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Abstract. We study the problem of evacuating two agents from a
tree graph, through an unknown exit located at one of the nodes.
Initially, the agents are located at the same starting node; they
explore the graph until one of them finds the exit through which
they can evacuate. The task is to minimize the time it takes until
both agents evacuate, for a worst case placement of the exit. We
consider two communication models, global communication where
the agents can communicate at any time, and local communication
where the agents can only communicate if they are at the same node
at the same time. We show that the problem is NP-hard in both
cases. We then present a 4/3-approximation algorithm for global
and a 3/2-approximation algorithm for local communication.

1 Introduction

Imagine that two robots are trapped in a building. They have a map of the
building, but most exits marked on the map are in fact blocked. Their goal is
to find an exit that is still available, and evacuate. Armed with the map they
devise a strategy to find an exit and evacuate as quickly as possible. How should
they divide the work of checking all the locations for an available exit? In what
order should they explore the locations? Should they meet up at some predefined
location to exchange information?

More formally, we consider a group of k agents whose task is to find an exit
node in a weighted graph G = (V,E) and evacuate all agents through this exit.
The agents all start at common node r, which we call the root. In the beginning,
they know the graph and the edge weights and that at least one exit exists at
one of the nodes, but not the location of the exit(s). In this paper, we study
the case of k = 2 agents, one single exit, the graphs we consider will be trees.
We are interested in worst case analysis so we can assume a single exit without
loss of generality. Moreover two agents on a tree is the most fundamental case,
encompassing already the challenges, trade-offs and insights of the more general
setting. We will distinguish between two communication models. In the local
model agents can only explicitly exchange information when they are at the same
node at the same time. In the global model agents can exchange information at
any time independent of their locations. Global communication is equivalent to
a single central algorithm controlling all the agents.
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The objective will be to minimize the time for all agents to evacuate the
graph. In other words we minimize the last exit time, or evacuation time. We can
view this problem as a two player game, where one player defines the exploration-
evacuation strategy for all the agents and the second player, the adversary, then
chooses the worst possible exit location for this strategy.

An optimum algorithm is one that achieves the minimum worst case evac-
uation time. We first show that minimizing the worst case evacuation time for
two agents in a tree is NP-hard. This motivates the search for approximation
algorithms. Their performance is measured by the approximation ratio: The ra-
tio of the worst case evacuation time of the given algorithm and the worst case
evacuation time of an optimum algorithm.

We start our search in the global communication setting and show that a
simple bi-directional depth-first search (DFS) strategy has an approximation ra-
tio of 7/5. As our first major result, we then present the Longest Path Global
Algorithm and show that it has a tight approximation ratio of 4/3. We then
focus on the local communication setting and start again by showing that the
simple bi-directional approach gives an approximation ratio of 2. As our second
major result, we strengthen this result with a centroid-based algorithm, proving
a tight approximation ratio of 3/2. Finally we ask how much worse local com-
munication can be compared to global communication on the same graph and
bound the worst case ratio of the two models between 4/3 and 3/2. We finish
with concluding remarks, pointing the reader to a whole range of open questions
for future work.

2 Related Work

One of the most fundamental classes of problems in the context of mobile agents
are search problems. These include a whole range of related problems, such as
ants searching for food [16, 17, 22], graph exploration [10, 18, 19], rendezvous
problems [7, 12, 13, 14, 20], patrolling robots [26, 27], and pursuit-evasion games
[5, 6, 23]. Another example are graph evacuation problems, where one or more
agents search for an exit, through which they can evacuate. Evacuation problems
are of two main types; geometrical problems, where agents need to evacuate some
shape, such as a triangle, a square or a disk [21, 25, 29], and evacuation problems
on graphs. The latter type has not been explored to a great extent; the problem
has been considered on lines [1, 3] and so-called m-rays [8, 9, 30], but not on
general graphs. Borowiecki et al. [24] consider the problem of evacuating multiple
agents from distinct nodes using multiple exits, but this problem is very different
from ours with a focus on avoiding congestion and bottlenecks.

Another related problem is swarm exploration [15]. A swarm of mobile agents
starting at the root of a tree has to visit every node, whilst staying within a
distance of d, where d is called the range of the swarm. Unlike swarm exploration,
graph evacuation does not put a hard constraint on the distance between agents,
the agents stay close only when it is optimal.
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To the best of our knowledge, our work is the first to consider evacuating
two agents from a tree or graph through a single unknown exit. Although the
geometric setting already leads to elaborate strategies and interesting insights
[25, 29], graphs are a much more general and more widely applicable setting for
multi-agent evacuation.

A related graph exploration problem is the multiple Traveling Salesmen Prob-
lem (mTSP) [11]. The mTSP is a generalization of the well-known traveling
salesman problem (TSP), where more than one salesman is allowed to be used
in the solution. Unlike mTSP, in graph evacuation one also has to consider how
far apart the agents get during the exploration, as they eventually all have to
converge to the exit.

3 Preliminaries

We start with an example to illustrate some important aspects of the problem.
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Fig. 1: An instance of tree evacuation. The agents start at r and d(r, v2) = a > 0.

