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Abstract

Classical graph algorithms work well for combinatorial prob-
lems that can be thoroughly formalized and abstracted. Once
the algorithm is derived, it generalizes to instances of any
size. However, developing an algorithm that handles complex
structures and interactions in the real world can be challeng-
ing. Rather than specifying the algorithm, we can try to learn
it from the graph-structured data. Graph Neural Networks
(GNNs) are inherently capable of working on graph struc-
tures; however, they struggle to generalize well, and learning
on larger instances is challenging. In order to scale, we focus
on a recurrent architecture design that can learn simple graph
problems end to end on smaller graphs and then extrapolate to
larger instances. As our main contribution, we identify three
essential techniques for recurrent GNNs to scale. By using
(i) skip connections, (ii) state regularization, and (iii) edge
convolutions, we can guide GNNs toward extrapolation. This
allows us to train on small graphs and apply the same model
to much larger graphs during inference. Moreover, we empir-
ically validate the extrapolation capabilities of our GNNs on
algorithmic datasets.

Introduction
We believe that extrapolation is an important milestone for
understanding machine learning. Being able to extrapolate
to much larger inputs than seen in training is a convinc-
ing exhibit for a deeper understanding. For many learning
architectures, this is a challenge, because the input size of
the architecture is fixed. This is certainly true for multi-layer
perceptrons, but even transformers have inputs bounded by
a maximum number of tokens. A prominent exception are
Graph Neural Networks (GNNs). In GNNs, each node is
operating individually by merely exchanging messages with
its neighbors. As such, in principle, GNNs can be trained
on small graphs but then run on much larger graphs. Con-
sequently, GNNs seem to be a natural match for studying
extrapolation.

However, GNNs are usually just trained for a fixed and
small number of message passing rounds. Nodes can learn a
different behavior in each round, which gives them a lot of
flexibility to learn even complicated functions. Nevertheless,
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this flexibility also prevents GNNs from being able to handle
problems where information has to be propagated through
the whole graph, since these cannot be solved with a fixed
number of rounds.

Instead, we want to mimic classical algorithms and be
able to adapt the number of rounds a GNN can execute.

To do so, we use a recurrent GNN architecture to learn
graph algorithms end-to-end. The core idea is to learn only
on small graphs during training. Then, for inference, we can
adapt the number of convolutions due to the recurrent design
and apply more rounds for larger graphs. While a recurrent
architecture seems to be necessary to achieve extrapolation,
we show that it is not sufficient. In this paper, we propose
measures to guide the model toward extrapolation and get a
stable output from the network:

• We identify three techniques that lead GNNs towards
more stable extrapolation: (i) skip connections to the
problem input, (ii) state regularization through L2 loss,
and (iii) edge convolutions.

• We show that using our approach, it is possible to extra-
polate to larger graph instances, compare our models to
existing baselines, and experimentally validate our find-
ings.

Related Work
Graph Neural Networks: Initially proposed by Scarselli
et al., GNNs have seen a significant popularity boost, and
many new architectures have been established (Kipf and
Welling 2016; Veličković et al. 2017). A key question re-
gards the theoretical expressiveness of such models. It has
been shown that the expressiveness of traditional GNNs is
limited by the WL color refinement algorithm (Xu et al.
2018a; Leman and Weisfeiler 1968; Papp and Wattenhofer
2022). To achieve maximal expressiveness, message-passing
GNNs have to use enough rounds to be able to match the
computational power of WL. Moreover, increasing the num-
ber of rounds was proven to be necessary to solve graph
problems (Loukas 2020). In fact, a GNN can provably not
solve or, in some cases, even approximate a problem without
executing the minimum amount of required rounds (Sato,
Yamada, and Kashima 2019). Unfortunately, increasing the
number of rounds has been shown to be difficult in prac-
tice. The training is more unstable and complex, leading to
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problems such as oversmoothing and oversquashing (Oono
and Suzuki 2019; Alon and Yahav 2020). Therefore, most
GNNs limit themselves to executing a constant number of
rounds (Xu et al. 2018a).
Recurrence and Residual Connections: To incorporate
more layers, residual connections and recurrent neural net-
works (RNN) have been proposed (Xu et al. 2018b; Huang
and Carley 2019). Residual connections are a common tech-
nique for building deeper architectures (He et al. 2016). Re-
current neural networks are designed to work with variable
length input and can keep internal state over long sequences,
two examples being LSTMs (Hochreiter and Schmidhuber
1997) and GRUs (Cho et al. 2014). Following this line of
work, several GNN architectures have included mechanisms
such as gating, residual connections, or reusing the same
layer to build deeper models (Li et al. 2021; Tang et al. 2020;
Li et al. 2015; Huang and Carley 2019; Liu, Gao, and Ji
2020).
Algorithmic Learning and Extrapolation: The main aim
of extrapolation is to solve problems not encountered dur-
ing training. As such, the differentiable Neural Turing ma-
chine (Graves, Wayne, and Danihelka 2014) or RNNs which
generalize to arbitrary input lengths (Gers and Schmidhuber
2001) have been proposed. One notable example is the work
by Schwarzschild et al. that presents a recurrent architec-
ture for Convolutional Neural Networks with residual con-
nections. The model can then solve a series of tasks, includ-
ing mazes, prefix sums, and chess problems. They show that
executing more computation steps enables their networks to
achieve excellent extrapolation capabilities on problem in-
stances up to orders of magnitude beyond what was encoun-
tered during training.

