(log n) approximation algorithm. In
the metric facility location problem, it is assumed that the
connection costs obey the triangle inequality. In that case,
the problem remains NP-hard, but constant approximations
become possible. The first algorithm achieving a constant
approximation ratio was given in [27]. Ever since, a flurry
of research activity has lead to various improvements. Also,
numerous variants of facility location have been studied, e.g.
[28, 9].

Considering the vast literature on the facility location
problem, surprisingly little is known about the important
distributed case. In a seminal paper, Jain and Vazirani
[13] claim that their primal-dual algorithm for the metric
case of the facility location problem was also suitable in
a distributed setting. However, this is only the case if ei-
ther message-size is unbounded1, or the algorithm’s time-
complexity depends on the size of the problem instance.
That is, their primal-dual algorithm cannot be applied if
the number of communication rounds is restricted to an ar-
bitrary constant.

It is interesting to relate our work to the wider context
of distributed approximation of linear programs. Starting
from [23], there have been a number of efficient distributed
algorithms for approximating covering and packing LPs [21,
3, 26, 17] and in [16] a lower bound on the distributed time-
complexity of covering LPs is given. This multiplicity of re-
sults on covering and packing problems is in sharp contrast
to the case of more general LPs, i.e., non-positive linear pro-
grams. For problems such as facility location, the achievable
time-approximation trade-off has been an open question.

1In a complete bipartite graph, 2 communication rounds
suffice to inform every client and every facility about the
entire problem instance if the message size is unbounded.
The problem can then be solved locally using the standard
centralized greedy algorithm [11].

3. MODEL
In the formal model, the facility location instance is rep-

resented by a complete bipartite graph G = (C ∪ F, E). C
and F denote the set of clients and facilities, respectively.
Let n = |C| and m = |F | denote the number of clients and
facilities, respectively. The non-negative opening costs of fa-
cility i ∈ F are denoted by fi. The connection costs between
facility i ∈ F and client j ∈ C are denoted by cij . Notice
that we do not assume the connection costs cij to form a
metric. In particular, cij may be infinitely large. For ease
of presentation, we make the assumption that cij ≥ 1 and
fi ≥ 1 for all i ∈ F, j ∈ C in Sections 4 and 5. We show how
to deal with costs less than 1 in Section 7. Each client and
facility has a distinct ID of size O(log n) bits.

We consider a classic message passing model (e.g. [24, 25])
in which a node can send a message of size O(log n) bits to
each neighbor in every communication step. To simplify
the presentation of the algorithm, we assume a synchronous
communication model. In this model, the computation is
assumed to advance in global rounds. In each round, each
client can send a message to each facility, and each facility
can send a message to each client. We emphasize that the
algorithm works for the asynchronous model by applying
an appropriate synchronizer [1]. The time-complexity of an
algorithm is the number of communication rounds needed
by the algorithm.

Notice that even though we consider a complete bipartite
graph, solving the facility location problem is not trivial.
Due to the restriction in message size, any straightforward
centralized approach fails to solve the problem. The most
basic idea is to elect a leader v� among the facilities and
send the entire information about the specific problem in-
stance to v�. Using the standard greedy algorithm with an
approximation ratio of log |F |, v� could solve the instance
and inform every facility about its decision. Unfortunately,
such a simple centralized solution fails because shipping the
entire information on the problem instance (i.e., nm con-
nection costs and m facility costs) inherently requires time
linear in the number of facilities, i.e., O(m). Hence, using
more sophisticated and distributed techniques is inevitable
for designing fast algorithms.

The facility location can be described as an integer linear
program (ILP), where yi indicates if facility i is opened,
and xij indicates if client j is connected to the open facility
i [2]. By relaxing the integer constraints of the variables, we
obtain the following integer linear program (LP).

min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

cijxij

∑
i∈F

xij ≥ 1 , ∀j ∈ C

yi − xij ≥ 0 , ∀j ∈ C, i ∈ F

xij , yi ∈ {0, 1} , ∀j ∈ C, i ∈ F

The first constraint ensures that each client j ∈ C is assigned
to some facility i ∈ F . The second constraint guarantees
that a client j can be assigned only to an open facility i. As
usual, we obtain the LP-relaxation by relaxing the integer

constraints to yi ≥ 0 and xij ≥ 0. The relaxed dual program
(DLP) is:

max
∑
j∈C

αj

αj − βij ≤ cij , ∀j ∈ C, i ∈ F∑
j∈C

βij ≤ fi , ∀i ∈ F

αj , βij ≥ 0 , ∀j ∈ C, i ∈ F

Notice that this primal and dual pair of LPs have negative
coefficients and do not form a covering-packing pair.

4. ALGORITHM
The algorithm consists of two parts. First, the facili-

ties and clients compute an approximate solution to the
fractional linear program (LP), essentially following a dis-
tributed primal-dual approach. Throughout the algorithm,
clients and facilities keep track of the value of their primal
variables. Specifically, after O(k) communication rounds,
the first phase of the algorithm ends with every facility hav-
ing opening value yi and every client having connection val-
ues xij to facilities. Note that while these values constitute
a feasible solution to (LP), they may be fractional and can
therefore not be used as a solution to the original facility lo-
cation problem. Hence, a distributed randomized rounding
method described in Section 6 then rounds these fractional
values to values in {0, 1}, increasing the approximation ra-
tio from the fractional solution only by a logarithmic factor.
The technique of designing distributed approximation algo-
rithms by first computing a fractional solution and round-
ing them in a second phase has been inspired by [17]. Our
algorithm combines these techniques with ideas from the
centralized primal-dual approach in [13].