Take a look at Figure 1. Let’s first consider local communication. We observe
that there are two competing strategies that could be optimal, depending on the
value of a. The first is for the agents to stay together and explore everything
together starting with v1, then v2, v3, and finally v4. By staying together, they
can both evacuate immediately as soon as they find an exit. On the other hand
the exploration is not parallelized and as such is not very efficient. The worst
case is when the exit is located at v4 giving an evacuation time of a+ 5.

The second strategy is for the agents to split up at the beginning. The agents
explore v1 and v3 in parallel, meeting up at v2 to share information at time
t = a+ 2. The agents now know exactly where the exit is and can head straight
there. The worst case is when the exit is at v1 giving a total time of 2a+ 3. This
strategy demonstrates the importance of the agents meeting to share information
in the local communication setting.

Which strategy is better depends on the value of a. This example illuminates
the two key aspects of the problem: to explore the graph efficiently in parallel,
and to stay close enough in case the exit is found. A good algorithm has to
balance these two (orthogonal) goals.

Let us now consider the same example with global communication to make
another interesting observation. Let a = 4. We notice that the optimum strategy
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depends on whether the agents can abort traversing an edge when they are part
way across. If they cannot, then splitting up would give a worst case evacuation
time of 2a + 1 = 9 with the exit at v1, and staying together would also give a
worst case evacuation time of a+5 = 9. However if they can abort traversing the
long edge, then the strategy of splitting up gives the optimum evacuation time
7. We will assume throughout the rest of the paper that agents can traverse an
edge part way.

We start by showing that it is NP-hard to find the optimal strategy on trees.

Lemma 1. Consider weighted tree evacuation with k = 2 agents. Finding a
strategy to minimize the worst case evacuation time is NP-hard.

Proof. We show this by reduction from Partition [2]. Let S = (a1, a2, . . . , an)
be a multiset of positive integers, i.e., an instance of partition with

∑
i ai = 2M .

We construct the following star graph:

– Add root node r
– For each ai ∈ S, we add node vi and edge ei = (r, vi) with weight w(ei) = ai
– In addition we add node vn+1 and edge en+1 = (r, vn+1) with weight
w(en+1) = 2M

Let r be the starting node for the agents. Then this gives an instance of graph
evacuation. We claim that there is a strategy with worst case evacuation time
4M if and only if there is a solution to the partition problem.

For the simple direction, if there is a solution to the partition problem, then
the agents can explore nodes {r, v1, . . . , vn} and return to r in time 2M . If either
agent finds the exit, say at vi, then the agents can evacuate in additional time
ai ≤ 2M , giving at most 2M + ai ≤ 4M in total. On the other hand if the exit
is at vn+1, since the agents have already checked all the other vertices at time
2M , they can go straight to vn+1 together and exit in total time 2M + 2M .

Now suppose there is no solution to the partition problem. The agents can
still choose to explore all nodes {r, v1, . . . , vn} first, leaving vn+1 till last. So first
suppose node vn+1 is explored last. Then the adversary places the exit at vn+1.
Since there is no solution to the partition problem, exploring the other nodes
and returning to r requires time strictly greater than 2M in total. So one of the
agents will require strictly more than 2M + 2M = 4M to reach the exit. On
the other hand, suppose the agents visit node vn+1 before exploring one of the
nodes, say vj . Then the adversary places the exit at vj and the agent visiting
vn+1 has to return, requiring at least 4M + aj ≥ 4M + 1 to reach the exit at vj .

Thus, deciding whether the optimum worst case evacuation time is greater
than 4M is as hard as partition, so tree evacuation with 2 agents is NP-hard. ut

Note that we do not use anywhere in the proof that the communication model
is local or global. Note also that the proof can easily be extended to k > 2 agents,
for example by simply adding k − 2 edges of length M .

Since finding the optimal strategy is NP-hard we will be looking for approx-
imation algorithms. We use the following general lower bound on the cost OPT
of the optimal algorithm to prove these approximation ratios.
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Lemma 2. Let TSP be the length of the shortest traversal of all vertices of a
graph G = (V,E), i.e. the solution to the traveling salesperson problem. Then
OPT ≥ TSP/2.

Proof. For any order in which the agents explore the vertices, the adversary can
choose the last node they explore to be the exit. That means, the two agents
must together visit all vertices. Moreover, since they start and finish at common
vertices (the root and the exit), they together perform a complete traversal of
the graph. The length of the shortest traversal is TSP , so at least one of the
agents must travel a distance of at least TSP/2, implying OPT ≥ TSP/2. ut

This lemma applies to general graphs and any communication model. Since
the shortest traversal of a tree graph uses every edge exactly twice, we get the
following corollary for trees.

Corollary 3. For a tree, OPT ≥W where W is the total weight of the tree.

Now we can prove an algorithm has an approximation ratio of at most c by
showing that it always requires at most cW time to evacuate the agents.

Observation 4. The best approximation ratio we can hope for using only this
lower bound, OPT ≥W , is 3/2 for either communication model.

r

v1 v2

l l

Fig. 2: Example of a tree graph with optimum worst case evacuation time
OPT = 3

2W . If the agents split up and reach v1 and v2 at the same time, then
one of the agents will exit at time 3l. If the agents do not split, then whichever
leaf they explore first, the adversary can place the exit at the other, so that the
agents again need 3l time to evacuate. Note also that W = 2l.