GNNs have been used to tackle algorithmic problems be-
fore. Prominent examples include SAT and TSP or short-
est paths through algorithmic alignment (Selsam et al. 2018;
Veličković and Blundell 2021; Palm, Paquet, and Winther
2018; Joshi et al. 2022). Moreover, recent approaches also
focus on extrapolation capabilities to larger graphs on algo-
rithmic reasoning problems (Tang et al. 2020; Xu et al. 2020;
Veličković et al. 2022; Ibarz et al. 2022). However, they only
test on graphs slightly larger than those in the training set,
resulting in architectures that have difficulty scaling to ar-
bitrary sizes. Contrarily, our work focuses on architectures
that can extrapolate to graphs up to 1000 times larger than
the ones in the training set.

Model Architecture
The recurrent message passing layer is at the core of our
architecture, which is illustrated in Figure 1. It is repeat-
edly executed on every node of the graph. Therefore, during
training, we can use fewer layers and increase the number
of layers for larger graphs during inference. The recurrent
layer uses a skip connection to the original input, combining
the current embedding htv of a node v with the input fea-
tures and transforming them to a node embedding through a
multilayer perceptron (MLP). Then, the recurrent graph con-
volution is applied and uses one round of message passing
to derive ht+1

v . The computed embedding is then fed back to
the recurrent layer to initiate the next round of computation.

Encoder Graph ConvolutionIn Decoder Out

Skip Input

Recurrent Layer

Figure 1: Overview of the recurrent architecture. The recur-
rent layer consists of a skip connection to the input, and the
graph convolution is applied repeatedly. The encoder maps
the input to the embedding dimension, while the decoder
generates node predictions from the final embedding. The
number of executions of the recurrent layer can be varied.

Furthermore, we use an encoder and decoder MLP to match
the input and output dimensions to the recurrent layer’s node
embedding dimension.

Graph Convolutions
In our work, we use two different graph convolutions: The
GIN convolution (Xu et al. 2018a), a widely used message
passing layer in GNNs, and a GRU convolution (Huang and
Carley 2019), tailored towards the recurrent setting. The two
convolutions allow us to compare to what extent a recurrent
convolution alone is sufficient or if a more specialized con-
volution, such as the GRU, is required. Note that at every
timestep, the GRU takes two inputs, the output of the convo-
lution and its previous state. We use variations of both con-
volutions by adding an MLP on the edges before the aggre-
gation. We refer to the versions without MLP as RecGIN and
RecGRU and the ones with edge convolution as RecGIN-E
and RecGRU-E. We define the RecGIN-E update as:

ht+1
v = Θ1

(1 + ε) · htv +
∑

w∈N(v)

Θ2(htv‖htw)


where ‖ denotes concatenation and RecGRU-E is defined as:

ht+1
v = GRU

 ∑
w∈N(v)

Θ(htv‖htw)

 , htv


The only difference to RecGIN and RecGRU is the addi-
tional MLP for the edges.

Extrapolation Techniques
The recurrent architecture allows us to vary the number
of computation steps. This is not yet sufficient to achieve
extrapolation. The predictions should also stabilize, so the
GNN can use the information propagated through the addi-
tional layers without digressing. To guide the model toward
extrapolation, we identify three essential techniques.

First, we introduce skip connections from the original in-
put to the beginning of each recurrent layer as Schwarzschild
et al. proposed. They observed that when the number of re-
current layers increases, the network tends to “forget” its ini-
tial features. By explicitly passing the input features to every
execution of the recurrent layer, the network can recall its
initial state and the problem it has to solve.
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Figure 2: Comparison of extrapolation accuracy for different
graph convolutions. Adapting the convolution on the edges
or using a GRU are beneficial for extrapolation.