At the heart of our algorithm is the distributed primal-
dual technique which deterministically approximates (LP)
within a constant number of communication rounds. Each
facility and client executes Algorithm 1 and 2, respectively.
The algorithms consist of two nested loops which are both
executed h = 	√k
 times. The number of communication
rounds in each iteration of the inner loop is constant, yield-
ing the claimed constant time-complexity of O(k). Initially,
all primal and dual variables yi, xij , αj , and βij are set to
zero. Hence, the initial primal solution is infeasible, and the
dual solution is feasible, yet far from optimal. During the
course of the algorithm, both the primal and dual variables
are gradually increased, thereby decreasing the primal in-
feasibility, and increasing dual optimality. At the end of the
hth iteration of the outer loop, the primal variables yi and
xij form a feasible solution to (LP).

A client j is called uncovered if it is not yet (fractionally)
connected to one facility, i.e.,

∑
i∈F xij < 1. At any moment

throughout the algorithm, the set of uncovered clients is
called the uncovered set A, initially A = C. Whenever a
client j becomes covered, it sends a message Mj to the
facilities. That way, the facilities always have a consistent
view of the current A (Lines 8 and 9 of the algorithm).

A star consists of one facility i ∈ F and several uncovered
clients j ∈ A. The cost efficiency of a star B is the sum
of the connection costs of the clients to facility i plus the
facility cost fi divided by the number of clients |B|. The

cost efficiency c(i) of a facility i is defined as the minimum
star spanned from i, i.e.,

c(i) := min
B∈2A

fi +
∑

j∈B cij

|B| . (1)

The basic idea of the outer loop (s-loop) is to increase the
yi value of facilities with comparatively good cost efficiency
c(i)2. More precisely, we call a facility active in a given iter-

ation if its cost efficiency is at most c(i) ≤ ρs/h. Only active
facilities, that is, only facilities with good cost efficiency will
execute the code between lines 11 and 22. Particularly, only
active facilities will increase their yi value during an itera-
tion. The idea of increasing the yi value of facilities with
good cost efficiency is inspired by the centralized greedy al-
gorithm [11] that iteratively picks the facility with the best
cost efficiency. In order to come up with fast (and particu-
larly constant time) algorithms in a distributed setting, this
“greedy step” has to be parallelized. However, the greedy
step’s parallelization must be carefully implemented in or-
der to avoid opening too many facilities at once, thus overly
deteriorating the algorithm’s performance.

We call a client j tight to an active facility i in iteration
s of the outer loop if cij ≤ ρs/h. That is, the tight set Ti

in line 12 consists of all clients that are connected to i by a
connection of cost at most ρs/h. The significance of the tight
set is that the increase of yi in a given iteration results in
an identical increase of xij of all clients j being in the tight
set Ti. Since a client j may concurrently be in the tight
set of several facilities, the increase of the different yi must
be handled with care. This is the role of the inner loop (t-
loop), during which the yi are gradually increased (line 19)
as long as the facility remains active. Finally, note that 2
communication rounds suffice for every facility to compute
the value ρ = maxj∈C mini∈F (cij + fi) in Line 3.

5. ANALYSIS
In a sense, our algorithm’s analysis is based on the method

of dual fitting [12] applied in a distributed setting. The basic
idea of this method applied to FL can be described as fol-
lows: Using the linear program relaxation (LP) for facility
location and its dual (DLP), we interpret our combinatorial
algorithm as an algorithm that iteratively makes primal and
dual updates in a distributed fashion. Unfortunately, these
updates do generally not lead to a feasible dual solution.
However, the idea is to show that the objective function of
the primal fractional solution computed by the algorithm
is bounded by that of the dual. That is, the primal solu-
tion is fully paid for by the dual. By the basic laws of LP
duality, it then remains to divide all dual values by a suit-
ably large factor α that renders the dual variables feasible.
The shrunk dual objective function is then a lower bound
on OPT, and α is the algorithm’s approximation guarantee.
That is, instead of relaxing complementary slackness condi-
tions as done in other primal-dual algorithms (e.g., [8, 29]),
we relax the feasibility of the dual itself.

For notational clarity, we denote the increase of Δyi in a
certain iteration of the s and t-loop by Δyi(s, t) throughout

2In spite of there being exponentially many sets B ∈ 2A, the
facility can compute its cost efficiency c(i) in polynomial
time in Line 10 of Algorithm 1 by considering the clients
ordered according to their connection costs cij .

Algorithm 1 Facility i

1: h := 	√k
;
2: receive cij from all j ∈ C;
3: ρ := maxj∈C mini∈F (cij + fi);
4: yi := 0; A := C;
5: for s := 1 to h by 1 do
6: πs

i := 0;
7: for t := h − 1 to 0 by −1 do
8: receive Mj from all j ∈ C;
9: A := A \ {j ∈ C | Mj = 1}

10: c(i) := minB∈2A\{}
fi+

∑
j∈B cij

|B| ;

11: if c(i) ≤ ρs/h then

12: Ti := {j ∈ A | cij ≤ ρs/h}
13: Γi := (fi +

∑
j∈Ti

cij)/|Ti|
14: if t = h − 1 then
15: T s

i := Ti;
16: Γs

i := Γi;
17: πs

i := 1;
18: end if
19: Δyi := max {yi, m

−t/h} − yi

20: yi := yi + Δyi;
21: send (Δyi, Γi) to all j ∈ Ti

22: end if
23: end for
24: forall i ∈ T s

i do

25: Δβij :=

⎧⎨
⎩

0 , ρs/h < cij

ρs/h − cij , ρs/h ≥ cij ∧ πs
i = 0

Γs
i − cij , ρs/h ≥ cij ∧ πs

i = 1
26: βij := βij + Δβij

27: end for
28: end for

Algorithm 2 Client j

1: h := 	√k
;
2: send cij to all i ∈ F ;
3: αj := 0;
4: ∀i ∈ F : xij := 0;
5: for s := 1 to h by 1 do
6: for t := h − 1 to 0 by −1 do
7: Mj := 0;
8: if

∑
i∈F xij ≥ 1 then Mj := 1;

9: send Mj to all i ∈ F ;
10: receive (Δyi, Γi) from all i ∈ Tj ;
11: forall i ∈ F do Δxij := Δyi;
12: xij := xij + Δxij ;
13: Δαj :=

∑
i:j∈Ti

ΔyiΓi;
14: αj := αj + Δαj ;
15: end for
16: end for

this section. Δxij(s, t), Δαi(s, t), and Δβij(s) are defined
analogously.

