
The Price of Matching with Metric Preferences

Yuval Emek1, Tobias Langner2, and Roger Wattenhofer2

1 Technion, Israel
2 ETH Zürich, Switzerland

Abstract. We consider a version of the Gale-Shapley stable matching
setting, where each pair of nodes is associated with a (symmetric) match-
ing cost and the preferences are determined with respect to these costs.
This stable matching version is analyzed through the Price of Anarchy
(PoA) and Price of Stability (PoS) lens under the objective of minimizing
the total cost of matched nodes (for both the marriage and roommates
variants). A simple example demonstrates that in the general case, the
PoA and PoS are unbounded, hence we restrict our attention to metric
costs. We use the notion of α-stability, where a pair of unmatched nodes
defect only if both improve their costs by a factor greater than α ≥ 1.
Our main result is an asymptotically tight trade-off, showing that with

respect to α-stable matchings, the Price of Stability is Θ
(
nlog(1+ 1

2α
)
)
.

The proof is constructive: we present a simple algorithm that outputs an
α-stable matching satisfying this bound.

1 Introduction

The aim of this paper is to connect two classic approaches towards matching.
The first approach tackles matching from a (global) optimization angle à la
Edmonds [15, 16]: given 2n nodes with pairwise costs c(x, y) = c(y, x) ∈ R>0,
the goal is to construct a perfect matching that minimizes the total cost. The
second approach tackles matching from the (local) selfish angle à la Gale and
Shapley [18]: each node is equipped with a preference list ranking its potential
matches and a matching is stable if no two unmatched nodes prefer each other
over their current matches.

We consider a restricted case of the stable matching realm, where the nodes
preferences are determined based on the aforementioned pairwise costs c(·, ·)
so that node x prefers node y over node y′ if and only if c(x, y) < c(x, y′),
and focus on the following question: How does the requirement to output a
(locally) stable matching affect its (global) total cost? In attempt to provide a
quantitative answer to this question, we shall look at matching instances through
the Price of Stability (PoS) lens that compares the min-cost stable matching to
the unrestricted optimum, measuring the ratio of their respective costs. In fact,
to provide a deeper understanding of the delicate balance between the global
matching cost and its local stability, we generalize the problem by using the
notion of an α-stable matching for α ≥ 1, in which no pair of unmatched nodes
can defect and thus improve their costs by a factor (strictly) greater than α.

Unfortunately, in general, the Price of Stability may be unbounded, as the
following simple example shows: Let G be a complete graph on four nodes
u1, u2, v1, v2 with edge costs c(u1, v1) = c(u2, v2) = 1, c(u1, u2) = ε for some
small ε > 0, and c(v1, v2) = c(u1, v2) = c(u2, v1) = C for some large C. Then,
the optimal perfect matching matches ui to vi for i = 1, 2 with a cost of 2,
whereas an α-stable matching for any reasonable value of α must match u1 to
u2, and hence also v1 to v2 which incurs an arbitrarily large cost.

Fortunately, real-world matching instances often exhibit metric costs, i.e.,
costs that satisfy the triangle inequality (or its bipartite counterpart). Metric
costs are intuitive for matching instances in which the costs are determined by
distances, but we argue that they are present also in matching instances with
more complex cost functions, e.g., online dating platforms — refer to the full
version of this paper for a comprehensive explanation that also addresses the
role that PoS plays in these matching scenarios.

The main result of this paper is an asymptotically tight tradeoff between the
parameter α and the PoS considering α-stable matchings: the PoS is roughly
n0.58 when α = 1 and it decreases exponentially as α increases. Since this tradeoff
is realized by a simple poly-time algorithm, the designers of a matching system
can now efficiently tune the parameter α to balance between the stability and
the total cost of their system’s output.

1.1 Related Work

Studying the impact of selfish players has been a major theoretical computer sci-
ence success story in the last decade (see, e.g., the 2012 Gödel Prize [28,31,38]).
In particular, much effort has been invested in quantifying how the efficiency of
a system degrades due to selfishness of its players. The most notable notions in
this context are the Price of Anarchy (PoA) [28, 32] and the Price of Stability
(PoS) [6, 39], comparing the best possible outcome to the outcome of the worst
(PoA) or best (PoS) solution with selfish players. Since their introduction, the
Price of Anarchy and the Price of Stability have been extensively analyzed in
diverse settings such as selfish routing [6, 9, 12, 13, 37, 38, 40], network formation
games [3,4,7,11,41], job scheduling [10,14,27,28], and resource allocation [25,36].
While selfish players are traditionally modeled using the Nash equilibrium solu-
tion concept, where no player can benefit from a unilateral deviation, in matching
settings unilateral deviations are not natural. Instead, we want that no two un-
matched players prefer each other over their current matching partners. This
solution concept is generally known as the Gale-Shapley stable matching [18].

For the most part, the stable matching realm has been subdivided into two
versions: the marriage (bipartite) version, where the players are partitioned into
men and women and each man (resp., woman) is equipped with a list of prefer-
ences over the set of women (resp., men); and the roommates (all-pairs) version,
where each player is equipped with a list of preferences over all other players.
Gale and Shapley showed that in the bipartite version, a stable matching always
exists, and in fact, can be computed by a simple poly-time algorithm. In contrast,
the all-pairs version does not necessarily have a solution. Both versions of the

2

stable matching problem and their manifold variants (strictly/weakly ordered
preferences, (in-)complete preference lists, (a-)symmetric preferences) admit an
abundance of literature; see, e.g., the books of Knuth [26], Gusfield and Irv-
ing [19], Roth and Sotomayor [35], and Manlove [29]. The notion of stability
studied in this paper has been coined as weak stability by Irving [22].

Sometimes, the players’ preferences are associated with real costs so that each
preference list is sorted in order of non-decreasing costs. This setting gives rise
to the minimum-cost stable matching problem, where the goal is to construct
a stable matching that minimizes the total cost of matched partners. Irving et
al. [23] designed a poly-time algorithm for the bipartite (marriage) version of
a special case of this problem, referred to as the egalitarian stable matching
problem, where a cost of j is associated with each player for matching his/her
jth preferred partner. Roth et al. [34] gave an LP-based solution to the problem.
Irving’s work was generalized by Feder [17] who presented a poly-time algorithm
for the bipartite version of the general minimum-cost stable matching problem.
Moreover, Feder also established the NP-hardness of the all-pairs (roommates)
version and showed that it admits a 2-approximation algorithm.

The players’ preferences in general stable matching scenarios exhibit no in-
trinsic correlations. Several approaches have been taken towards introducing
consistency in the preference lists [21, 24, 26, 30]. Most relevant to the current
paper is the approach of Arkin et al. [8] who studied the geometric stable room-
mate problem, where the players are identified with points in a Euclidean space
and the preferences are given by the sorted distances to the other points. They
showed that in the geometric setting, a stable matching always exists and that
it is unique if the players’ preferences exhibit no ties. These results easily gen-
eralize to arbitrary metric spaces. Arkin et al. also introduced the notion of an
α-stable matching, which is central to the current paper.

There is an extensive literature on matching instances whose preferences are
determined by the numerical attributes of the edges, interpreted as gains that
should be maximized, rather than costs that should be minimized (cf. correlated
two-sided markets) [1, 2, 5, 20]. Closely related to the goal of the current paper,
Anshelevich et al. [5] establish tight tradeoffs between the matching stability
parameter α and the PoA and PoS in the bipartite case under this gain maxi-
mization variant. In fact, the simple iterative algorithm presented in Sec. 4.1 is
equivalent to the algorithm used in the proof of Theorem 2 in [5], but as it turns
out, analyzing the quality of the resulting (α-stable) matching under the cost
minimization variant studied in the current paper is much more demanding.

Reingold and Tarjan [33] proved that the approximation ratio of some greedy
algorithm for minimum-cost perfect matching in metric graphs is Θ(nlog(3/2))
where log(3/2) ≈ 0.58.3 It turns out that this result is equivalent to establishing
the same bound for the PoA of minimum-cost perfect matching in such graphs.
In the full version of this paper, we give a simpler proof for the PoA-result and
extend their result to obtain a lower bound for the PoS for all α ≥ 1.