See Figure 2 for an example of a tree with OPT = 3
2W . Clearly no algorithm

can do better than this, so we cannot get a better approximation ratio than 3/2
if we rely solely on the lower bound OPT ≥W . To prove a better approximation
ratio, we would need a tighter analysis between the approximation algorithm and
an optimum algorithm. Therefore, motivated by Observation 4, we give another
lower bound for OPT .

Lemma 5. Let v1, v2 be any two nodes of a tree rooted at r, with d(r, v1) ≥
d(r, v2). And let Pi denote the path from r to node vi. Then OPT ≥ d(r, v1) +
2d(v2, P1), where d(v2, P1) = minu∈P1

d(v2, u) is the shortest distance between
v2 and any node on the path P1.
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Proof. Note that the adversary can force the two agents to explore all of the
vertices in the graph, in particular both v1 and v2. Of course the agents can split
up, whereby they visit v1 and v2 in parallel, but the adversary can place the exit
at the node explored later by the agents. Therefore at least one of the agents
visits both nodes. This gives a lower bound for OPT of

OPT ≥ min{d(r, v1) + d(v1, v2), d(r, v2) + d(v2, v1)}
= d(r, v2) + d(v2, v1)

= d(r, v1) + 2 min
u∈P1

d(v2, u)

= d(r, v1) + 2d(v2, P1) ut

In particular, applying Lemma 5 to v1 and v2 in Figure 2 gives us a tight lower
bound for OPT . The lemma gives OPT ≥ 3l, and 3l is indeed the optimum.

4 Global Communication

In the global setting, a simple way to evacuate a general graph is for the two
agents to follow a traversal of the graph in opposite directions.

Algorithm 1: Bi-directional traversal (BiT)

input : A graph G with 2 agents at node r
output: The agents explore and evacuate the graph

1 Find a shortest traversal R of G
2 while the exit is not found do
3 The two agents traverse R in opposite directions starting from r
4 Both agents go directly to the exit

Lemma 6. Algorithm 1 (BiT) has an approximation ratio of at most 3/2 for
2-agent global evacuation on trees.

Proof. We can find the shortest traversal R of a tree in linear time using depth
first search (DFS). Let w(R) be the total length of this traversal. But for trees
we know that w(R) = 2W . Let dR(t) be the distance between the two agents
after time t for 0 ≤ t ≤ w(R)/2 = W if they simply follow the traversal and
ignore the exit.

Then the worst case cost of the algorithm is max0≤t≤W {t+ dR(t)} since one
of the agents needs to travel the distance dR(t) to the exit if the other finds it at
time t. The agents start in the same place, and will also finish in the same place
halfway around the traversal if they do not find the exit on their way. Hence,
dR(0) = dR(W ) = 0. Since the agents can only distance/near themselves at a
rate of 2 units per time, their distance at time t is bounded by 2 min{t,W − t}.
With this we conclude

max
0≤t≤W

{t+ dR(t)} ≤ max
0≤t≤W

{t+ 2 min {t,W − t}} =
3

2
W ≤ 3

2
OPT
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where equality is attained at t = W/2 and the last inequality follows from
Corollary 3. ut

In principle Lemma 6 also holds for general graphs. However, finding the
shortest traversal of a graph is NP-hard in general. Instead we can alter BiT to
use a polynomial time approximation for the shortest traversal in line 1 of the
algorithm.

Corollary 7. BiT using the Christofides approximation for TSP, has an ap-
proximation ratio of at most 9/4 for 2-agent global evacuation on general graphs.

Proof. Let C be the length of the traversal of the graph found by Christofides
[4]. If the two agents follow this traversal, the same arguments as in the previous
proof imply that

BiT ≤ 3

4
C ≤ 3

4
· 3

2
TSP ≤ 9

4
OPT.

ut

We now give a tight analysis of the BiT for trees by combining the lower
bounds on OPT from Corollary 3 and Lemma 5. This analysis cannot be used
to improve the approximation ratio for general graphs in Corollary 7, because
Lemma 5 does not hold in general graphs.

Lemma 8. Algorithm 1 (BiT) has an approximation ratio of exactly 7/5 for
2-agent global evacuation on trees.

Proof. Figure 3(a) shows that the approximation ratio is no smaller than 7/5.

For the upper bound, consider a tree rooted at r. Consider the worst case
location of the exit and let t be the time one of the agents reaches it. We can
assume that all nodes of the graph have been visited at time t by the following
argument. If this is not the case, we can simply remove all unexplored nodes
from the graph, and the remaining graph will still be a connected tree. (If the
other agent is on an edge at time t, we add a new node at that position, before
removing unexplored nodes.) This will not change the cost of BiT since it can
still choose the same exploration paths up to time t and the agents will still need
to take the same paths to the exit. On the other hand, OPT will clearly not
be increased by removing nodes, but might be decreased. This means the ratio
BiT/OPT will certainly not decrease (and may well increase).

Let v1 and v2 be the positions of the two agents at time t. Up to time t, the
first agent has traversed all edges of the path between the root r and v1 once
and a set of further edges twice. The same is true for the second agent and the
path from r to v2. Let W1 and W2 be the total weights of all edges (or parts of
edges) that have been traversed twice by the first and second agent respectively.