We begin the analysis with the observation that the re-
sulting primal solution is feasible.

Lemma 5.1. Algorithms 1 and 2 produces a feasible pri-
mal solution for (LP).

Proof. The feasibility of the second LP condition, yi −
xij ≥ 0, ∀j ∈ C, i ∈ F , directly follows from the definition
of the algorithm. Specifically, in Line 11 of Algorithm 2, the

increase of a connection variable, Δxij never exceeds the
increase of the corresponding yi.

As for the first LP condition, assume for contradiction
that j is a client which is still uncovered at the end of the
algorithm, i.e.,

∑
i∈F xij < 1 and j ∈ A. Now, consider the

very last iteration of the inner loop (s = h, t = 0). By the
definition of ρ, there exists at least one facility i with cost
efficiency c(i) ≤ ρ covering client j. Because s = h, facility

i will become active and increase its yi value to m−t/h = 1
in Lines 19 and 20. Subsequently, j will set xij := 1 which
contradicts the assumption that j ∈ A at the end of the
algorithm.

If a facility is active in a certain iteration, its cost-efficiency
c(i) is, by definition, at most ρs/h. The tight set Ti does not
necessarily contain the same clients which constituted the
optimal cost-efficiency. Therefore, the cost efficiency of Ti

may be larger than c(i), i.e., Γi ≥ c(i). The next lemma
shows that the cost-efficiency of the tight set Ti, Γi, is at
most ρs/h.

Lemma 5.2. In every iteration of the t-loop, if c(i) ≤ ρs/h

for a facility i, then Γi ≤ ρs/h.

Proof. Consider the set B that constituted c(i). First,

observe that if c(i) ≤ ρs/h, and because B minimizes c(i),

no client j ∈ B can have connection cost cij > ρs/h. Let
Q := Ti \ B be the set of clients j /∈ B with cij ≤ ρs/h. Γi

is upper bounded by

Γi =
fi +

∑
j∈Ti

cij

|Ti|

=
fi +

∑
j∈B cij +

∑
j∈Q cij

|Ti|

≤
c(i) ≤ ρs/h

|B|ρs/h + |Q|ρs/h

|Ti| = ρs/h.

Bounding the primal objective function by the dual objec-
tive function is key to applying the method of dual fitting.
The next lemma provides such a bound by showing that
throughout the execution of the algorithm, the values of the
primal and dual objective functions are equal.

Lemma 5.3. At the end of each t-loop, it holds that

∑
j∈C

αj =
∑

j∈C,i∈F

cijxij +
∑
i∈F

fiyi. (2)

Proof. We prove the claim by induction over the itera-
tions of the t-loop. At the beginning of the algorithms, both
sides of the equation are 0. Assume that the claim is true
before starting a new iteration s′. If facility i increases its yi

during s′, all tight clients j ∈ Ti increase their correspond-
ing xij as well. Hence, the right hand side of (2) increases
by

ΔRHS =
∑
i∈F

Δyifi +
∑
i∈F

∑
j∈Ti

Δyicij .

As for the left hand side of (2), the value
∑

j∈C αj in-
creases by

ΔLHS =
∑
j∈C

∑
i:j∈Ti

ΔyiΓi =
∑
i∈F

∑
j∈Ti

ΔyiΓi

=
∑
i∈F

Δyi

⎛
⎝ ∑

j∈Ti

(fi +
∑
j∈Ti

cij)/|Ti|
⎞
⎠

=
∑
i∈F

Δyi ·
⎛
⎝fi +

∑
j∈Ti

cij

⎞
⎠

= ΔRHS.

In the next lemma, we characterize the steady increase of a
facility i’s cost efficiency during the course of the algorithm.

Lemma 5.4. At the beginning of each iteration of the s-
loop, it holds for all facilities i ∈ F that c(i) ≥ 1 for s = 1

and c(i) > ρs−1/h for s > 1.

Proof. The case s = 1 follows from the assumption that
cij ≥ 1 and fi ≥ 1 (cf. Section 7). Consider iteration
s > 1 and let s′ = s − 1. In the last t-loop iteration of

the s′th iteration, all facilities i with c(i) ≤ ρs′/h set yi to
1. Consequently, all j ∈ Ti become covered. It follows that

for such a facility i, ∀j ∈ A : cij > ρs′/h. The claim now
follows from

c(i) = min
B∈2A\{}

fi +
∑

j∈B cij

|B|

>
fi

|B| +
|B|ρs−1/h

|B| > ρs−1/h.

A client may be tight with several facilities. If all these
facilities increased their yi values, the dual value αj of j may
increase too much. Consider an iteration of the s-loop. Dur-
ing the early iterations of the t-loop, the increase in Δyi of
active facilities is small, because t is close to h. Intuitively,
it is acceptable if a client is tight to many active facilities
in these early iterations. In other words, the higher the in-
creases Δyi of active facilities, the fewer active facilities a
client is allowed to be tight to. The following lemma estab-
lishes precisely this relationship.