3 In this paper, log x denotes the logarithm of x to the base of 2.

3

2 Setting and Preliminaries

Consider a graph G with vertex set V (G) and edge set E(G). Each edge e ∈ E(G)
is assigned a positive real cost c(e). Unless stated otherwise, our graphs have 2n
vertices, n ∈ Z>0, and are either complete (|E(G)| =

(
2n
2

)
) or complete bipartite

(V (G) = U1 ∪ U2, |U1| = |U2| = n and |E(G)| = n2). We say that the complete
graph G is metric if c(x, y) ≤ c(x, z)+c(z, y) for every x, y, z ∈ V (G); we say that
the complete bipartite graph G is metric if c(x, y) ≤ c(x, z) + c(z, z′) + c(z′, y)
for every x, y, z, z′ ∈ V (G), where x, z′ and y, z are on opposite sides of G. For
an arbitrary graph G, the distance distG(x, y) of two vertices x and y of G is
defined as the weighted length of the shortest path between x and y in G.

A matching is a subset M ⊆ E(G) of the edges such that every vertex in
V (G) is incident to at most one edge in M . A matching is called perfect if every
vertex in V (G) is incident to exactly one edge in M , which implies that |M | = n
as |V (G)| = 2n. For a perfect matching M and a vertex x ∈ V (G), we denote by
M(x) the unique vertex y ∈ V (G) such that (x, y) ∈M . Unless stated otherwise,
all matchings mentioned hereafter are assumed to be perfect. (Perfect matchings
clearly exist in a complete graph with an even number of vertices and in a
complete balanced bipartite graph.) Given an edge subset F ⊆ E(G), we define
the cost of F as the total cost of all edges in F , denoted by c(F) =

∑
e∈F c(e);

in particular, the cost of a matching is the sum of its edge costs.

Definition (α-Stable Matching). Consider some (perfect) matching M ⊆
E(G) and some real number α ≥ 1. An edge (u, v) /∈ M is called α-unstable
(a.k.a. α-blocking) with respect to M if α·c(u, v) < min{c(u,M(u)), c(v,M(v))}.
Otherwise, the edge is called α-stable. A matching M is called α-stable if it
does not admit any α-unstable edge. We will omit α and call edges as well as
matchings just stable or unstable whenever α is clear from the context or the
argumentation holds for every choice of α.

Let M∗ denote a certain (perfect) matching M that minimizes c(M). For sim-
plicity, in what follows, we restrict our attention to complete (rather than com-
plete bipartite) metric graphs, although all our results hold also for the complete
bipartite case (following essentially the same lines of arguments).

Definition (α-Price of Stability). The α-Price of Stability of G, denoted by
PoSα(G), is defined as PoSα(G) = min{c(M)/c(M∗) : M is α-stable matching}.
Furthermore, PoSα(2n) = sup{PoSα(G) : G is metric, |V (G)| = 2n}. Unless
stated otherwise, when the parameter α is omitted, we refer to the case α = 1.

Definition (Price of Anarchy). The Price of Anarchy of a graph G, denoted
by PoA(G), is defined as PoA(G) = max{c(M)/c(M∗) : M is stable matching}.
Furthermore, PoA(2n) = sup{PoA(G) : G is metric, |V (G)| = 2n}.

Note that since any stable matching by definition is also α-stable for any α ≥ 1,
the Price of Anarchy does not improve by considering α-stability and hence its
definition does not include the parameter α.

4

3 Price of Anarchy

The following theorem was implicitly proven by Reingold and Tarjan [33] in
1981. They showed that for minimum-cost perfect matching in metric graphs,
the approximation ratio of the algorithm that picks edges by ascending costs
is Θ(nlog(3/2)). Since the matching returned by this greedy algorithm is stable
and since every stable matching can be obtained from the algorithm by an ap-
propriate tie-breaking policy, it follows that the PoA of minimum-cost perfect
matching in such graphs is also Θ(nlog(3/2)). A simpler and more intuitive proof
for Reingold and Tarjan’s 30 years old result is given in the full version of this
paper.

Theorem 1. The PoA of minimum-cost perfect matching in metric graphs with
2n vertices is Θ(nlog(3/2)).

4 Price of Stability

The upper bound established on the PoA in Sec. 3 clearly holds for the PoS
too. In the full version of this paper, we show that the proof technique for the
Ω(nlog(3/2))-lower bound of Sec. 3 can be easily adapted to establish the same
lower bound for the PoS as well. In fact, we generalize this result, showing that
PoSα(2n) = Ω

(
nlog(1+1/(2α))

)
for every α ≥ 1. Consequently, we turn our atten-

tion to bounding PoSα(2n) from above, establishing the following asymptotically
tight upper bound.

Theorem 2. The PoSα of minimum-cost perfect matching in metric graphs with
2n vertices is at most 3 · nlog(1+1/(2α)).

The proof of Theorem 2 is constructive, relying on a simple algorithm pre-
sented in Sec. 4.1. Sec. 4.2 provides the analysis of this algorithm, showing that
the returned matching indeed satisfies the bound. Full proofs missing from this
section can be found in the full version of this paper.

4.1 An Algorithm for α-Stable Matchings

The following algorithm Stab transforms a minimum-cost matching M∗ in a
metric graph into an α-stable matching M .

Algorithm Stab: Start with the minimum-cost matching M ←M∗ and iterate
over all edges of G by non-decreasing order of costs. If the edge (u, v) currently
considered is α-unstable in the current matching M , replace the edges (u,M(u))
and (v,M(v)) in M by (u, v) and (M(u),M(v)) (this operation is called a flip
of the edge (u, v)) and continue with the next edge. After having iterated over
all edges, return M .

We assume that edge cost ties are resolved in an arbitrary but consistent manner.
In the following, we denote by Mi the matching calculated by the above algo-
rithm at the end of iteration i. Moreover, M0 = M∗ is the initial minimum-cost
matching and MS the final matching returned by Stab.

5

Lemma 3. For any unstable edge b created by the flip of an edge e, we have
c(b) > c(e).

Corollary 4 follows by induction on i. Lemma 5 then follows by a straight-
forward analysis of the algorithm’s run-time.

Corollary 4. Let ei be the edge considered in iteration i. Then for any unstable
edge b in Mi it holds that either c(ei) < c(b) or b will be considered in a later
iteration j > i.

Lemma 5. Algorithm Stab transforms a minimum-cost matching into a valid
α-stable matching in time O(n2 log n).

4.2 Cost Analysis

Our goal in this section is to show that when Stab is invoked with parame-
ter α for any α ≥ 1, it returns an α-stable matching MS satisfying c(MS) =
c(M∗) · O(nlog(1+1/(2α))). Since this section makes heavy use of rooted binary
trees and their properties, we require a few definitions. In a full binary tree, each
inner node has exactly two children. The depth d(v) of a node v in a tree T is
the length of the unique path from the root of T to v and the height h(T) of a
tree T is defined as the maximal depth of any node in T . The height h(v) of a
node v of T is defined to be the height of its subtree. The leaf set L(T) or L(F)
of a tree T or a collection F of trees is the set of all leaves in T or F , resp. The
leaf set L(v) of a node v in a tree is L(Tv) where Tv is the subtree rooted at v.
Finally, two nodes with the same parent are called sibling nodes. We begin with
Lemma 6 stating an important property of the edges that are flipped by Stab.

Lemma 6. If an edge e is flipped in iteration i, then e ∈Mj for all j ≥ i and,
in particular, e ∈MS.

Consider an iteration of Stab where edge (u, v) is flipped because it was
unstable at the beginning of the iteration. Then the two edges (u,M(u)) and
(v,M(v)) are replaced by (u, v) and (M(u),M(v)). Since the edge (u, v) is se-
lected irrevocably according to Lemma 6, the edges (u,M(u)) and (v,M(v)) can
never be part of M again. The only edge, of the four edges involved, that may
be changed again, is the edge (M(u),M(v)). Thus, we refer to (M(u),M(v)) as
an active edge. We also refer to all edges in M0 as active. Using the notion of
active edges, we shall now model the changes that Stab applies to the matching
during its execution through a logical helper structure called the flip forest. To
avoid confusion between the basic elements of our graphs and the basic elements
of the flip forest, we refer to the former as vertices/edges and to the latter as
nodes/links.