Since no edge of the graph is traversed more than twice in total, the only
overlap the two agents can have is a path from the root to a node u (where u
could equal r). Let C be the length of this common path, see Figure 3(b).
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(a) Lower bound example for BiT:
The optimal strategy with a worst
case cost of 5 is for the agents to ex-
plore v1 and v2 in parallel, and then
head together to u. However, BiT
could send one agent to u and the
other to v1 and v2, giving an evacu-
ation time of 7 if the exit is at u.

r

u

v1 v2

C

t− C − 2W1 t− C − 2W2

(b) Proof of the upper bound for
BiT: The two agents start at r and
both visit u at some point. At time
t they are at v1 and v2, respec-
tively. The dashed lines illustrate
paths between vertices (rather than
just edges).

Fig. 3

Since agent 1 arrives at v1 at time t, the path from u to v1 must have length
t−C−2W1. Similarly, the path from u to v2 has length t−C−2W2. Therefore,
the total weight of the graph equals

W = C +W1 +W2 + (t− C − 2W1) + (t− C − 2W2) = 2t− (C +W1 +W2)

because we assume the whole graph is explored at time t. Thus,

BiT = t+ (t− C − 2W1) + (t− C − 2W2)

= 3t− 2(C +W1 +W2)

=
3

2
W − 1

2
(C +W1 +W2).

If C +W1 +W2 ≥ W/5, the cost of BiT is no larger than 7
5W which in turn is

no larger than 7
5OPT by Corollary 3. Otherwise, applying Lemma 5 to v1 and

v2, where without loss of generality d(r, v1) ≥ d(r, v2), yields

OPT ≥ C + (t− C − 2W1) + 2(t− C − 2W2)

≥ 3t− 4(C +W1 +W2)

=
3

2
W − 5

2
(C +W1 +W2).

This implies

BiT

OPT
≤

3
2W −

1
2 (C +W1 +W2)

3
2W −

5
2 (C +W1 +W2)

≤
3
2W −

1
2
W
5

3
2W −

5
2
W
5

=
7

5
. ut
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To achieve a better approximation ratio, we will use what we call a longest
path approach. Given a tree, let the path PL from root r to vL be a longest
path starting at r and let L denote its length. In a longest path approach, both
agents explore the tree sequentially along PL. In other words, an agent passes
through each edge of PL at most once during exploration, making excursions
to explore subtrees along the way. Note that the longest path approach is the
optimal strategy for a single agent to explore a tree.

Let E′ be the set of all edges not in PL, with weight w(E′) = W − L. The
edges in E′ form subtrees rooted along the path PL. We would like each agent
to explore half of E′. Let w be the walk from r to vL of length 2W − L that
traverses every edge on PL once and all other edges twice (via a DFS along
each subtree). Furthermore, let w′ be the (non-connected) walk w \PL of length
2(W − L). Let p be the midpoint of w′.

Algorithm 2: Longest Path Algorithm (LPA)

input : A tree G with 2 agents at its root r, the longest path PL, the
walk w and the point p as defined previously

output: The agents explore and evacuate the graph
1 while the exit is not found do
2 The two agents explore the graph in parallel
3 Agent 1 traverses w up to point p, then takes the shortest path from

p to vL
4 Agent 2 takes the shortest path from r to p and then traverses the

remaining part of w to vL
5 Both agents go directly to the exit

Following this algorithm, the agents arrive at vL at the same time (if the exit
is not found earlier), since they both traverse PL, half of w′ and the shortest
path from p to PL. In particular, the only part of E′ they both explore is the
shortest path from p to PL.

Lemma 9. If the two agents follow a longest path approach, then

max{d(v1, vL), d(v2, vL)} ≥ d(v1, v2)

at all times, where v1 and v2 are the positions of the agents at some time during
exploration.

Proof. Let ṽi be the the furthest node along PL that agent i has reached. With-
out loss of generality, we assume that ṽ1 is closer to the root than ṽ2. See Figure
4(b). Thus, the distance between the agents is d(v1, ṽ1) + d(ṽ1, ṽ2) + d(ṽ2, v2)
while the distance between agent 1 and vL is d(v1, vL) = d(v1, ṽ1) + d(ṽ1, ṽ2) +
d(ṽ2, vL). We observe that d(ṽ2, v2) cannot be greater than d(ṽ2, vL), as oth-
erwise v2 would be further away from the root than vL. We conclude that
max(d(v1, vL), d(v2, vL)) ≥ d(v1, v2). ut
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vL

T1

Tp

Tk

p

(a) The longest path algorithm
(LPA). The longest path PL is the
path from r to vL. Tp is the subtree
containing point p as described in
the algorithm, and vp is the root of
Tp on PL. Agent 1 explores the red
edges and agent 2 the blue edges.

r

ṽ1v1

ṽ2 v2

vL

(b) An upper bound (red) on
d(v1, v2) for a longest path algo-
rithm. The node vL is the furthest
node from r, and v1 and v2 are the
locations of the agents.

Fig. 4

Theorem 10. Algorithm 2 (LPA) has an approximation ratio of exactly 4/3 for
2-agent global evacuation on trees.

Proof. We defer the lower bound for the approximation ratio to Observation 11.
In the following we prove the upper bound.