Lemma 5.5. Let Aj := {i | j ∈ Ti} be the active set for
an uncovered client j. At the beginning of each iteration of
the t-loop,

|Aj | ≤ mt+1/h. (3)

Proof. From the previous iteration of the loop, we know
that for each active facility i ∈ Aj , it holds that yi ≥
m−(t+1)/h. Now, assume for contradiction that |Aj | > mt+1/h

for some j ∈ C. If so, then∑
i∈Aj

yi ≥ |Aj | · m−(t+1)/h > 1

and consequently
∑

i∈F xij > 1. This contradicts the as-
sumption that client j is uncovered. Hence, the claim fol-
lows.

In the next lemma, we bound the amount of Δαj that
each client can receive in one iteration of the s-loop. For
that purpose, let Δαj(s) :=

∑h−1
t=0 Δαj(s, t) be the increase

of αj during the sth iteration of the outer loop. Let Ti(s, t)
be the set of clients that are tight to i in the iterations s
and t. Further, we define

σj(s) :=
h∑

t=1

∑
i∈Aj(s,t)

Δyi.

Intuitively, σj(s) is the increase of the yi value at facilities
to which client j has been tight during the course of the
sth iteration of the outer loop. The following lemma relates
αj(s) and σj(s).

Lemma 5.6. The sum of the Δαj values collected in iter-
ation s at a node j is upper bounded by

Δαj(s) ≤ σj(s) · ρs/h.

Proof. Applying Lemma 5.2 and by the definition of
Δαj , we have

Δαj(s) ≤
h−1∑
t=0

Δαj(s, t)

≤
h−1∑
t=0

∑
i∈Aj(s,t)

Δyi(s, t)Γi(s, t)

≤
Lemma 5.2

h−1∑
t=0

∑
i∈Aj(s,t)

Δyi(s, t)ρ
s/h

= σj(s)ρ
s/h.

Next, we want to find bounds for σj(s). Assume that
client j becomes covered during iteration s∗j of the outer
loop. Notice that for every client j, there is exactly one
iteration s∗j . Once covered, j will not be in A and therefore,
not in any Ti. Consequently, σj(s

′) = 0 for all s′ > s∗j .
The other two cases, s′ < s∗j and s′ = s∗j are subject of the
following lemma.

Lemma 5.7. For all iterations of the s-loop, it holds that
σj(s) ≤ 1 ∀s �= s∗j
σj(s) ≤ m1/h s = s∗j

Proof. The first case, s′ < s∗j , follows from the definition
of σj(s). If

σj(s
′) =

h∑
t=1

∑
i∈Aj(s,t)

Δyi ≥ 1,

then j would have become covered in iteration s′ and hence,
s′ = s∗j .

It remains to analyze the iteration during which j becomes
covered, i.e., s′ = s∗j . Consider the iterations of the inner
loop during iteration s∗j of the outer loop. Let t∗ denote
the iteration during which j becomes covered. Clearly, for
all t′ > t∗, it holds that

∑
i:j∈Ti(t′) Δyi(t

′) = 0 because j is

already covered. Hence, we only need to analyze the first t∗

iterations of the inner loop. Summing up all increases, we
get

σj(s
′) =

h−1∑
t=t∗+1

∑
i∈Aj(t)

Δyi(t) +
∑

i∈Aj(t∗)

Δyi(t
∗)

≤ 1 +
∑

i∈Aj(t∗)

Δyi(t
∗)

≤ 1 +
(
m−t/h − m−(t+1)/h

)
· |Aj(t

∗)|

≤ 1 +
(
m−t/h − m−(t+1)/h

)
· mt+1/h

≤ 1 +
(
m1/h − 1

)
= m1/h.

The first inequality follows from the fact that by definition of
t∗, client j is not covered after the iterations h−1, . . . , t∗+1.
The third inequality follows from Lemma 5.5.

For our dual solution to be feasible, the linear program
condition imposes that

∑
j∈C βij ≤ fi holds for all facilities

i ∈ F . Unfortunately, the dual solution produced by our
algorithm does not exhibit this feasibility property. How-
ever, we can at least show that the degree of infeasibility is
bounded. Specifically, it holds that if we only consider the
sum of the increases of the βij in a single iteration of the
s-loop, it fulfils the desired property.

Lemma 5.8. For all i ∈ F and all iterations s of the outer
loop, it holds that ∑

j∈C

Δβij(s) ≤ fi.

Proof. We distinguish two cases, depending on whether
πi(s) equals 0 or 1. In the first case, πi(s) = 0, the facility i’s
cost efficiency was insufficient to increase its yi value during
the sth iteration. We therefore have∑

j∈C

Δβij(s) =
∑
j∈Ti

(ρs/h − cij)

= ρs/h|Ti| −
∑
j∈Ti

cij

Assume for contradiction that
∑

j∈C Δβij(s) > fi for some
facility i and iteration s. It follows that

ρs/h >
fi +

∑
j∈Ti

cij

|Ti| ≥ c(i),

which in turn implies πi(s) = 1 for B = Ti. This establishes
the contradiction.

As for the second case, πi(s) = 1, we have∑
j∈C

Δβij(s) =
∑
j∈Ti

(Γs
i − cij)

= |Ti| ·
fi +

∑
j∈Ti

cij

|Ti| −
∑
j∈Ti

cij = fi.

Therefore, the lemma holds in both cases.

Having bounded the degree of infeasibility of the first dual
constraint, it now remains to do the same for the second
one, αj − βji ≤ cij , for all j ∈ C and i ∈ F . Again, we give
weaker bounds that do not hold for the entire execution of
the algorithm, but merely for a single iteration of the outer
loop.

Lemma 5.9. Let Δαj(s) be the sum of the Δαj(t) over
all iterations of the t-loop in the sth iteration of the s-loop.
For all j ∈ C, i ∈ F , and all iterations s, it holds that

Δαj(s)

(mρ)1/h
− Δβij(s) ≤ cij

Proof. We distinguish three cases, depending on how
much increase of βij was assigned to the connection between
i and j in line 25 of the facility algorithm. Regardless of the
specific case, the value Δαj(s) is bounded by Δαj(s) ≤
ρs/hm1/h by Lemmas 5.6 and 5.7.