Definition (Flip Forest). The flip forest F = (U,K) for a certain execution
of Stab is a collection of disjoint rooted trees and has node set U and link set K.
For each edge e ∈ V ×V that has been active at some stage during the execution,

6

there exists a node ue ∈ U . This correspondence is denoted by ue ∼ e. For each
flip of an edge (u, v) in G, resulting in the removal of the edges (u,M(u)) and
(v,M(v)) from M , K contains a link connecting the node y ∼ (u,M(u)) to its
parent x ∼ (M(u),M(v)) and a link connecting the node z ∼ (v,M(v)) to its
parent x ∼ (M(u),M(v)). (Observe that, by definition, all three edges (u,M(u)),
(v,M(v)), and (M(u),M(v)) are active.) Refer to Fig. 1 for an illustration.4

The definition of a flip forest ensures that for each flip of the algorithm, we
obtain a binary flip tree segment. When we transcribe each flip operation of the
complete execution of Stab into a flip tree segment as explained above, we end
up with a collection of full binary trees — the flip forest. This is because the
parent node of a tree segment may appear as a child node of the tree segment
corresponding to a later iteration of the algorithm since its corresponding edge
is still active and therefore may participate in another flip. Each such tree is
called a flip tree hereafter. Figure 2 illustrates a sample execution of Stab.

Observe that all leaves (including isolated nodes) in the flip forest correspond
to edges in the minimum-cost matching M0 = M∗. The edges in the matching
MS are implicitly represented by the flip forest: An edge that gets flipped —
and is therefore irrevocably selected into MS — has no corresponding node in F ,
but we may associate it with the node corresponding to the active edge resulting
from the flip. On top of these edges, MS contains the edges corresponding to the
roots of the trees in the flip forest.

We now define a function ψ : U 7→ R that maps a real weight to each node in
the flip forest F as follows. For each leaf ` of a flip tree in F , we set ψ(`) := c(e),
where ` ∼ e and we recall that an edge corresponding to a leaf node in F is part
of M∗. The function ψ is extended to an inner node x of a flip tree with child
nodes y and z by the recursion

ψ(x) := ψ(y) + ψ(z) + (1/α) ·min{ψ(y), ψ(z)} . (1)

For ease of notation, we call the child with smaller (resp., larger) weight as well
as the link leading to its parent light (resp., heavy); ties are resolved arbitrarily.
We denote the light child of a node x as x

L
and the heavy child as x

H
. Then we

can rewrite Eq. (1) as ψ(x) := ψ(x
H

) + (1 + 1/α) · ψ(x
L
).

Lemma 7. Let x be a node in F and e an edge in G with x ∼ e. Then c(e) ≤
ψ(x).

At this stage, we would like to relate the weight ψ(rT) of the roots rT in F to
the cost of the stable matching MS returned by Stab. To that end, we observe
that MS consists of the edges corresponding to the roots in F and to the edges
that have been flipped along the course of the execution; let R and D denote
the set of the former and latter edges, respectively. Observe that

c(MS) =
∑

e∈R
c(e) +

∑

e∈D
c(e) .

4 All figures are deferred to the full version of this paper.

7

Consider the flip of the edge (u, v) resulting in the insertion of the edge
(M(u),M(v)) ∼ x to M and the removal of the edges (u,M(u)) ∼ xL and
(v,M(v)) ∼ xH from M . Since ψ(x) = ψ(xH) + (1 + 1/α) · ψ(xL), we have
ψ(x)−(ψ(xL)+ψ(xH)) = ψ(xL)/α. Lemma 7 then implies that ψ(x)−(ψ(xL)+
ψ(xH)) ≥ c(u,M(u))/α, and since edge (u, v) was flipped, we have ψ(x) −
(ψ(xL) + ψ(xH)) ≥ c(u, v). Therefore,

∑

e∈D
c(e) ≤

∑

internal x∈U
(ψ(x)− (ψ(xL) + ψ(xH)))

=
∑

flip trees T

(
ψ(rT) −

∑

`∈L(T)

ψ(`)
)

=
∑

flip trees T

ψ(rT) −
∑

`∈L(F)

ψ(`) ,

where the second equation holds by a telescoping argument. Note further that∑
e∈R c(e) ≤

∑
flip treesT ψ(rT) and thus

c(MS) ≤ 2
∑

flip trees T

ψ(rT) −
∑

`∈L(F)

ψ(`) .

Since c(M∗) =
∑
`∈L(F) ψ(`), Corollary 8 follows.

Corollary 8. The matching MS returned by Stab satisfies

c(MS) ≤ 2
∑

flip trees T

ψ(rT)− c(M∗) .

We will now have a closer look at the properties of our flip trees and their
weights. It will be convenient to ignore the relation of the flip trees to the Stab
algorithm at this stage; in other words, we consider an abstract full binary tree
T with a leaf weight function w : L(T) → R≥0. For any leaf ` of T , we set
ψ(`) = w(`) and determine the weight ψ(x) of each inner node x in T following
the recursion given by Eq. (1). Note that we allow our tree T to have zero-weight
leaves now (this can only make our analysis more general).

Definition (Complete Binary Tree). A full binary tree T is called complete
if all leaves are at depth h(T) or h(T) − 1. Given some positive integer n that
will typically be the number of leaves in some tree, let h(n) = dlog ne and k(n) =
2h(n) − n. Note that 0 ≤ k(n) < 2h(n)−1.

Observe that for a complete full binary T with n leaves, h(n) is the height h(T)
of T while k(n) equals the number of missing leaves at the maximum depth h(T).

Definition (ψ-Balanced Binary Tree). A full binary tree T is called ψ-
balanced if for any two sibling nodes x, y in T , we have ψ(x) = ψ(y).

8

Consider a full binary tree T . Let Λ(T) denote the sum of the weights of the
leaves of T , i.e., Λ(T) =

∑
`∈L(T) w(`) =

∑
`∈L(T) ψ(`), and let Ψ(T) = ψ(rT)

(recall that rT denotes the root of T). The following observation is established
by induction on the node depth.

Observation 9. For any node v of a ψ-balanced full binary tree T , we have
ψ(v) = (2 + 1/α)−d(v) · Ψ(T).

Definition (Effect of a Flip Tree). The effect η(T) of a full binary tree T is
defined as

η(T) =

{
Ψ(T)/Λ(T) if Λ(T) > 0

1 if Λ(T) = 0
.

An n-leaf full binary tree T is said to be effective if it maximizes η(T), i.e., if
there does not exist any n-leaf full binary tree T ′ such that η(T ′) > η(T).

Intuitively speaking, if we think of T as a flip tree, then its effect is a measure
for the factor by which the flips represented by T increase the cost of M∗ when
applied to it. But, once again, we do not restrict our attention to flip trees at this
stage. The effect of a full binary tree is essentially determined by its topology
and by the assignment of weights to its leaves. It is important to point out that
the effect of a flip tree is invariant to scaling its leaf weights (see full version
of this paper). Our upper bound is established by showing that the effect of an
effective n-leaf full binary tree is O

(
nlog(1+1/(2α))

)
. We begin by developing a

better understanding of the topology of effective ψ-balanced full binary trees.

Lemma 10. An effective n-leaf ψ-balanced full binary tree must be complete.

Proof (sketch). Aiming for a contradiction, suppose that T is not complete. Let
z be an internal node at depth d with leaf children x, y (whose depth is d + 1)
and let z′ be a leaf at depth d′ < d. Let T ′ be the full binary tree obtained
from T by deleting x and y and inserting two new leaves x′, y′ as children of z′.
Let w and w′ be the leaf weigh functions of T and T ′, respectively, defined by
requiring that T and T ′ are ψ-balanced and scaled so that Ψ(T) = Ψ(T ′) = 1;
this is well defined since by Observation 9, the ψ-values of all nodes in T and T ′

(and in particular, the leaf weight functions w and w′) are fully determined by
their topology and the values of Ψ(T) and Ψ(T ′) (in a top-down fashion).

