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Magnús M. Halldórsson∗ Stephan Holzer† Pradipta Mitra∗

Roger Wattenhofer†

September 23, 2012

Abstract

We study a fundamental measure for wireless interference in the SINR model when power
control is available. This measure characterizes the effectiveness of using oblivious power —
when the power used by a transmitter only depends on the distance to the receiver — as a
mechanism for improving wireless capacity.

We prove optimal bounds for this measure, implying a number of algorithmic applications.
An algorithm is provided that achieves — due to existing lower bounds — capacity that is
asymptotically best possible using oblivious power assignments. Improved approximation
algorithms are provided for a number of problems for oblivious power and for power control,
including distributed scheduling, secondary spectrum auctions, wireless connectivity, and
dynamic packet scheduling.
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1 Introduction

One of the strongest weapons to improve the capacity of a wireless network is power control.
Higher power increases the bandwidth of a single transmission link, while causing more inter-
ference to other links that may be transmitting simultaneously. Given this tension, intelligent
power control is crucial in increasing the spatial reuse of the available bandwidth. Thus it is
not surprising that most contemporary wireless protocols use some form of power control. More
recently, this phenomenon has also been studied theoretically; it was shown in a series of works
that power control may improve the capacity of a wireless network in an exponential [41, 21] or
even unbounded [11] way.

However, unrestricted power control is a double-edge sword. In order to achieve the theo-
retically best results, one must solve complex optimization problems, where the transmission
power of one node often depends on the transmission powers of all other nodes [32]. In real
wireless networks where communication demands change over time this may not be an option.
In practical protocols, the transmission power should be independent of other concurrent trans-
missions. In the best case, the transmission power only depends on the distance between sender
and receiver. This is known as oblivious power control.

Many questions rise immediately in the wake of the previous assertion: What is the price
of restricting power control to oblivious powers? Which of the infinitely many oblivious power
schemes are good choices? Once an oblivious power scheme is chosen, what algorithmic results
can be achieved for it?

In this work, we look at these questions in the context of the physical or SINR model of
interference, which is a realistic model of wireless interference gaining accelerating attention
(Sec. 1.2 contains historical background and motivation and Sec. 2 contains precise definitions).
In this setting, our work answers a number of these questions optimally, completing a significant
line of work in the algorithmic study of the SINR model.

The specific problem at the center of our work is the problem of capacity maximization:
Given a set of transmission links (each a sender-receiver pair), the goal is to find the largest
subset of links that can transmit simultaneously.

Before the present work, the state-of-the-art was as follows. The mean power assignment,
where a link of length ` is assigned power `α/2 (α being a small physical constant) had emerged
as the “star” among oblivious power assignments. It was shown that using mean power, one
can approximate capacity maximization for arbitrary power control up to a factor of O(log n ·
log log ∆) [21] and O(log n + log log ∆) [23], where ∆ is the ratio between the maximum and
minimum transmission distance and n is the number of links in the system. This showed that
the somewhat earlier lower bound of Ω(n) [11] applied only when ∆ was doubly exponential. In
terms of ∆, it was shown that one must pay a Ω(log log ∆) factor [21]. The best upper bounds
were, as mentioned, either dependent on the size of the input [21, 23] and as such unbounded
(in relation to ∆), or are exponentially worse (log ∆) [16, 2].

1.1 Our Contributions

In this paper, we study all power assignments of the form `p·α for all fixed 0 < p < 1 (setting
p = 1

2 gives us mean power). Our first result shows that the lower bound of Ω(log log ∆) is tight.
That is, we give a simple algorithm that uses any oblivious power scheme from the above class,
but whose quality is only O(log log ∆)-factor worse than the optimum with unrestricted power
control. For small to moderate values of ∆, i.e., when ∆ is at most polynomial in n (which
presumably includes most real-world settings), our bound is an exponential improvement on the
previous bounds, including the O(log ∆)-bound of [2] (see also [16]).

This result, as well as solving the problem of the relation between oblivious and arbitrary
power, extends the “star status” from mean power to a large class of assignments. This class
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has been studied before implicitly in a wide array of work [35, 23, 28, 22] on “length-monotone,
sub-linear power” assignments – but their relation to arbitrary power was not understood.

Now that we know what the “right” power assignments are, our second contribution is to im-
prove a large body of algorithmic work on these power assignments. We improve by a logarithmic
factor the approximation of a variety of problems for these power assignments — distributed
scheduling [35], secondary spectrum auctions [28], wireless connectivity [41, 25, 24], dynamic
packet scheduling [34, 3] etc. Using the fundamental capacity relation between oblivious and
arbitrary power (our first result), we improve algorithms for these problem in the power control
setting as well.

Though we have presented our work above in terms of algorithmic implications; what we
actually prove are two structural results, out of which this wide class of algorithmic applications
fall out essentially immediately. These results are important in their own right, e.g., implying
tight bounds on certain efficiently computable measures of interference.

Here is a brief attempt to provide intuitive understanding of these two results in a unified
framework. Consider a set of links that can transmit simultaneously (a feasible set). What we
study is an interference measure between another link (not necessarily in the set) and such a
feasible set. Assuming the set is feasible using some power assignment (i.e. arbitrary power),
we find that the relevant measure can be bound by O(log log ∆) (Thm. 3.4), implying our
first capacity result (and its applications). Technically, this is done by carefully extending the
analysis of [21]. Assuming the set is feasible under an oblivious power from the class mentioned
before, the measure can be bound by O(1) (Thm. 3.8), implying the second set of algorithmic
results. We use a potentially novel contradiction technique (at least in the context of SINR
analysis) for this result.