Let LPA be the worst case evacuation time of the LPA algorithm. Without
loss of generality assume the exit is found by agent 1 at a node v1 at time t1 and
that the second agent is at position v2 at this moment. The evacuation time is
then t1+d(v1, v2). But if the adversary had placed the exit at vL, then by Lemma
9 the evacuation time would have been at least t1 +max{d(v1, vL), d(v2, vL)} ≥
t1 + d(v1, v2). Therefore the worst case evacuation time occurs when the exit is
at vL. The agents reach vL at the same time at

LPA = d(r, vL) +
2(W − L)

2
+ d(p, vp) = W + d(p, vp)

where p is as described in the algorithm and vp is the closest node on PL to p,
in other words the root of the subtree containing p.

Let L2 = d(p, vp) ≤ L. Applying Lemma 5 to p and vL gives a lower bound
of OPT ≥ L+2L2. Combining this with the lower bound from Corollary 3 gives
us the approximation ratio:

LPA

OPT
≤ W + L2

max{W,L+ 2L2}
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If L2 ≤ W/3, then we get the result with the lower bound of W . On the other
hand if L2 > W/3, then W + L2 < 4L2 and since L ≥ L2, also L+ 2L2 ≥ 3L2;
thus we have LPA

OPT < 4L2

3L2
= 4/3. ut

Observation 11. 4/3 is a lower bound for the approximation ratio of any al-
gorithm based on the longest path approach.

See Figure 5 for an example of a tree where any algorithm visiting the furthest
leaf last can only achieve an approximation ratio of at least 4/3. Therefore LPA
is a best possible algorithm based on the longest path approach and the analysis
in Theorem 10 is tight.

r

v1

v2

v3 v4 v5

2

1

1
1

1

Fig. 5: Example of a tree where any algorithm visiting the furthest leaf last can
achieve an approximation ratio of at best 4/3. If the agents explore v1 last, then
they first explore in the direction of v2; they can visit v3 and v4 respectively,
returning to v2 at time 3. The exit can still be at v1 or v5 so the best the agents
can do is split up (or explore v5 and then v1 together), but with the exit at v1,
the agent(s) exploring v5 will only reach the exit at time 8. On the other hand, an
optimum strategy would be for agents 1 and 2 to explore v1 and v3 respectively;
if the exit is found, they can evacuate in time 6, and otherwise agent 2 continues
by exploring v4, before the agents meet at v2 at t = 5; and now the exit can be
reached in 1 step. This gives an approximation ratio of 8/6 = 4/3.

5 Local Communication

We turn our attention to the local communication model. Local communication
is of course weaker than global communication and indeed there are graphs,
where agents with local communication need significantly more time to evacuate
in the worst case. We will show such examples at the end of the section, but first
we present approximation algorithms for this communication model.

Observation 12. Depth-first search (DFS) has an approximation ratio of 2 for
2-agent local evacuation on trees.

This observation is immediate. The length of a DFS traversal is 2W , so if the
agents walk together along the DFS route, they will evacuate in time at most
2W . This can be improved slightly by ending the traversal at vL, giving 2W −L.
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Next we propose an algorithm to improve this approximation ratio to 3/2.
We start with some definitions, before giving an outline of the algorithm.

Definition 13 (child subtree, centroid). Given a tree G and a node v, a
child subtree of v is defined as the connected subtree of G containing v and a
connected component of G \ {v}. A node with k neighbours has k child subtrees.

Given a tree G and a point p on edge (u, v), a child subtree of p is defined as
above by treating p as a node of the graph. In other words, a child subtree of p is
defined as the connected subtree of G containing p and a connected component
of G without the edge (u, v). A point p on an edge has 2 child subtrees. Note that
both child subtrees only contain part of the edge (u, v).

Given a weighted tree G with total weight W , the centroid of G is defined as
the vertex or point c, such that all child subtrees of c have weight at most W/2.

We include a DFS-like algorithm for finding the centroid of a tree in Appendix
A.1. Note that the centroid is unique for trees with positive edge weights, but
this uniqueness is not needed in the algorithm. We can now give an outline of
our algorithm for 2-agent local tree evacuation.

A key ingredient of the algorithm is that we use the centroid of the tree (c)
as a meeting point in each iteration. The advantage of meeting at c is that every
node of the graph is at distance at most W/2. So in particular if either agent
finds the exit, then after meeting at c they can evacuate together in additional
time at most W/2. This means we can safely assign a budget of W to each agent
for exploring the child subtrees of c, see Figure 7. Taking these budgets into
account, the algorithm assigns child subtrees to the agents. We call the union of
the unassigned child subtrees T . Note that T is a (connected) tree rooted at c.

Another key ingredient of the algorithm is that the agent with more leftover
budget, can use its extra budget to start exploring T with a careful subroutine,
which ensures that the unexplored edges form a connected subtree whilst guar-
anteeing a certain amount of further exploration. We start by presenting this
subroutine and then we present the full algorithm.

Lemma 14. Algorithm 3 is correct. That is, it always terminates, the agent
traverses a subtree of G rooted at r in total time at most B, and the agent leaves
an unexplored connected subtree rooted at r1 with total weight at most W − ∆
and d(r, r1) ≤ ∆.

See Figure 6(a) for an illustration of Algorithm 3 and see Figure 6(b) for an
example showing that the analysis in Lemma 14 is tight.