We establish the proof by arguing that Λ(T ′) < Λ(T) which implies η(T ′) >
η(T), in contradiction to T being effective. To that end, notice that the construc-
tion of T ′ implies Λ(T ′) = Λ(T)+w′(x′)+w′(y′)+w′(z)−(w(x) + w(y) + w(z′)).
The assertion follows from Observation 9 by a direct calculation. ut

Next, we develop a closed-form expression for the effect of complete ψ-
balanced full binary trees. We define the function ϕ : Z>0 7→ R as

ϕ(n) :=
(2 + 1/α)h(n)

2h(n) + k(n)/α

and recall that h(n) = dlog ne and k(n) = 2h(n) − n. Lemma 11 follows from
Observation 9 by direct calculation and Lemma 12 follows from ϕ’s definition.

9

Lemma 11. The effect of an n-leaf complete ψ-balanced full binary tree T is
η(T) = ϕ(n).

Lemma 12. The function ϕ(n) is strictly increasing.

Now, we can show that it is sufficient to consider complete ψ-balanced full
binary trees.

Lemma 13. An effective n-leaf full binary tree must be ψ-balanced.

Proof. We prove the statement by induction on the number of leaves n. The base
case of a tree having a single leaf (which is also the root) holds vacuously; the
base case of a tree having two leaves is trivial. Assume that the assertion holds
for trees with fewer than n leaves and let T be an effective n-leaf full binary
tree. Let T` and Tr be the left and right subtrees of T and let z be the number
of leaves in T` where 1 ≤ z ≤ n− 1.

Observe that both T` and Tr have to be effective as otherwise, η(T) could
be increased. More precisely, if Ti ∈ {T`, Tr} is not effective, then there exists
a full binary tree T ′i with the same number of leaves as Ti (either z or n − z)
such that η(T ′i) > η(Ti); by replacing Ti with T ′i in T and scaling Λ(T ′i) so that
Λ(T ′i) = Λ(Ti), we increase Ψ(T) without affecting Λ(T), thus increasing η(T),
in contradiction to T being effective. By the inductive hypothesis, both T` and
Tr are ψ-balanced, hence Lemma 10 guarantees that both are complete. This
allows us to use Lemma 11 to determine the effects of T` and Tr as ϕ(z) and
ϕ(n− z), respectively.

Assume without loss of generality that the leaf weights are scaled such that
Λ(T) = Λ(T`) + Λ(Tr) = 1 and set Λ(T`) = x, Λ(Tr) = 1 − x, for some 0 ≤
x ≤ 1. We consider a set of n − 1 functions fz : [0, 1] 7→ R>0 (parametrized by
1 ≤ z ≤ n− 1) with

fz(x) =

{
ϕ(z) · x+ (1 + 1/α)ϕ(n− z) · (1− x) if ϕ(z)x ≥ ϕ(n− z)(1− x)

(1 + 1/α)ϕ(z) · x+ ϕ(n− z) · (1− x) if ϕ(z)x ≤ ϕ(n− z)(1− x)

that, by Lemma 11, determine the effect of T given that T` has 1 ≤ z ≤ n −
1 leaves and Λ(T`) = x ∈ [0, 1]. Observe that each fz is a piecewise linear
continuous function, linear in the intervals [0, bz] and [bz, 1], where bz is the
break point of fz satisfying ϕ(z)bz = ϕ(n− z)(1− bz). Hence, fz must attain its
maximum either at a boundary point 0 or 1, or at the break point bz, where the
latter case corresponds to a ψ-balanced tree.

Consider the function f(x) = maxz fz(x) whose maximum corresponds to
the effect of an effective n-leaf full binary tree and let x̂ ∈ argmaxx∈[0,1] f(x).
We argue that x̂ can be neither 0 nor 1. Indeed, if x̂ = 0, then Λ(T) = Λ(Tr)
and Ψ(T) = Ψ(Tr), hence η(T) = η(Tr) for the corresponding tree T . But since
Tr has fewer leaves than T and is complete and ψ-balanced, Lemmas 11 and 12
dictate that its effect — and thus also the effect of T — must be smaller than the
effect of an n-leaf complete ψ-balanced full binary tree, a contradiction to the
choice of x̂ maximizing f(x). An analogous argument excludes x̂ = 1. It follows

10

that the maximum of f(x) must be attained at a point 0 < x̂ < 1, which, by the
definition of f , is the break point bz of some function fz and thus realized by a
ψ-balanced tree. ut

Combining Lemmas 10, 11, and 13 and recalling that h = h(n) = dlog ne ≤
log n + 1 and k = k(n) ≥ 0, we conclude that the effect of an n-leaf full binary
tree is at most

(2 + 1/α)h

2h + k/α
≤ (2 + 1/α)h

2h
≤ (1 + 1/(2α))logn+1 ≤ 3/2 · nlog(1+1/(2α)) .

Returning to the definition of the flip forest F , we recall that there exists one leaf
in F for each of the n edges in the minimum-cost matching M∗ and therefore
each flip tree has at most n leaves. Furthermore, since

c(M∗) =
∑

flip trees T

∑

`∈L(T)

ψ(`) =
∑

flip trees T

Λ(T) ,

we can employ Corollary 8 to derive

c(MS)

c(M∗)
≤ 2 ·

∑
flip trees T Ψ(T)∑
flip trees T Λ(T)

≤ 2 · max
flip trees T

η(T) ≤ 3 · nlog(1+1/(2α)) ,

thus establishing Theorem 2.

References

1. Abraham, D., Levavi, A., Manlove, D., O’Malley, G.: The stable roommates prob-
lem with globally-ranked pairs. In: WINE’07

2. Ackermann, H., Goldberg, P.W., Mirrokni, V.S., Röglin, H., Vöcking, B.: Uncoor-
dinated two-sided matching markets. SICOMP’11

3. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On nash equilibria
for a network creation game. In: SODA’06

4. Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. In: SODA’07
5. Anshelevich, E., Das, S., Naamad, Y.: Anarchy, stability, and utopia: creating

better matchings. AAMAS’13
6. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Rough-

garden, T.: The price of stability for network design with fair cost allocation.
SICOMP’08

7. Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network
design with selfish agents. In: STOC’03

8. Arkin, E.M., Bae, S.W., Efrat, A., Okamoto, K., Mitchell, J.S.B., Polishchuk, V.:
Geometric stable roommates. IPL’09

9. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:
STOC’05

10. Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria.
TCS’06

11. Chen, H.L., Roughgarden, T.: Network design with weighted players. In: SPAA’06
12. Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of

correlated equilibria of linear congestion games. In: ESA’05

11

13. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: STOC’05

14. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: SODA’02
15. Edmonds, J.: Paths, trees, and flowers. Canadian J. of Math. 1965
16. Edmonds, J.: Maximum matching and a polyhedron with 0, 1 vertices. J. of

Research of the National Bureau of Standards 1965
17. Feder, T.: A new fixed point approach for stable networks and stable marriages.

JCSS’92
18. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. The

American Mathematical Monthly 1962
19. Gusfield, D., Irving, R.W.: The stable marriage problem: structure and algorithms.

MIT Press, Cambridge, MA, USA (1989)
20. Hoefer, M., Wagner, L.: Designing profit shares in matching and coalition formation

games. In: WINE’13
21. Huang, C.C.: Two’s company, three’s a crowd: Stable family and threesome room-

mates problems. In: ESA’07.
22. Irving, R.W.: Stable marriage and indifference. DAM’94
23. Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the ”optimal”

stable marriage. JACM’87
24. Irving, R.W., Manlove, D.F., Scott, S.: The stable marriage problem with master

preference lists. DAM’08
25. Johari, R., Tsitsiklis, J.N.: Efficiency loss in a network resource allocation game.

MOR’04
26. Knuth, D.E.: Marriages stables et leurs relations avec d’autres problèmes combi-

natoires. Les Presses de l’Université de Montréal (1976)
27. Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: Approximate equilibria and

ball fusion. TOCS’03
28. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Computer Science

Review 2009
29. Manlove, D.F.: Algorithmics of matching under preferences. World Scientific (2014)
30. Ng, C., Hirschberg, D.S.: Three-dimensional stable matching problems. SIDMA’91
31. Nisan, N., Ronen, A.: Algorithmic mechanism design. GEB’01
32. Papadimitriou, C.: Algorithms, games, and the internet. In: STOC’01
33. Reingold, E.M., Tarjan, R.E.: On a greedy heuristic for complete matching.