Another problem concerns the stability of computed em-
beddings. Once a solution is found by the GNN, execut-
ing more rounds should not change the prediction anymore.
However, even slight deviations of the embedding in one
layer can magnify in the following layers. We found that
adding regularization in the form of an L2 loss on the em-
beddings improves the stability of the computation.

Finally, we add an MLP on pairs of node embeddings for
every edge. The MLP allows the GNN to differentiate be-
tween neighbors and choose what messages to include in
the aggregation step over all neighbors. This enables better
control over information propagation through the graph and
improves extrapolation capabilities.

Tasks
We test our model on multiple synthetic datasets that are
specifically tailored to evaluate the ability of a GNN to
gather and combine information over long distances.

Path Finding: Given a tree, predict if a node lies on the
path between two marked nodes.

Prefix Sum: Paths are given where every node either has a
one or zero as its initial feature. For each node, the sum of
all initial features to its left modulo two has to be predicted.

Distance: Given a sparse graph with a marked starting
node, for each node, predict the distance of the shortest path
to the starting node modulo 2.

Experimental Evaluation
All models were trained for 100 epochs on graphs of size 10
using 12 instances of the recurrent layer. To evaluate extrap-
olation, we use graphs of size 100 and execute 120 rounds.
For comparisons, we consider the model with the best loss
on a validation dataset with graphs of size 10 that were not
used for training. All values are averaged over 5 runs. The
code to reproduce the experiments has been made available
online 1.

1https://github.com/floriangroetschla/Recurrent-GNNs-for-
algorithm-learning
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Figure 3: Extrapolation accuracy for each graph convolution
for the Prefix Sum task. We hypothesize that the ability to
recall the initial features is crucial for extrapolation.

Model Architecture
First, we compare the different graph convolutions and the
effect of including an edge convolution. We train models
with skip connections and regularization on graphs of size
10 and evaluate their accuracy on graphs of size 100. As il-
lustrated in Figure 2, we observe that models using a GRU
in the convolution perform better than the GIN variants.
Adding the edge convolution results in better generalization
accuracy overall, although only marginally for RecGRU.
Models that use the edge convolution can reach perfect ac-
curacy, while this is not the case for RecGIN. Therefore, we
conclude that the MLP on edges is helpful, albeit not com-
pletely necessary for all convolutions.

Regarding the use of skip connections, we can observe
a meaningful difference, shown exemplarily on the prefix
task in Figure 3. Even models that use edge convolutions are
not able to reach good accuracy without them. This confirms
the findings of Schwarzschild et al., that access to the input
features is a crucial part of gaining extrapolation abilities.
We conclude that adding the skip connection to the inputs is
also an excellent tool for extrapolation for GNNs.

Stabilization and Extrapolation
Before, we tested extrapolation to graphs of size 100. We
want to extend this to even larger graphs. In order for a
model to extrapolate, it also needs to be able to stabilize pre-
dictions when many convolutions are applied. We evaluate
the stabilization on graphs of size 10 and then increase the
number of layers from 10 up to 10,000. Figure 4 shows the
effect of using L2 regularization for the distance task. Within
the first 10 rounds, the accuracy increases as the informa-
tion can propagate further through the graph. Then, both
versions output correct predictions until approximately 100
layers. Afterwards, the models trained with L2 regulariza-
tion still stay stable while accuracy declines rapidly without
regularization. We hypothesize that slight deviations in the
node embeddings can lead to the performance degradation
over time. The additional regularization loss incentivizes the
model to keep embeddings compact. We conclude that with-
out regularization, the model can still exhibit extrapolation

https://github.com/floriangroetschla/Recurrent-GNNs-for-algorithm-learning
https://github.com/floriangroetschla/Recurrent-GNNs-for-algorithm-learning
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Figure 4: Accuracy for the Distance task on graphs of size
10 for RecGRU-E over the number of rounds the GNN ex-
ecutes. Initially, the accuracy increases as information flows
through the graph. Then, predictions stabilize for models us-
ing regularization while it decreases for models without it.