1) In the case ρs/h ≤ cij , the algorithm sets Δβij(s) to 0.
Therefore

Δαj(s)

(mρ)1/h
− Δβij(s) ≤ ρ(s−1)/h ≤ cij .

2) In the second case, the client j is tight to i, i.e., ρs/h >
cij , but πi(s) = 0. Plugging in the corresponding value for
Δβij(s), we get

Δαj(s)

(mρ)1/h
−

(
ρs/h − cij

)
≤ ρ(s−1)/h−ρs/h+cij

≤ cij .

3) Finally, consider the last case, ρs/h > cij and πi(s) = 1.
Substituting Δβij(s) by Γs

i − cij yields

Δβij(s) + cij = Γs
i − cij + cij = Γs

i ≥ c(i).

For s > 1, we know by Lemma 5.4, that c(i) ≥ ρ(s−1)/h at
the beginning of iteration s, hence

Δβij(s) + cij ≥ ρ(s−1)/h.

Using the above inequality, we obtain

Δαj(s)

(mρ)1/h
≤ ρ(s−1)/h ≤ Δβij(s) + cij .

Subtracting Δβij(s) concludes the proof for the case s > 1.
The case s = 1 follows similarly. By Lemma 5.4, we can
lower bound c(i) ≥ 1 and therefore Δβij(s) + cij ≥ 1. The
claim now follows from

Δαj(s)

(mρ)1/h
≤ ρ(s−1)/h = 1 ≤ Δβij(s) + cij .

Having bounded the degree of dual infeasibility in the two
previous lemmas, we can now establish the approximation
ratio of the algorithm using the laws of LP duality. Specifi-
cally, we prove that the dual feasibility is violated only by a
factor O(h(mρ)1/h) and hence, when dividing αj and βij by
suitably large values, we obtain a feasible solution α̂j and

β̂ij .

Theorem 5.10. For an arbitrary integer k > 0, the al-

gorithm computes a O(
√

k(mρ)1/
√

k) approximation to the
fractional facility location problem in O(k) communication
rounds.

Proof. The runtime follows directly from the definition
of the algorithm. For the analysis of the approximation
ratio, we define α̂j and β̂ij as

α̂j :=
αj

h(mρ)1/h
and β̂ij :=

βij

h
,

respectively. We show that the variables α̂j and β̂ij form a
feasible solution to the dual LP. The feasibility of the second
dual constraint follows directly from Lemma 5.8. Particu-
larly, it holds that

∑
j∈C βij(s) ≤ fi for all iterations s and

all facilities i. As a consequence, we obtain
∑

j∈C βij ≤ h·fi

and therefore,
∑

j∈C β̂ij ≤ fi.
Next, we show the feasibility of the first constraint by

bounding α̂j − β̂ij as

α̂j − β̂ij =

∑h−1
s=0 αj(s)

h(mρ)1/h
−

∑h−1
s=0 βij(s)

h

=
1

h

h−1∑
s=0

(
αj(s)

(mρ)1/h
− βij(s)

)
.

By Lemma 5.9, each term of the sum is bounded by cij .

Therefore, we have α̂j − β̂ij ≤ hcij/h ≤ cij .
Let OPT and ALG denote the optimal value and the value

as computed by the algorithm, respectively. By LP duality,
the sum of the α̂j values is a lower bound for OPT . As for
ALG, recall that by Lemma 5.3, we know that the value of
the primal and dual objective function is equal at the end
of the algorithm. Therefore, we can bound ALG as

ALG =
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

cijxij

=
Lemma 5.3

∑
j∈C

αj ≤ h(mρ)1/h
∑
j∈C

α̂j

≤ h(mρ)1/h · OPT.

Finally, the theorem follows from h = 	√k
.

6. RANDOMIZED ROUNDING
In order to come up with a solution to the integer facility

location problem, we round the fractional solutions obtained
in the previous section. During this process, we must nei-
ther overly increase the total opening costs, nor the total
connection costs. Interestingly, this can be achieved with
high probability in constant time even in a distributed set-
ting. The idea for the randomized rounding is based on the
filtering technique introduced in [18]. Applications of ran-
domized rounding for a covering LP in a distributed context
can be found in [17].

In the following, let x̂ij and ŷi be the fractional values ob-
tained from Algorithms 2 and 1, respectively. The variables
xij and yi denote the rounded integer values. For every
client j ∈ C, let C∗

j :=
∑

i∈F cij x̂ij be the weighted cost of
j’s connections. Further, let the neighborhood Vj of a client
j be the set of all facilities that are located within a factor of
log (n + m) of the weighted connection cost. Formally, for
every j ∈ C, Vj := {i ∈ F | cij ≤ log (n + m)·C∗

j }. The idea
is to round the fractional values yi at each facility i in such a
way that with high probability, all clients have at least one
opened facility in their neighborhood, Nj �= ∅. Each such
client then simply connects itself to the open facility with
the minimum connection cost cij .

Theorem 6.1. Let x̂ij and ŷi for each j ∈ C and i ∈ F be
the fractional solution with cost at most α ·OPT as derived
in Algorithms 1 and 2. In two rounds of communication,
Algorithms 4 and 3 produce an integer solution xij, yi with
cost at most O(log(m + n))αOPT in expectation.