SICOMP’81
34. Roth, A.E., Rothblum, U.G., Vande Vate, J.H.: Stable matchings, optimal assign-

ments, and linear programming. MOR’93
35. Roth, A.E., Sotomayor, M.A.O.: Two-sided matching: a study in game-theoretic

modeling and analysis. Cambridge University Press (1990)
36. Roughgarden, T.: Potential functions and the inefficiency of equilibria. In: ICM’06
37. Roughgarden, T.: The price of anarchy is independent of the network topology.

JCSS’03
38. Roughgarden, T., Tardos, E.: How bad is selfish routing? JACM’02
39. Schulz, A.S., Stier Moses, N.E.: On the performance of user equilibria in traffic

networks. In: SODA’03
40. Suri, S., Tóth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games.

Algorithmica 2007
41. Vetta, A.: Nash equilibria in competitive societies, with applications to facility

location, traffic routing and auctions. In: FOCS’02

12

Appendix

A Online Dating

Consider a (heterosexual) dating platform with the goal to help a set W of
women and a set M of men finding suitable partners and let us assume that
|W | = |M |. When signing up for the platform, a woman w ∈ W (resp., a
man m ∈ M) has to complete a questionnaire about a set of her (his) own
characteristics including absolute numerical properties such as age, height, or
weight; relative numerical properties such as sportiness, empathy, or ambition;
and combinations thereof that capture more complex aspects such as movie taste.
This questionnaire generates a point v(w) (v(m)) in the real vector space VW
(VM), where each characteristic is represented by one or more dimensions. Then,
she (he) completes a different questionnaire describing the characteristics of her
ideal male partner w∗ (his ideal female partner m∗), which in turn generates a
point v(w∗) in VM (v(m∗) in VW). Notice that VM and VW may correspond to
different sets of characteristics (after all, men and women might be interested in
different qualities of the respective opposite sex).

We determine the valuation of woman w for man m by ‖v(m) − v(w∗)‖M ,
where ‖ · ‖M is some norm on VM . (The same goes with the opposite sexes with
respect to some norm ‖ · ‖W on VW .) Presuming that one would rather not be
in a relationship with a partner that is not attracted to oneself, it is natural to
measure the cost of a match between a woman w ∈ W and a man m ∈ M in
terms of

c(w,m) = max{‖v(m)− v(w∗)‖M , ‖v(w)− v(m∗)‖W }

with the reasoning that “a chain (a relationship in this case) is only as strong as
its weakest link”. Observe that by definition, the symmetric cost function c(·, ·)
obeys the bipartite counterpart of the triangle inequality. Refer to Figure 3 for
an example with two-dimensional vector spaces VW and VM .

The popularity of a dating platform depends significantly on the trust that
its users have in the platform finding them a suitable partner. This trust can
be boosted by providing rigid guarantees for the matching established by the
platform. Two such natural guarantees are that the total matching cost is mini-
mized, which means that on average, the partners in a matched pair have optimal
valuations for each other; and that the matching is stable, which means that no
unmatched pair has an incentive to deviate from the matching recommended by
the platform. However, it turns out that these two guarantees cannot coexist,
hence we allow for an approximation of the minimum cost (perfect) matching
and relax the notion of stability. The PoS then tells us how well the dating plat-
form can do in terms of the total matching cost compared to a benchmark which
is not subject to the (relaxed) stability constraint.

The problem described above corresponds to matchings in complete bipar-
tite graphs (the marriage version). If, instead, we consider a same-sex dating

13

platform, we end up with points in a single vector space and a cost function
defined over all user pairs which corresponds to matchings in complete graphs
(the roommates version).

B Price of Anarchy

In this section, we present a simpler and more intuitive proof for Reingold and
Tarjan’s 30-year-old result cast in Theorem 1, which relies on a series of ele-
mentary reductions, essentially showing that PoA(2n) is realized by weighted
line graphs, i.e., metric graphs that can be embedded isometrically into the real
line. Following that, we introduce a family of weighted line graphs with PoA of
Θ(nlog(3/2)) and show that no other weighted line graph admits higher PoA.

Definition (Matching Configuration). A matching configuration (MC) ξ =
(G,M∗,M) consists of a metric graph G, a minimum-cost matching M∗, and a
stable matching M on G. The ratio of ξ is defined as ρ(ξ) := c(M)/c(M∗).

Observe that the definition of a MC ξ induces a collection A(ξ) of alternating
cycles in the symmetric difference M ⊕M∗, where an alternating cycle is a cycle
whose edges are alternatingly from M and M∗. The cycles in A(ξ) are referred
to hereafter as the alternating cycles exhibited by ξ. We say that ξ is spanned
by the cycles in A(ξ) if each vertex of G belongs to an alternating cycle in
A(ξ). Clearly, graphs with two vertices admit a single (perfect) matching, hence
PoA(2) = 1, so in what follows, it suffices to consider MCs on 2n vertices for
n > 1. The following lemma states that it also suffices to consider MCs spanned
by a single alternating cycle.

Lemma 14. For every MC ξ = (G,M∗,M) on 2n vertices, there exists a MC

ξ̂ on 2n′ vertices, 1 < n′ ≤ n, spanned by a single alternating cycle such that
ρ(ξ̂) ≥ ρ(ξ).

Proof. Since A(ξ) = ∅ implies ρ(ξ) = 1, we may assume hereafter that |A(ξ)| ≥
1. So let A be an alternating cycle in A(ξ) maximizing the ratio c(MA)/c(M∗A),
where MA and M∗A are the matchings M∗ and M , resp., restricted to the edges of

A. Let GA be the subgraph of G induced by V (A) and take ξ̂ = (GA,M
∗
A,MA).

Observe that ξ̂ is a valid MC, since M∗A and MA are still a minimum-cost match-
ing and a stable matching, resp., in GA. By the choice of A, it follows that
ρ(ξ̂) ≥ ρ(ξ). ut

In the following, we will say that the edge costs in a graph G = (V,E) agree
with the distances in a subgraph G′ = (V,E′) on the same vertices, if and only
if for any edge (x, y) in G we have c(x, y) = distG′(x, y).

Definition (Weighted Cycle MC). A MC ξ = (G,M∗,M) is said to be a
weighted cycle MC if ξ is spanned by a single alternating cycle A and the edge
costs in G agree with the distances in the subgraph of G induced by the edges in
E(A).

14

Our next lemma states that it suffices to bound the PoA in weighted cycle
MCs.

Lemma 15. For every MC ξ = (G,M∗,M) on 2n vertices that is spanned by a

single alternating cycle, there exists a weighted cycle MC ξ̂ on 2n vertices such
that ρ(ξ̂) ≥ ρ(ξ).

Proof. Let A be the single alternating cycle spanning ξ. If ξ is not a weighted
cycle MC, then G must admit a shortcut — an edge (x, y) ∈ E(G) \ E(A)
satisfying c(x, y) < distA(x, y), where distA(x, y) denotes the distance between
x and y in the (weighted) cycle A. Let (x, y) be a shortcut minimizing c(x, y)
and let z ∈ V (G)\{x, y} be the vertex minimizing c(x, z)+c(z, y). Observe that
c(x, y) must be strictly smaller than c(x, z) + c(z, y) as (x, y) is a shortcut of G
and G does not admit any shorter shortcut. We argue that the cost of (x, y) can
be increased to c(x, z) + c(z, y) without violating the validity of ξ as a MC. As
there are only finitely many shortcuts, the assertion follows since repeating this
step (finitely many times) removes all the shortcuts of G. To that end, note that
after increasing c(x, y) to c(x, z)+c(z, y), M∗ remains a minimum-cost matching
of G (we only increased the cost of some edge not in M∗) and M remains a stable
matching of G (we only increased the cost of some edge not in M). So, all we
have to show is that G remains metric, which follows from the choice of z. ut
Definition (Weighted Line MC). We say that a (2n)-vertex metric graph G
is a weighted line graph if it can be isometrically embedded into the real line. As
such, it is convenient to identify the vertices of G with the reals x1 < · · · < x2n

so that c(xi, xj) = xj − xi for every 1 ≤ i < j ≤ 2n. In some cases, it will
also be convenient to define a weighted line graph by setting all the differences
xi+1 − xi without explicitly specifying the xis themselves. A weighted line MC
ξ = (G,M∗,M) is a MC on 2n vertices satisfying:

(1) G is a weighted line graph;
(2) M∗ = {(x2i−1, x2i) | 1 ≤ i ≤ n}; and
(3) M = {(x2i, x2i+1) | 1 ≤ i < n} ∪ {(x1, x2n)}.