Model n = 10 n = 50 n = 100 n = 1, 000 n = 10, 000

Pa
th

Fi
nd

in
g GIN 1.00± 0.00 0.70± 0.10 0.52± 0.11 0.22± 0.07 0.08± 0.04

IterGNN 0.86± 0.09 0.51± 0.12 0.41± 0.08 0.15± 0.06 0.06± 0.02
RecGIN-E 1.00± 0.00 0.91± 0.04 0.88± 0.09 0.66± 0.26 0.33± 0.31
RecGRU-E 1.00± 0.00 0.96± 0.09 0.92± 0.16 0.86± 0.30 0.81± 0.39

Pr
efi

x
Su

m

GIN 0.95± 0.12 0.54± 0.11 0.48± 0.16 0.41± 0.22 0.40± 0.22
IterGNN 1.00± 0.00 0.58± 0.11 0.51± 0.17 0.40± 0.25 0.40± 0.26
RecGIN-E 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
RecGRU-E 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.98± 0.03

D
is

ta
nc

e GIN 1.00± 0.00 0.89± 0.05 0.83± 0.08 0.59± 0.20 0.52± 0.23
IterGNN 1.00± 0.00 0.99± 0.01 0.98± 0.04 0.81± 0.05 0.57± 0.17
RecGIN-E 1.00± 0.00 0.98± 0.02 0.91± 0.04 0.74± 0.07 0.57± 0.08
RecGRU-E 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.99± 0.02 0.97± 0.04

Table 1: We report the F1 score for the evaluation of ex-
trapolation abilities. All models were only trained on graphs
of size 10. The non-recurrent GIN can not extrapolate. The
RecGRU-E outperforms IterGNN and can extrapolate well
to graphs that are 1,000 times larger than the graphs encoun-
tered during training.

to some degree. However, for further extrapolation, it is es-
sential to use regularization.

Lastly, we evaluate our model’s extrapolation capabilities
by testing it on even larger graphs and comparing it against
existing baselines as illustrated in Table 1. All listed mod-
els were trained on graphs of size 10. We compare against a
non-recurrent GIN baseline model that uses 10 separate GIN
convolutions with skip connections and was trained with L2
regularization. As the architecture is not recurrent, it always
uses exactly 10 rounds of message passing. We observe that
GIN can still solve the task on graph sizes it has encountered
during training. However, even for slightly larger graphs, it
struggles to extrapolate as it can not propagate the relevant
information far enough to solve the task. Furthermore, we
compare our models to IterGNN (Tang et al. 2020). IterGNN
is also based on a recurrent architecture and can vary the
number of iterations. In addition, it learns a stopping crite-
rion. Even though it can extrapolate to some degree, it can
not extend to very large graphs. Both the RecGIN-E and
RecGRU-E can extrapolate to graphs that are up to 1000
times larger than the graphs encountered during training,
with the GRU variant achieving the best results overall.

Figure 5: Development of the predictions for the Path Find-
ing task after executing more rounds, from top left to bottom
right (row by row). The GNN scales to different graph sizes
by successively removing nodes that are not part of the path.

Learned Algorithms
To further evaluate to what extent our model could learn al-
gorithmic behavior, we plot predictions after several itera-
tions of the recurrent layer for the Path Finding task. By vi-
sually inspecting the outputs, we can observe that the GNN
uses a dead-end-filling algorithm that “removes” nodes that
can not be part of the path until it reaches the path between
the endpoints. The algorithm is correct and scales to arbi-
trary graph sizes. Similarly, on the Distance task, the GNN
emulates a Breadth First Search while information for the
total sum is propagated from left to right for the Prefix Sum
task.

Conclusion
Classic graph algorithms can scale to any graph size by al-
lowing the algorithm to execute more computation steps for
larger instances. We want to mimic this ability by training on
small graphs and then extrapolate to larger instances. Tradi-
tional GNN architectures can only execute a fixed number of
rounds. To make up for this shortcoming, we use a recurrent
architecture that can vary this number.

In addition to recurrence, we take additional measures to
make our models scale. Skip connections to the input fea-
tures, the addition of MLPs on edges and the regularization
of node embeddings help GNNs to extrapolate well. With
our approach, we can train on small graph instances and ex-
trapolate to graphs outside the training regime that are orders
of magnitudes larger. We evaluate our models on algorith-
mic datasets and compare them to existing baselines. Using
the techniques above, our model can extrapolate to graphs
1,000 times larger than during training. Moreover, the com-
puted solutions stabilize and do not change after executing
more rounds.

While we indicate essential tools to help extrapolation,
more work is required toward algorithmic learning on
graphs. Possible directions include discrete embeddings to
imitate state machine or symbolic algorithms that go be-
yond just defining state transitions. This could lead to in-
terpretable algorithmic behavior and close the gap between
human and artificial decision-making.
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