Algorithm 3 Randomized Rounding - Client

INPUT: fractional solution x̂ij from Algorithm 2
OUTPUT: integral solution xij to ILP
1: C∗

j :=
∑

i∈F cij x̂ij ;
2: Vj := {i ∈ F | cij ≤ ln (n + m) · C∗

j };
3: receive yi from all i ∈ F
4: Nj := Vj ∩ {i ∈ F | yi = 1}
5: if Nj �= ∅ then
6: i′ := argmini∈Nj

cij ; xi′j := 1;

7: else
8: i′ := argmini∈F (cij + fi); xi′j := 1;
9: send JOIN-MSG to facility i′;

10: fi

Algorithm 4 Randomized Rounding - Facility

INPUT: fractional solution ŷi from Algorithm 1
OUTPUT: integral solution yi to ILP
1: pi := min {1, ŷi · ln (n + m)};
2: yi :=

{
1 , with probability pi

0 , with probability 1 − pi

3: send yi to all clients j ∈ C;
4: if receive JOIN-MSG then yi := 1;

Proof. It follows from the definition of C∗
j and Vj that∑

j∈F\Vj
x̂ij ≤ 1/ log (n + m), for if not, C∗

j would be larger.

Since the construction of Algorithms 2 and 1 guarantees the
invariant

∑
i∈Vj

x̂ij =
∑

i∈Vj
ŷi, and

∑
i∈F x̂ij ≥ 1 we have

∑
i∈Vj

ŷi =
∑
i∈Vj

x̂ij ≥ 1 − 1

log (n + m)
. (4)

For each client j having Nj �= ∅, the connection costs are
at most cij ≤ ln (n + m)C∗

j by the definition of the neigh-
borhood Vj . It follows that these clients account for total
connection costs of at most ln (n + m)

∑
j∈C,i∈F cij x̂ij . A

facility declares itself open in Line 2 of Algorithm 4 with
probability min {1, ŷi · ln (n + m)}. The expected opening
costs of facilities opened in Line 2 are thus bounded by the
value ln (n + m)

∑
i∈F ŷifi.

It remains to bound the costs incurred by clients that are
not covered, i.e. Nj = ∅, and facilities that are opened via a
JOIN-MSG message. The probability qj that a client j does
not have an open facility in its neighborhood is at most

qj =
∏
i∈Vj

(1 − pi) =

⎛
⎝

n+m

√ ∏
i∈Vj

(1 − pi)

⎞
⎠

n+m

≤
(∑

i∈Vj
(1 − pi)

n + m

)n+m

≤
|Vj |≤m

(
1 −

ln (n + m)
∑

i∈Vj
ŷi

n + m

)n+m

≤
Eq. (4)

(
1 − ln (n + m)

n + m

(
1 − 1

ln (n + m)

))n+m

=

(
1 − ln (n + m) − 1

n + m

)n+m

≤ e− ln (n+m)−1 ≤ 1

e(n + m)
. (5)

The first inequality follows from the fact that for every se-
quence of positive numbers, the geometric mean is smaller
than or equal to the arithmetic mean of these numbers.

An uncovered client sends a JOIN-MSG message to the
facility i ∈ F that minimizes cij + fi. Each of these costs is
at most

∑
j∈C,i∈F cij x̂ij +

∑
i∈F ŷifi because x̂ and ŷ would

not constitute a feasible solution otherwise. Combining this
with the above results, the total expected cost μ = E[ALG]
is

μ ≤ ln (n + m)

(∑
j∈C,i∈F

cij x̂ij +
∑
i∈F

ŷifi

)

+
n

e(n + m)

(∑
j∈C,i∈F

cij x̂ij +
∑
i∈F

ŷifi

)

≤ (ln (n + m) + O(1)) αOPT.

This concludes the proof of Theorem 6.1.

In many distributed systems, obtaining a solution that
holds in expectation may not be satisfying. Instead, we are
interested in results that hold with high probability. In order
to obtain such a high probability result, the above rounding
procedure can be adapted as follows.

Algorithm 3 for the clients remains unchanged. The pro-
cedure executed by each facility, however, is changed such
that, instead of (probabilistically) selecting a single binary
variable yi, a facility determines a series of log n indepen-
dent random variables y1

i , . . . , ylog n
i . Like in Algorithm 4,

each y�
i , � = 1, . . . , log n is independently chosen as

y�
i :=

{
1 , with probability pi

0 , with probability 1 − pi

for pi = min {1, ŷi · ln (n + m)}.
Every facility then wraps all these log n bits in a mes-

sage and sends it to some leader node (which can be the
client with the lowest ID, for instance). The leader node

receives these messages (y1
i . . . ylog n

i) from all facilities i ∈ F
and computes the index t which minimizes the sum of the
opening costs, formally t = arg min

∑
i∈F ys

i fi, for all s =
1, . . . , log n. The leader then sends to each facility i ∈ F
its corresponding binary variable yt

i , which facility i sub-
sequently sends to its cities in Line 3 of Algorithm 4. The
following Theorem shows that this adapted procedure yields
the desired high probability result.

Theorem 6.2. Let x̂ij and ŷi for each j ∈ C and i ∈ F be
the fractional solution with cost at most α·OPT as derived in
Algorithms 1 and 2. In four rounds of communication, the
adapted rounding algorithm produces an integer solution xij,
yi with cost at most O(log(m + n))αOPT with probability
1 − n−1.

Proof. We know that E[X�] = ln (n + m)
∑

i∈F ŷifi,

where X� =
∑

i∈F y�
i fi. By Markov’s inequality,

P

[
X� ≥ 2 ln (n + m)

∑
i∈F

ŷifi

]
≤ 1

2

for each � = 1, . . . , log n. The probability that Xt does not
exceed this threshold is therefore bounded by

P

[
Xt ≤ 2 ln (n + m)

∑
i∈F

ŷifi

]
≤ 1 −

(
1

2

)log n

= 1 − 1

n
.