Observe that ξ is spanned by a single alternating cycle A = (x1, . . . , x2n, x1).

Note that requirement (2) in the definition is not really necessary: the re-
quirement that G is a weighted line graph already implies that {(x2i−1, x2i) |
1 ≤ i ≤ n} is the unique minimum-cost matching of G as every other match-
ing M ′ contains some edge (xi, xj) such that |j − i| > 1; it is easy to show
that such an edge must belong to an improving alternating cycle, hence M ′

cannot be optimal. Given a (2n)-vertex weighted line graph G, we shall subse-
quently denote this unique minimum-cost stable matching by M∗(G) and the
matching {(x2i, x2i+1) | 1 ≤ i < n} ∪ {(x1, x2n)} by M(G). By definition,
ξ = (G,M∗(G),M(G)) is a valid (weighted line) MC if and only if M(G) is
stable. Note also that a weighted line MC is a refinement of a weighted cycle
MC, with the additional requirement that the cost of the longest edge in the
unique alternating cycle A equals the total cost of all other edges of A. Building
on this fact, the next lemma states that it suffices to consider weighted line MCs.

15

Lemma 16. For every weighted cycle MC ξ = (G,M∗,M) on 2n vertices, there

exists a weighted line MC ξ̂ on 2n vertices such that ρ(ξ̂) ≥ ρ(ξ).

Proof. Let A be the single alternating cycle spanning ξ and let e be an edge in
M that maximizes c(e). Let W−e =

∑
e′∈E(A)\{e} c(e

′). Clearly, c(e) ≤ W−e, as

otherwise, G is not metric. We argue that if c(e) < W−e, then the cost of e can
be increased to W−e (while also adapting the cost of all edges in G whose cost
is affected by e, bearing in mind that the edge costs in G have to agree with
the distances in the subgraph induced by E(A)) without violating the validity
of ξ as a MC; the assertion follows because this step turns ξ into a weighted line
MC. To that end, note that after increasing c(e) to W−e, G remains metric (ξ
is a weighted cycle MC) and M∗ remains a minimum-cost matching (we only
increased the cost of some edges not in M∗). So, all we have to show is that M
remains stable, which follows from the choice of e. ut

Once we restrict our attention to weighted line configurations, we can aug-
ment G with new vertices without significantly affecting the ratio of the MC.

Lemma 17. For every weighted line MC ξ = (G,M∗,M) on 2n vertices and

for any ε > 0, there exists a weighted line MC ξ̂ on 2(n + 1) vertices such that

ρ(ξ̂) ≥ ρ(ξ)− ε.

Proof. Recall that the vertices of G are identified with the reals x1 < . . . < x2n.
Let Ĝ be the weighted line graph obtained from G by augmenting V (G) with
two new vertices identified with the reals y = x2n + δ and y′ = y + δ′ for
some δ′ > δ > 0. The assertion follows since by taking a sufficiently small δ′, we
guarantee both thatM(Ĝ) is stable in Ĝ and that c(M(Ĝ))/c(M∗(Ĝ)) ≥ ρ(ξ)−ε.

ut

We now turn to present a family of metric graphs referred to as Reingold-
Tarjan graphs, acknowledging Reingold and Tarjan’s paper [33], where these
graphs were first introduced.

Consider some integer k > 0. The kth Reingold-Tarjan graphHk is a weighted
line graph whose 2k vertices are identified with the reals xk1 < · · · < xk2k . It is
defined recursively: For k = 1, we set x1

2 − x1
1 = 1. Assume that Hk is already

defined and let Dk = xk2k −xk1 be its diameter. Then, Hk+1 is defined by placing
two disjoint instances of Hk on the real line with an Sk+1 spacing between
them, i.e., xk+1

2k+1
−xk+1

2k
= Sk+1, yielding Dk+1 = 2 ·Dk +Sk+1. In the current5

construction, we set Sk = Dk−1, thus the diameter of Hk satisfies Dk = 3k−1.
Refer to Fig. 4 for an illustration of the parametrized Reingold-Tarjan graph
H4
α that will be used later. The original graph is obtained by setting the two

parameters α and ε to 1 and 0, respectively.
Recall that M∗(Hk) matches xk2i−1 with xk2i for every 1 ≤ i ≤ 2k−1; since

all these edges have cost 1, it follows that c(M∗(Hk)) = 2k−1. Furthermore, we

5 A parametrized variant of the Reingold-Tarjan graphs is presented in Appendix C,
where we use a different value for Sk.

16

argue by induction on k that the matching

M(Hk) = {(xk2i, xk2i+1) | 1 ≤ i < 2k−1} ∪ {(xk1 , xk2k)}

is stable and that its cost is

c(M(Hk)) = Dk + (Dk − c(M∗)) = 2 · 3k−1 − 2k−1 .

Therefore, ξkRT = (Hk,M∗(Hk),M(Hk)), referred to as the kth Reingold-Tarjan
MC hereafter, is a valid weighted line MC with ratio

ρ(ξkRT) =
c(M(Hk))

c(M∗(Hk))
=

2 · 3k−1 − 2k−1

2k−1
= Θ

(
(3/2)k−1

)
= Θ

(
nlog(3/2)

)
,

where the last equation follows by setting 2n = 2k. Using Lemma 17 to ex-
tend the Reingold-Tarjan graphs for 2n 6= 2k, we immediately conclude that
PoA(2n) = Ω(nlog(3/2)), establishing the lower bound part of Theorem 1. The
upper bound part of the theorem is established by combining Lemmas 14, 15,
16, and 17 with the following lemma.

Lemma 18. The kth Reingold-Tarjan MC ξkRT satisfies the inequality ρ(ξkRT) ≥
ρ(ξ) for any weighted line MC ξ on 2k vertices.

Proof. By induction on k. The assertion holds trivially for k = 1, so assume that
it holds for k and consider an arbitrary weighted line MC ξ = (G,M∗(G),M(G))
on 2k+1 vertices identified with the reals x1 < · · · < x2k+1 . Let L and R be the
subgraphs of G induced by the vertices x1, . . . , x2k and x2k+1, . . . , x2k+1 , resp.
Let e = (x2k , x2k+1) and let DL = x2k − x1 and DR = x2k+1 − x2k+1. We
refer to the vertices x1 and x2k (resp., x2k+1 and x2k+1) as the external vertices
of L (resp., R) and to the vertices x2, . . . , x2k−1 (resp., x2k+2, . . . , x2k+1−1) as
the internal vertices of L (resp., R). Observe that e ∈ M(G) and since M(G)
is a stable matching of G, we must have x2k+1 − x2k = c(e) ≤ min{DL, DR}
as otherwise, at least one of the edges (x1, x2k) or (x2k+1, x2k+1) is unstable.
Figure 5 illustrates the various notions.

We say that a 2k-vertex weighted line graph is consistent with Hk if it can be
obtained from Hk by scaling the edge costs. Fixing the external vertices of L and
R, we argue that the internal vertices of L and R can be repositioned so that L
and R, resp., become consistent with Hk without violating the validity of ξ as a
weighted line MC and without decreasing the ratio ρ(ξ). We shall establish this
fact for L; the proof for R is analogous. Note first that since M(Hk) is stable in
Hk and since c(e) ≤ DL, it follows that by repositioning the internal vertices of
L so that L becomes consistent with Hk, we do not violate the stability of M(G).
Second, by the inductive hypothesis, repositioning the internal vertices of L so
that L becomes consistent with Hk maximizes c(M(L))/c(M∗(L)), thus ρ(ξ)
cannot decrease after this repositioning step, which establishes the argument.
So, assume hereafter that both L and R are consistent with Hk.