Proof. We prove that before each recursive call of the algorithm, G′ is an unex-
plored connected tree and its weight has decreased by at least the same amount
as the decrease in ∆′ = B′ −W ′, where W ′ = w(G′). In addition, we have to
show the agent’s movements never exceed the budget B′. By recursively calling
the algorithm until termination, this proves the lemma.

If r has a single child further away than ∆, then we are done since the agent
can simply explore up to distance ∆ along the edge and then return to r. This
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Algorithm 3: Single Agent Lightest Subtree Algorithm (SALSA)

input : A tree G rooted at r with total weight W = w(G)
An agent with an exploration budget B = W +∆, ∆ ≤W

output: Agent traverses a subtree of G in time at most B, starting and
finishing at r. It leaves an unexplored connected subtree rooted at r1
(possibly on an edge) with weight at most W −∆ and d(r, r1) ≤ ∆.

1 if B > w(G) then
2 if r has a single child then
3 if d(r, r.child) ≥ ∆ then
4 Move ∆ units along the edge e(r, r.child) and place r′ here
5 B′ = B − 2∆
6 G′ = G \ {r} ∪ {r′}
7 else
8 r′ = r.child
9 Go to r′

10 B′ = B − 2d(r, r′)
11 G′ = G \ {r}
12 else
13 Traverse lightest (lowest total weight) unexplored child subtree T1 of r

with DFS
14 r′ = r
15 B′ = B − 2w(T1)
16 G′ = G \ T1 ∪ {r}
17 Call SALSA(G′, r′, B′)
18 Go back to r

19 else
20 r1 = r

leaves an unexplored connected subtree rooted at r′ as required. Clearly the
budget is enough to do this and go back to r, since B = W +∆ ≥ 2∆.

If r has a single child closer than ∆, then the agent can move to the child
at a cost of d := d(r, r.child). The agent will incur the same cost again when
returning to r at the end so we decrease the budget by 2d. Note that G′ is still
an unexplored connected subtree. Moreover the weight of G′ is d smaller than
the weight of G at the start of the call. So we have

W ′ = w(G′) = W − d
B′ = B − 2d = W +∆− 2d = W ′ + (∆− d)

which implies ∆′ = ∆− d.
For the remaining cases, we use the fact that a node r can have at most

1 child subtree of total weight greater than 1
2 (W + ∆). This is clear, else G

would have weight greater than W + ∆ ≥ W , which is not possible. Therefore
we always have enough budget in line 13 of the algorithm to explore the lightest
unexplored child subtree T1. Since we explore a whole child subtree T1 and leave
all other child subtrees unexplored, G′ is still an unexplored connected subtree.
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v3 r2

v4

v5

1

2 1

7

9

(a) Illustration of SALSA. Let W = 20
and ∆ = 5. Budget B = 20 + 5. First,
the agent goes to r1, then v3, then r2
and has budget B′ = 25 − 8 = 17
left. The unexplored graph has weight
w(G′) = 16 < B′, so the agent continues
by exploring the lightest child subtree,
v4. Since B′ = 17 ≥ 2(7), this is fine. Af-
ter this, the agent does not have enough
budget to explore further. Total budget
used is 2(11) = 22 ≤ 25 and the agent
leaves an unexplored subtree of weight
9. This is less than W −∆ = 20− 5, as
claimed in Lemma 14.

r

r1

v2
v3

∆+ 2ε

W−∆
2
− ε

W−∆
2
− ε

(b) Worst case scenario showing
that W −∆ is tight for the weight
of the unexplored subtree. Budget
is B = W +∆. After moving to r1,
the agent has budget B′ = W +
∆−2(∆+2ε) < 2

(
W−∆

2 − ε
)

left,
so it can explore neither v2 nor v3.
Instead the agent returns to r and
r1 becomes the new root.

Fig. 6

The weight of G′ has decreased by w(T1) at a cost of 2w(T1) budget, and the
agent does not have to traverse any of T1 on the way back to r at the end. So
with d = w(T1) we have the same equations as above.

Finally note that when we explore a whole child subtree, then we do not
increase d(r, r′), but we do decrease ∆′; and when we explore an edge, then we
increase d(r, r′) by the same amount as we decrease ∆′. Therefore we ensure
that we always have d(r, r′) ≤ ∆. ut

Theorem 15. Algorithm 4 (CMA) has an approximation ratio of exactly 3/2
for 2-agent local evacuation on trees.

Proof. For the lower bound on the approximation ratio see Appendix A.2. Sim-
ilarly, an algorithm for finding the centroid can be found in Appendix A.1.