The rest of the proof is identical to the proof of Theorem
6.1. Particularly, we know by Inequality (5) that with high
probability, the solution yt

i for all i ∈ F constitutes a solu-
tion such that, every client j ∈ C has an open facility in its
neighborhood. Because all clients can thus connect to open
facilities in their neighborhood, the total connection cost is
at most ln (n + m)

∑
j∈C,i∈F cij x̂ij . We conclude the proof

by observing that the message size remains in O(log n).

Clearly, this high probability result comes at the cost of
a “centralized” program execution, i.e., all information is
compiled and processed at one single node. Depending on
the specific application scenario, the decentralized approach
of Algorithms 3 and 4 may be preferable for various reasons
(including fault-tolerance) even at the cost of worse perfor-
mance guarantees.

7. ARBITRARY COEFFICIENTS
The algorithm and analysis of Sections 4 and 5 is based on

the assumption that cij ≥ 1 and fi ≥ 1 for all j ∈ C, i ∈ F .
In this section, we show how to handle the general case in
which connection and opening costs can be arbitrary non-
negative values. Furthermore, this technique can be used to
get rid of the dependency on ρ in the approximation ratio.

The idea is to scale all costs such that the above condition
holds. The problem is that the straightforward approach
of multiplying all costs with the minimum cij or fi might
overly blow up the coefficient ρ, or it may even be infeasible
for zero valued costs. For that reason, we need to perform
a more subtle scaling that is inspired by a similar technique
given in [3].

The parameter ρ is a lower bound for the objective value
μOPT of the optimal solution OPT . Because there are n
clients, all stars with cost-efficiency smaller than ρ/n can
be added to a solution ALG, incurring costs at most μOPT .
This observation motivates the following scaling procedure
performed at the beginning of the algorithm.

1. For every facility i, choose the largest set Bi of clients
such that (fi +

∑
j∈Bi

cij)/|Bi| ≤ ρ/n. If such a Bi

exists, set yi := 1 and xij := 1 for all j ∈ Bi. Let C′

and F ′ be the set of unconnected clients and unpicked
facilities, respectively.

2. For all j ∈ C′ and i ∈ F ′, set c′ij := ncij/ρ and f ′
i :=

nfi/ρ, respectively. Clients in C\C′ do not participate
in the algorithm further.

3. Execute Algorithms 1 and 2 with clients and facilities
in C′ and F , the coefficient ρ′ = n (the new ρ), and
costs c′ij and f ′

i .

Notice that the above procedure can be executed in our
distributed model in a constant number of communication
rounds. The facility location instance resulting from the
above transformation fulfils the following useful and simple
property.

Lemma 7.1. Consider a facility location instance derived
from the above transformation. Throughout the algorithm
and for all i ∈ F , it holds that c(i) ≥ 1.

Proof. If B is the set of clients constituting c(i), then

c(i) =
f ′

i +
∑

j∈B c′ij
|B| =

n
ρ

(
fi +

∑
j∈B cij

)
|B|

Assume for contradiction that i ∈ F and c(i) < 1. It follows

that
fi+

∑
j∈B cij

|B| < ρ
n
. This contradicts the fact that the

star B was not selected during the transformation, that is,
the clients j ∈ B are in C′.

Having Lemma 7.1 allows us to use Lemmas 5.4 and 5.9
as in the proof of Section 5. The remainder of the proof in
Section 5 remains the same.

Summarizing, the transformation algorithm runs in O(k2)

rounds and yields a solution of cost at most O(k(mn)1/k) ·
μOPT + μOPT for the fractional facility location problem.
In combination with randomized rounding, this results in a
O(k(mn)1/k log (n + m)) approximation.

8. FAULT-TOLERANCE
Facility location problems model the tradeoff between the

cost of developing resources and the utility accruing from
them. In numerous applications, fault-tolerance is of im-
portance in this context [28]. When considering caching in
a network, for instance, the caches should be resistent to
failures of nodes and links. This fault-tolerance is modelled
by demanding that every client j be assigned to at least rj

facilities, rj being the requirement of client j. The special
case rj = 1, ∀j ∈ C corresponds to the regular facility lo-
cation problem. The fault-tolerant facility location problem
can be captured by the following LP relaxation.

min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈C

cijxij

∑
i∈F

xij ≥ rj , ∀j ∈ C

yi − xij ≥ 0 , ∀j ∈ C, i ∈ F

−xij ≥ −1 , ∀j ∈ C, i ∈ F

xij , yi ≥ 0 , ∀j ∈ C, i ∈ F

The additional constraint xij ≤ 1 prevents a client from
connecting to the same facility multiple times.

The algorithm in Section 4 can be adapted for the fault-
tolerant case. Analogously to the regular case, the coefficient
ρ′ is defined as the minimal cost such that every city can
open and connect to k facilities. The algorithm is changed
such that, clients remain in the active set A until they are
(fractionally) covered by at least rj facilities.

9. CONCLUSIONS
Many applications of the facility location problem such

as caching in the Internet inherently apply to distributed
settings. In this paper, we have given a classification of
the trade-off between the amount of communication and the
quality of the obtained global solution. Our solution tech-
nique is based on the distributed approximation of a linear
program which is, in contrast to previous work [23, 3, 17],
not a covering or packing problem. By thus pushing the
boundaries of distributed LP approximation, we hope that
our paper is a step towards understanding the nature of
more general linear programs in a distributed context.

Our results give raise to several questions. First, the
fact that in the centralized case, the metric facility location
problem allows constant approximations [27, 13] raises hope
for faster approximations algorithms in distributed settings,
too. Moreover, our problem setting is a complete bipartite

graph. Interestingly, there are virtually no lower bounds for
the bounded message size model for graphs with diameter
1 or 2. For instance, all lower bounds for the MST prob-
lem apply to graphs with diameter at least 3. Finding lower
bounds for this model appears to be an outstanding open
problem.

10. ACKNOWLEDGEMENTS
We would like to thank the anonymous PODC reviewers

for pointing out a simplification in the original version of
Lemma 5.9.