Assume without loss of generality that DL ≥ DR, so c(e) = x2k+1 − x2k

is at most DR. In fact, since R is consistent with Hk, it follows that we can

17

increase the difference x2k+1−x2k until it is equal to DR, keeping the difference
xi+1 − xi unchanged for all other is, without violating the validity of ξ as a
weighted line MC and without decreasing the ratio ρ(ξ). So, assume hereafter
that DL ≥ c(e) = DR. Now, we argue that we can scale down the differences
xi+1−xi for every 1 ≤ i < 2k, keeping xi+1−xi unchanged for all other is, until
we obtain DL = c(e) = DR, without decreasing the ratio ρ(ξ). This completes
the proof since DL = c(e) = DR implies that G = Hk+1.

Let ` = c(M(L)) − DL, `∗ = c(M∗(L)), r = c(M(R)) − DR, and r∗ =
c(M∗(R)); notice that ` + `∗ = DL and r + r∗ = DR. Since c(e) = DR, we can
express ρ(ξ) as

ρ(ξ) =
c(M(G))

c(M∗(G))
=

2`+ `∗ + 2(r + r∗) + 2r + r∗

`∗ + r∗
=

2`+ `∗ + 4r + 3r∗

`∗ + r∗
.

Recalling that DL ≥ DR, we express DL as DL = (1 + λ)DR for some λ ≥ 0,
and so ` = (1 + λ)r and `∗ = (1 + λ)r∗. Thus,

ρ(ξ) =
2(1 + λ)r + (1 + λ)r∗ + 4r + 3r∗

(1 + λ)r∗ + r∗
=

(6 + 2λ)r + (4 + λ)r∗

(2 + λ)r∗
.

Assuming that the edge costs in G (as a whole) are scaled so that R = Hk

(rather than merely being consistent with Hk), and recalling the properties of
ξkRT , we get

ρ(ξ) =
(6 + 2λ)(3k−1 − 2k−1) + (4 + λ)2k−1

(2 + λ)2k−1
=

(
6 + 2λ

2 + λ

)
· (3/2)k−1 − 1 .

The lemma follows since the function f(λ) = 6+2λ
2+λ is monotonically decreasing

for λ ≥ 0, meaning that it assumes its maximum for λ = 0 which implies that
DL = DR has to hold. ut

C Lower Bound on PoSα

Our goal in this section is to prove Theorem 19 and thereby establish a lower
bound on PoSα of minimum-cost perfect matching in metric graphs with 2n
vertices.

Theorem 19. PoSα of minimum-cost perfect matching in metric graphs with
2n vertices is Ω(nlog(1+1/(2α))).

The graph construction that lies at the heart of this lower bound, denoted
Hk
α, is a parametrized variant of the Reingold-Tarjan graph Hk presented in Ap-

pendix B and depicted in Fig. 4 for arbitrary values of α. Specifically, the 2-vertex
graph H1

α is identical to H1; and the 2k+1-vertex graph Hk+1
α is constructed re-

cursively by placing two disjoint instances ofHk
α, each of diameterDk

α, on the real
line, only that this time, the spacing between them is set to Sk+1

α = (1/α−ε)Dk
α,

18

for some sufficiently small ε > 0 that will be determined later on. This implies
that Dk

α = (2 + 1/α− ε)k−1 and Sk+1
α = (1/α− ε)(2 + 1/α− ε)k−1.

Now let M be an α-stable matching in Hk
α. We argue that M has to contain

each edge e = (x, y) with c(e) = 1/α− ε. Indeed, if e /∈M , then e is α-unstable
in M since c(e) < α ·min{c(x, x′), c(y, y′)} for all other vertices x′, y′. Given that
all vertices with distance 1/α − ε are therefore already matched, we can apply
the same argument for each edge connecting two adjacent vertices with edge
cost (1/α − ε)(2 + 1/α − ε) and thereby conclude that these edges have to be
in M as well. By repeating this argument, we end up with the unique α-stable
matching M that has to contain the edge (xk1 , x

k
2k) whose cost is Dk

α and and all
other edges whose cost differs from 1. Thus, c(M) ≥ Dk

α = (2 + 1/α− ε)k−1.
On the other hand, the cost of the minimum-cost matching M∗ is not larger

than that of the matching using all cost 1 edges, thus we can bound the cost of
M∗ as c(M∗) ≤ 2k−1. Together, we conclude that

PoSα(Hk
α) ≥ c(M)

c(M∗)
≥ (2 + 1/α− ε)k−1

2k−1
(2)

= Ω

(
1 +

1

2α

)k−1

= Ω
(
nlog(1+ 1

2α)
)
,

where the last two equalities hold by taking a sufficiently small ε and by recalling
that Hk

α has 2n = 2k vertices, resp.

D Additional Proofs from Section 4

Proof (Lemma 3). We consider a flip of the edge e = (u, v) and denote by
e′ = (M(u),M(v)) the second new edge joining M as a result of the flip. The
two edges that are removed by the flip are denoted by f and g. See Fig. 6 for an
illustration of the situation.

When an edge e is flipped, there are essentially two different cases for an
unstable edge to be created. The unstable edge contains either one vertex of
e or one vertex of e′. No other vertices are involved in the flip and thus every
new unstable edge has to contain at least one of the four vertices. We assume
without loss of generality that a vertex of the edge g is incident to the unstable
edge created by the flip.

Let us first consider the case where a vertex of e is incident to the new
unstable edge. This case is denoted as the edge b1 in Fig. 6. We assume that b1
is stable before the flip and unstable thereafter. For b1 to be unstable after the
flip, we must have α ·c(b1) < c(e) and α ·c(b1) < c(c). But as e is unstable before
the flip, we have α · c(e) < c(g) and thus we get α · c(b1) < c(e) < c(g)/α ≤ c(g).
This means that b1 was already unstable before the flip, which is a contradiction
to the assumption. Hence, no vertex of e can be part of the new unstable edge.

Let us now consider the case, where a vertex from e′ is part of the new
unstable edge (b2 in Fig. 6). Since b2 is stable before the flip and unstable after
it, we must have c(g) ≤ α · c(b2) < c(e′). But as e is unstable before the flip, we

19

have α · c(e) < c(g), and thus we get c(e) < c(g)/α ≤ c(b2) which completes the
proof. ut

Proof (Lemma 5). The running time of the algorithm is dominated by the step
of sorting the edges in G according to their cost. This takes O(n2 log n) steps.
The second phase — the actual algorithm — runs in O(n2) steps since it iterates
once over all edges in V × V and each iteration takes O(1) time.

The correctness of the algorithm is established by Corollary 4 since it states
that in the last iteration, all unstable edges have strictly larger cost than the
edge currently considered or will be considered later. Since this edge is already
the one with the largest cost and all edges have been considered, there cannot
be any unstable edges in the final matching MS . ut

Proof (Lemma 6). Let us assume for the sake of contradiction that e = (u, v)
was flipped in iteration i of the algorithm and further that (u, v) /∈Mj for some
j > i. According to the algorithm, we have (u, v) ∈ Mi. Since (u, v) /∈ Mj ,
there has to exist an iteration k with i < k ≤ j where (u, v) is removed from
Mk−1 such that (u, v) /∈ Mk. For this to happen, either edge (u, u′) or (v, v′)
for some vertex u′ or v′ must be flipped in iteration k because it was unstable
in Mk−1. Without loss of generality, we assume that (u, u′) is unstable in Mk−1

and flipped in iteration k > i. Thus, we have c(u, u′) ≤ α · c(u, u′) < c(u, v). But
this means that Stab would have considered the edge (u, u′) before considering
the edge (u, v), a contradiction to the assumption. ut

Proof (Lemma 7). We prove the statement by induction over the height of x in its
flip tree. The assertion holds for every leaf x ∼ e in the flip forest as ψ(x) = c(e)
by definition. Assume that the statement holds for the two children x

L
and x

H

of a node x that represents a flip of the edge (u, v). Then x ∼ (M(u),M(v)) =
e and we assume without loss of generality that x

H
∼ (u,M(u)) = eu and

x
L
∼ (v,M(v)) = ev. Thus, by the inductive hypothesis, c(eu) ≤ ψ(x

H
) and

c(ev) ≤ ψ(x
L
). This flip tree segment represents the replacement of the edges eu

and ev by e and (u, v), which happened because the edge (u, v) was unstable
with respect to M , that is, α · c(u, v) < min{c(ev), c(eu)}. Since G is metric, we
can bound c(e) as follows.

c(e) ≤ c(eu) + c(ev) + c(u, v)

< c(eu) + (1 + 1/α) · c(ev)
≤ ψ(x

H
) + (1 + 1/α) · ψ(x

L
) (inductive hypothesis)

= ψ(x) ut

Proof (Lemma 10). Aiming for a contradiction, suppose that T is not complete.
Let z be an internal node at depth d with leaf children x, y (whose depth is
d+1) and let z′ be a leaf at depth d′ < d. Let T ′ be the full binary tree obtained
from T by deleting x and y and inserting two new leaves x′, y′ as children of z′.
Let w and w′ be the leaf weigh functions of T and T ′, respectively, defined by
requiring that T and T ′ are ψ-balanced and scaled so that Ψ(T) = Ψ(T ′) = 1;

20

this is well defined since by Observation 9, the ψ-values of all nodes in T and T ′

(and in particular, the leaf weight functions w and w′) are fully determined by
their topology and the values of Ψ(T) and Ψ(T ′) (in a top-down fashion).