For the upper bound we show that in each iteration of Algorithm 4 the agents
explore the graph with a time to weight ratio of at most 3

2 . Moreover after every



Two-Agent Tree Evacuation 15

Algorithm 4: Centroid Meeting Algorithm (CMA)

input : A tree G with 2 agents at its root r with total weight W
output: The agents explore and evacuate the graph

1 G′ = G, r′ = r
2 while the exit is not found do
3 Find the centroid of G′ and call it c. Let d = d(r′, c)
4 Agent 1 gets a budget of B1 = w(G′)
5 Agent 2 gets a budget of B2 = w(G′)
6 We assign the child subtrees of c to the agents as follows
7 begin
8 We assign the child subtree Tr′ containing r′ to agent 1 and decrease

the agent’s budget by 2w(Tr′)− d (if r′ = c, we choose Tr′ to be an
empty set)

9 While agent 1’s budget allows, we assign the unassigned child subtrees
of c to agent 1 in decreasing order of weight, always at cost 2 times
the weight

10 We decrease agent 2’s budget by d (cost to get to c)
11 While agent 2’s budget allows, we assign the unassigned child subtrees

of c to agent 2 in decreasing order of weight, always at cost 2 times
the weight

12 Let T be the union of the remaining unassigned subtrees

13 Agents 1 and 2 explore their assigned subtrees in parallel, finishing at c
14 Let b be the first agent to arrive at c at time tb, let a be the second agent

to arrive at ta and let B = ta − tb
15 if B > w(T ) then
16 Agent b starts to explore T using SALSA with budget B (while agent

a finishes)
17 G′, r′ = unexplored connected subtree and its root returned by SALSA
18 The agents meet at c and go to r′

19 else
20 Agent b waits for agent a at c
21 G′ = T , r′ = c

22 The agents meet at c and go directly to the exit

iteration the agents are left with an unexplored connected tree G′, rooted at
r′, with both agents located at r′. And in the final iteration, when the agents
evacuate, they find the exit and evacuate in time at most 3

2w(G′). Combining
these claims, we can conclude that the agents find the exit and evacuate in time
at most 3

2W . Together with Corollary 3 this proves the theorem.

We denote the child subtrees of the centroid by {Tr′ , T1, T2, . . . , Tk}, where
the degree of the centroid is k+ 1 and Tr′ is the subtree containing the starting
node r′. If r′ = c, Tr′ is the empty set and c has degree k. The child subtrees T1 to
Tk are ordered by increasing weight, i.e, w(Ti) ≥ w(Ti−1) for all i ≥ 2. Note that
by definition of the centroid w(Ti) ≤ W/2 for all i = r′, 1, . . . , k. The algorithm
assigns Tr′ to agent 1. The algorithm then assigns each subtree in decreasing
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T5

Tk

d

(a) Case 1: w(T ) < B

c

r

W1

W2

G′ = T

T2
T6

T3

T5

Tk

d

(b) Case 2: w(T ) ≥ B

Fig. 7: Illustration of the two cases in Algorithm 4. In case 1, the agent with
more budget left explores T with SALSA. In case 2, the agents do not explore
T in this iteration.

order of weight to the two agents, preferring always agent 1. Let W1 and W2

denote the total weights of subtrees assigned to agents 1 and 2 respectively.

Agent 1 can fully explore its subtrees and reach c at time 2W1 − d, where
d := d(r′, c) is the distance from the starting node to the centroid. Agent 2 can
fully explore its subtrees and reach c at 2W2 + d.

Claim: W1 +W2 ≥W/2

Assume the claim is not true for a contradiction, and W1 + W2 < W/2. Since
w(Ti) ≤ W/2 for all child subtrees, we must have at least two child subtrees
T1 and T2, which cannot be explored by either agent. We can assume w(T1) ≤
w(T2). Then since W1 + W2 + w(T1) + w(T2) ≤ W , we must have 2w(T1) ≤
W − (W1 + W2). And since T1 does not fit into either agent’s budget, we have
the inequalities

2W1 − d+ (W − (W1 +W2)) ≥ 2W1 − d+ 2w(T1) > W

2W2 + d+ (W − (W1 +W2)) ≥ 2W2 + d+ 2w(T1) > W

which by adding up imply 2W > 2W . Since this is a contradiction, we conclude
that the claim is true.
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Among the two agents, let agent a have a larger exploration time than agent b.
Then we know the following about their respective exploration times ta and tb.

ta = max{2W1 − d, 2W2 + d}
tb = min{2W1 − d, 2W2 + d}

ta + tb = 2(W1 +W2) ≥W (1)

ta + tb + 2w(T ) = 2W (2)

We now consider the two cases from the algorithm (see Figure 7):

Case 1: B > w(T )

In this case agent b explores T using SALSA with budget B = ta − tb. We can
apply Lemma 14 and we know that agent b can explore an additional weight of
at least ∆ = B − w(T ) = ta − tb − w(T ), leaving an unexplored subtree rooted
at the new root r′ (reassigned in line 17) at distance d(c, r′) ≤ ∆.

Before the end of the iteration, the agents meet at the centroid c and then
move to the new root r′. Using the above equations, we show that the iteration
has efficient exploration with a time to weight ratio of at most 3

2 :

total explored =
ta + tb

2
+ (ta − tb − w(T ))

time = ta + (ta − tb − w(T ))

time

total explored
=

4ta − 2tb − 2w(T )

3ta − tb − 2w(T )

(2)
=

5ta − tb − 2W

4ta − 2W

(1)

≤ 6ta − 3W

4ta − 2W
=

3

2

Case 2: B ≤ w(T )

In this case we argue that even without any extra exploration by SALSA, the
agents must have already explored efficiently with a time to weight ratio of at
most 3

2 . By our claim, we have

ta − tb ≤ w(T ) ≤ W

2

(1)

≤ 1

2
(ta + tb) .