11. REFERENCES
[1] B. Awerbuch. Complexity of Network Synchronization.

Journal of the ACM, 32(4):804–823, 1985.

[2] M. L. Balinski. On Finding Integer Solutions to Linear
Programs. In Proceedings of the IBM Scientific
Computing Symposium on Combinatorial Problems,
pages 225–248, 1966.

[3] Y. Bartal, J. W. Byers, and D. Raz. Global
Optimization Using Local Information with
Applications to Flow Control. In Proc. 38 th

Symposium on Foundations of Computer Science
(FOCS), pages 303–312, 1997.

[4] G. Cornuejols, G. Nemhauser, and L. Wolsey. Discrete
Location Theory, chapter The Uncapacitated Facility
Location Problem, pages 119–171. Wiley, 1990.

[5] M. Elkin. An Unconditional Lower Bound on the
Hardness of Approximation of Distributed Minimum
Spanning Tree Problem. In Proceedings of the 36 th

annual ACM Symposium on Theory of Computing
(STOC), pages 331–340, 2004.

[6] M. Elkin. Distributed Approximation - A Survey.
ACM SIGACT News - Distributed Computing
Column, 35(4), 2004.

[7] U. Feige. A Threshold of ln n for Approximating Set
Cover. Journal of the ACM, 45(4):634–652, 1998.

[8] M. X. Goemans and D. P. Williamson. A General
Approximation Technique for Constrained Forest
Problems. SIAM J. Comput., 24(2):296–317, 1995.

[9] M. T. Hajiaghayi, M. Mahdian, and V. S. Mirrokni.
The Facility Location Problem with General Cost
Functions. Networks, 42(1):42–47, 2003.

[10] W. R. Heinzelman, A. Chandrakasan, and
H. Balakrishnan. Energy-Efficient Communication
Protocol for Wireless Microsensor Networks. In Proc.
33 rd Hawaii International Conference on System
Sciences (HICSS), page 8020, 2000.

[11] D. S. Hochbaum. Heuristics for the fixed cost median
problem. Math. Programming, 22:148–162, 1982.

[12] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and
V. V. Vazirani. Greedy Facility Location Algorithms
analyzed using Dual Fitting with Factor-Revealing
LP. Journal of the ACM, 50(6):795–824, 2003.

[13] K. Jain and V. V. Vazirani. Primal-Dual
Approximation Algorithms for Metric Facility
Location and k-Median Problems. In Proceedings of
the 40 th Symposium on Foundations of Computer
Science (FOCS). IEEE Computer Society, 1999.

[14] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman.
Analysis of a Local Search Heuristic for Facility

Location Problems. In Proceedings of the 9 th

ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1–10. Society for Industrial and
Applied Mathematics, 1998.

[15] F. Kuhn, T. Moscibroda, and R. Wattenhofer.
Initializing newly deployed ad hoc and sensor
networks. In Proceedings of 10 th Annual International
Conference on Mobile Computing and Networking
(MOBICOM), pages 260–274, 2004.

[16] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
Cannot be Computed Locally! In Proceedings of the
23 rd ACM Symposium on the Principles of
Distributed Computing (PODC), pages 300–309, 2004.

[17] F. Kuhn and R. Wattenhofer. Constant-Time
Distributed Dominating Set Approximation. In Proc.
of the 22nd Annual ACM Symp. on Principles of
Distributed Computing (PODC), pages 25–32, 2003.

[18] J.-H. Lin and J. S. Vitter. ε-Approximations with
Minimum Packing Constraint Violation. In
Proceedings of the 24 th ACM Symposium on Theory
of Computing (STOC), pages 771–782, 1992.

[19] N. Linial. Locality in Distributed Graph Algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.

[20] Z. Lotker, E. Pavlov, B. Patt-Shamir, and D. Peleg.
MST Construction in O(log log n) Communication
Rounds. In Proceedings of the 15 th ACM symposium
on Parallel Algorithms and Architectures (SPAA),
pages 94–100. ACM Press, 2003.

[21] M. Luby and N. Nisan. A Parallel Approximation
Algorithm for Positive Linear Programming. In Proc.
of the 25 th ACM Symposium on Theory of Computing
(STOC), pages 448–457, 1993.

[22] C. Lund and M. Yannakakis. On the Hardness of
Approximating Minimization Problems. Journal of the
ACM, 41(5).

[23] C. Papadimitriou and M. Yannakakis. Linear
Programming Without the Matrix. In Proceedings of
the 25 th ACM Symposium on Theory of Computing
(STOC), pages 121–129. ACM Press, 1993.

[24] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM Monographs on Discrete
Mathematics and Applications, 2000.

[25] D. Peleg and V. Rubinovich. A Near-Tight Lower
Bound on the Time Complexity of Distributed
Minimum-Weight Spanning Tree Construction. SIAM
J. Comput., 30(5):1427–1442, 2001.

[26] S. Rajagopalan and V. Vazirani. Primal-Dual RNC
Approximation Algorithms for Set Cover and
Covering Integer Programs. SIAM Journal on
Computing, 28:525–540, 1998.

[27] D. B. Shmoys, E. Tardos, and K. I. Aardal.
Approximation Algorithms for Facility Location
Problems. In Proc. 29 th Symposium on Theory of
Computing (STOC), pages 265–274, 1997.

[28] C. Swamy and D. B. Shmoys. Fault-Tolerant Facility
Location. In Proc. 14 th Symposium on Discrete
Algorithms (SODA), pages 735–736, 2003.

[29] D. P. Williamson, M. X. Goemans, M. Mihail, and
V. V. Vazirani. A Primal-Dual Approximation
Algorithm for Generalized Steiner Network Problems.
In Proc. 25 th Symposium on Theory of Computing
(STOC), pages 708–717, 1993.