We establish the proof by arguing that Λ(T ′) < Λ(T) which implies η(T ′) >
η(T), in contradiction to T being effective. To that end, notice that the con-
struction of T ′ implies that

Λ(T ′) = Λ(T) + w′(x′) + w′(y′) + w′(z)− (w(x) + w(y) + w(z′)) ,

so it suffices to prove that w′(z)−w(x)−w(y) < w(z′)−w′(x′)−w′(y′). Employing
Observation 9, we calculate

w′(z) = (2 + 1/α)−d w(x) = w(y) = (2 + 1/α)−(d+1)

w(z′) = (2 + 1/α)−d
′

w′(x′) = w′(y′) = (2 + 1/α)−(d′+1) ,

so the proof reduces to showing that

(2 + 1/α)−d (1− 2/(2 + 1/α)) < (2 + 1/α)−d
′
(1− 2/(2 + 1/α))

which holds since d > d′. ut

Proof (Lemma 11). Again we assume without loss of generality that the weights
of the leaves are scaled so that Ψ(T) = 1. By definition, T has 2h − 2k leaves
at depth h and k leaves at depth h− 1. Employing Observation 9, we conclude
that

Λ(T) = (2h − 2k) · (2 + 1/α)−h + k · (2 + 1/α)−(h−1)

= (2 + 1/α)−h · (2h − 2k + k · (2 + 1/α))

= (2 + 1/α)−h · (2h + k/α) .

Since Ψ(T) = 1, we have η(T) = 1/Λ(T) which completes the proof. ut

Proof (Lemma 12). We show that for all n ∈ Z>0, it holds that ϕ(n+ 1) > ϕ(n)
and distinguish two cases. First, we consider the case that n 6= 2i for all i ∈ Z>0.
Observe that h(n+1) = h(n) and k(n+1) < k(n) and therefore ϕ(n+1) > ϕ(n).
Now, we examine the case that n = 2i for some i ∈ Z>0. We have h(n+1) = i+1
and h(n) = i as well as k(n + 1) = 2i − 1 and k(n) = 0. Plugging these values
into ϕ, we obtain ϕ(n+ 1) > ϕ(n) and the proof is complete. ut

D.1 The Effect of a Flip Tree is Scaling-Invariant

Our goal in this section is to show that the effect of a full binary tree is invariant
under scaling its leaf weights.

We define the light depth λ(x) of a node x in a flip tree T as the number of
light links on the direct path from x to the root rT of T . Lemma 20 relates the
weight of an inner node of a flip tree to the weights of the leaves of its subtree.

21

Lemma 20. Every node x in a flip tree satisfies

ψ(x) =
∑

`∈L(x)

(1 + 1/α)λ(`)−λ(x) · ψ(`) .

Proof. We prove the statement by induction over the height of x in its flip tree.
The statement holds for a leaf node x since then we have L(x) = {x} and
λ(x) − λ(x) = 0. Assume that the statement holds for both children x

H
and x

L

of a node x. By definition, we have

ψ(x) = ψ(x
H

) + (1 + 1/α) · ψ(x
L
)

=
∑

`∈L(x
H

)

(1 + 1/α)λ(`)−λ(x
H

) · ψ(`)

+ (1 + 1/α) ·
∑

`∈L(x
L

)

(1 + 1/α)λ(`)−λ(x
L

) · ψ(`)

=
∑

`∈L(x
H

)

(1 + 1/α)λ(`)−λ(x) · ψ(`)

+ (1 + 1/α) ·
∑

`∈L(x
L

)

(1 + 1/α)λ(`)−λ(x)−1 · ψ(`)

=
∑

`∈L(x
H

)

(1 + 1/α)λ(`)−λ(x) · ψ(`) +
∑

`∈L(x
L

)

(1 + 1/α)λ(`)−λ(x) · ψ(`)

=
∑

`∈L(x)

(1 + 1/α)λ(`)−λ(x) · ψ(`) ,

where we used λ(x
L
) = λ(x) + 1 and λ(x

H
) = λ(x). ut

Corollary 21 is immediate, since λ(rT) = 0 for the root rT of a flip tree T .

Corollary 21. The root rT of a flip tree T satisfies

ψ(rT) =
∑

`∈L(T)

(1 + 1/α)λ(`) · ψ(`) .

As the effect of a flip tree T is defined to be Ψ(T)/Λ(T) and by definition,
Ψ(T) = ψ(T) as well as Λ(T) =

∑
`∈L(rT) ψ(`), we observe that scaling the leaf

weights of a flip tree does not change its effect and the statement follows.

22

Illustrative Figures

y ∼ eu z ∼ ev

x ∼ e

u v

M(u) M(v)

⇒eu ev

e

Fig. 1. The left side shows a matching configuration with an unstable edge (u, v),
which will be flipped by Stab. This flip is then represented by the flip tree segment
on the right, which depicts the replacement of the two active edges (u,M(u)) ∼ y and
(v,M(v)) ∼ z by the active edge (M(u),M(v)) ∼ x.

23

e1

e3

e5

(a) The initial matching M0

is a minimum-cost matching.

e1

e2

e3

e5

e7

e1 e3

e7

(b) Matching M1 is obtained from M0 by flip-
ping e2. The corresponding flip tree is shown
on the right.

e1

e2

e3

e4

e5

e6

e7

e1 e3

e7 e5

e6

(c) Matching M2 is obtained from M1 by flipping
e4. The corresponding flip tree is shown on the right.

Fig. 2. This figure shows how the initial minimum-cost matching M0 is transformed
by an execution of Stab through the flips of the edges e2 and e4 along with the flip
forest (here only a single flip tree) corresponding to the execution. Edges in the current
matching are drawn with solid lines while edges in matchings of previous iterations are
drawn with dashed lines.

VM

age/y

30

60

100
kneecap diameter/cm

VW

age/y

30

60

200
cochlea diameter/mm

w
w∗

m
m∗

Fig. 3. In a fictitious example where age is relevant for both sexes while men are
particularly interested in women’s cochleas and women care about men’s kneecaps, we
depict the points corresponding to the characteristics of four individuals, two women
and two men. A black mark indicates the characteristic of a specific user while the
corresponding shape in red marks the characteristic of that person’s ideal partner.

24

1/α− ε

1 (1/α− ε)(2 + 1/α− ε)2 (1/α− ε)(2 + 1/α− ε)1

M
H1
︸︷︷︸

H2
︸ ︷︷ ︸

H3
︸ ︷︷ ︸

H4
︸ ︷︷ ︸

Fig. 4. This parametrized Reingold-Tarjan graph H4
α with 24 vertices has a unique

“expensive” α-stable matching M (red edges). Setting the optional parameters α and
ε (that are used in the proof of the PoS lower bound) to 1 and 0, resp., yields the
original Reingold-Tarjan graph H4.

x1 x2k+1x2k x2k+1

e

M M∗

︷ ︸︸ ︷
L

︷ ︸︸ ︷
R

Fig. 5. Any MC ξ on 2k vertices can be transformed into a Reingold-Tarjan MC with-
out decreasing the ratio ρ(ξ). The black edges are part of the minimum-cost matching
M∗ while the red edges belong to the stable matching M .

e

f

e′

g

b2

b1

d

c

u v

M(u) M(v)

Fig. 6. This figure illustrates the two different cases of Lemma 3.

25