Adding ta + tb to the left and right sides we get 2ta ≤ 3(ta + tb)/2. The agents
have explored (ta + tb)/2 in time ta giving

time

total explored
=

2ta
ta + tb

≤ 3

2
.

Thus we have shown that exploration is done with the required efficiency in
each iteration. What remains to be shown is that in the final iteration, the agents
find the exit and evacuate in time at most 3

2w(G′). However this is clear from the
choice of the meeting location c and the budgets w(G′). Since the agents meet
at the centroid, any exit they find in the current iteration can be at a distance of
at most 1

2w(G′). And since they both arrive by t = w(G′), the evacuation time
can be at most 3

2w(G′) as required. ut
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We finish with a lower bound on the worst case ratio between two agents
with global communication versus two agents with local communication. Clearly,
agents with global communication can always do at least as well as agents with
local communication. However, what about in the worst case? How much worse
can local communication be? We return to Figure 5 to give an example where
OPTL is strictly larger than OPTW . Recall that OPTW = 6 and that any
strategy visiting v1 last would give an evacuation time of at least 8. Therefore
with local communication we also explore v1 and v3 first. But now the agents
have to meet at r to share the information; if they meet at v2 it will be too late.
But meeting at r leaves v4 and v5 unexplored, and the agents will have worst
case evacuation time of 8, giving OPTL = 8.

Together with Theorem 15 and Lemma 3, we bound the worst case ratio of
local communication over global communication between 4/3 and 3/2.

6 Conclusion

To the best of our knowledge, our work is the first that considers evacuating
two agents from a tree through a single unknown exit. We first show that the
problem is NP-hard, motivating the search for approximation algorithms. Our
main results are a 4/3-approximation algorithm for the global communication
setting and a 3/2-approximation algorithm for the local communication setting.

The paper leaves a multitude of open questions for further research. One
could search for better approximation algorithms to improve the approximation
ratios. One could consider other communication models, such as blackboard
communication [28] or communication with a limited radius. This paper focused
on trees, but one could look at other graph classes. One could look at the case
with more agents (k > 2) or different objectives, e.g., minimizing the average
exit time of the agents. One could also consider the stochastic setting, where
the exit is at a given node with some predetermined probability and the agents
minimize the expected evacuation time. One could even look at a game theoretic
scenario, where agents behave selfishly and do not go out of their way to inform
the other agents about the exit location. How would this change the exploration
strategy?

Acknowledgements: We would like to thank Nicolas Marxer and Tobias
Zwahlen for fruitful discussions and the anonymous reviewers for their helpful
comments.
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A Appendix

A.1 Centroid Algorithm

Algorithm 5: Algorithm for finding the Centroid of a tree

input : A tree T with total weight W
output: A point c (a vertex or a point on an edge), such that all child

subtrees of c have weight at most W/2
1 Start at any node r
2 while some child subtree of r has weight greater than W/2 do
3 Let T1 be the child subtree rooted at r with greatest weight, and let

r1 be the neighbour of r in this child subtree
4 if w(T1)− d(r, r1) < W/2 then
5 Place a node c on the edge (r, r1) such that it splits T exactly

into two child subtrees of equal weight
6 r = c

7 else
8 r = r1
9 return r

We argue below that the algorithm is correct, that is, the algorithm finds a
centroid. This also proves that every tree has a centroid.

Lemma 16. Algorithm 5 terminates and returns a centroid.

Proof. Consider an arbitrary iteration of the while loop. If the child subtree
of r1 containing r has a weight larger than W/2 (which is equivalent to the
condition in line 4 being true), there exists a point on the edge (r, r1) with two
child subtrees of size exactly W/2 and the algorithm will return this. Otherwise,
the algorithm moves its position along the edge (r, r1). But the child subtree of
r1 containing r being smaller than W/2 also means that the algorithm cannot
move along this edge in the other direction in any other iteration. So since the
number of edges is bounded, the algorithm will terminate at some point. At
this point the condition in line 2 will be false, meaning the algorithm returns a
centroid. ut
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A.2 Lower Bound on competitive ratio of Algorithm 4 (CMA)

r

r1

c v

v1

v2

u

ε

ε

1 ε
1/2

1/2

Fig. 8: Example of a tree where CMA achieves a competitive ratio of 3/2 as
ε→ 0.

The total weight of the graph is W = 2+ 3ε, so the agents receive this budget in
CMA. The centroid is at c. Agent 1 explores the child subtree Tr and does not
have enough budget to explore Tv, but does have enough to explore Tu, arriving
at c at exactly 2 + 3ε. Agent 2 has enough budget to go to c and explore Tv, in
total time also exactly 2+3ε. This means both agents use their budgets, explore
the whole graph, and meet at c at 2 + 3ε. Now if the exit is at u, then the agents
need one unit of time to get there giving a total evacuation time of 3 + 3ε.

On the other hand to achieve the optimum, the agents start by going to v and
exploring v1 and v2 respectively in parallel, meeting at c again at time 1 + 3ε. If
they have not yet found the exit, they continue together, exploring r1 and then
u. The worst case is when the exit is at u, the agents then need 2 + 7ε time to
evacuate. Together with the evacuation time of CMA, this gives a competitive
ratio of

CMA

OPT
=

3 + 3ε

2 + 7ε
→ 3

2
as ε→ 0.