Our results apply for general metric spaces and all constant α > 0. Apart from the specific
applications pinpointed here, we expect any number of future algorithmic questions in the SINR
model to directly benefit from these powerful bounds.

1.2 Related Work

Gupta and Kumar [20] were among the first to give analytical results for wireless scheduling
in the physical (SINR) model. Those early results analyzed special settings using e.g. certain
node distributions, traffic patterns, transport layers etc. In reality, however, networks often
differ from these specialized models and no algorithms were provided to optimize the capacity.
On the other hand, graph-based models yielded algorithms like [36, 44] but such models do not
capture the nature of wireless communication well, as demonstrated in [19, 39, 42]. Six years
ago Moscibroda et al. [41] started combining the best of both worlds, studying algorithms for
scheduling in arbitrary worst-case networks. Since then, the problems studied in this setting
has reflected the diversity of the application areas underlying it – topology control [13, 43, 30],
sensor networks [40] , combined scheduling and routing [7], ultra-wideband [29], analog network
coding [18].

In spite of this diversity, certain canonical problem have emerged, the study of which have
resulted in improvements for other problems as well. The capacity problem is such a problem.
After it was quickly shown to be NP-complete [16], a constant factor approximation algorithm
for uniform power was achieved in [14, 26], eventually extended to essentially all interesting
oblivious power schemes [23]. In [32, 33], a O(1)-approximation to the capacity problem for
arbitrary powers was obtained. As we have already mentioned, the relation between capacity in
oblivious vs. arbitrary power was first studied in [21].

Among fixed power assignments, linear power has turned out to be easiest, being the only
one with constant factor approximation for scheduling [12, 47] and constant-bounded inteference
measure [12]. Whereas there are instances for which linear and uniform power are arbitrarily
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bad in comparison with mean power [41], a maximum feasible subset under mean power always
within a constant factor of subsets feasible under linear or uniform power [46].

Capacity maximization has recently been studied with respect to several limitations. E.g. [4]
investigated the capacity with uniform and non-uniform power-assignments when the network
resources are restricted, [10] studies an online-version of capacity maximization with respect to
SINR-constraints. In [31] a tradeoff between energy minimization and maximizing the capacity
in the SINR. Recently it was shown in [8] that algorithms for capacity-maximization in the SINR
model can be transferred to a model that even takes Rayleigh-fading into account by losing only
a O(log∗ n) factor in the approximation ratio. This overview is far from being complete, surveys
can be found in e.g. [17, 38].

Technically, the idea of looking of the interaction between a feasible set and a link is known.
The work of Halldorsson [21] and Kesselheim and Vöcking [35] are specially relevant – the first in
the context of oblivious-arbitrary comparison, and the second in the context of oblivious power.
Our results improve the bounds in those two papers to the best possible.

1.3 Outline of the Paper

Section 2 lays down the basic setting, including a formal description of the SINR model. In
Section 3, we introduce and outline the proof of our two structural results. This is used in
Section 4 to give tight approximation algorithm for the capacity problem and in Section 5 to
improve various results on topics including distributed scheduling, auctions, and connectivity.
Full proofs are given in the appendix; also included there are additional applications of our
structural theorems and constructions showing that the assumptions in those theorems are
necessary.

2 Model and Definitions

Given is a set L = {l1, l2, . . . , ln} of links, where each link lv represents a unit-size communication
request from a sender sv to a receiver rv, both of which are points in an arbitrary metric space.
The distance between two points x and y is denoted d(x, y). We write dvw = d(sv, rw) for short,
and denote by `v the length of link lv. Let ∆ = ∆(L) denote the ratio between the maximum dvw

`vand minimum length of a link in L.
∆In the physical model (or SINR model) of interference, a transmission on link lv is successful

if and only if
Pv/`

α
v∑

lw∈S\{lv} Pw/d
α
wv +N

≥ β , (1)

where N is a universal constant denoting the ambient noise, β denotes the minimum SINR
(signal-to-interference-noise-ratio) required for a message to be successfully received, α > 0 is β

the so-called path-loss constant, and S ⊆ L is the set of links scheduled concurrently with lv. α

Let Pv denote the power assigned to link lv, or, in other words, sv transmits with power Pv.
We focus on power assignments Pp, where Pv = `p·αv . This includes all the specific assignments
of major interest: uniform (P0), mean (P1/2), and linear power (P1). Pp

We say that S is P-feasible, if (1) is satisfied for each link in S when using power assignment P.
We say that S is power control feasible (PC-feasible for short) if there exists a power assignment
P for which S is P-feasible. We frequently write simply feasible when we refer to PC-feasible.

Let PC-Capacity denote the problem of finding a maximum cardinality subset of these links
is PC-feasible. Let OPTP(L) denote the optimal capacity (i.e., size of the largest P-feasible
subset) of a linkset L under power assignment P, and OPT (L) denote the optimal capacity
under any power assignment.
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Affectance. We will use the notion of affectance, introduced in [14] and refined in [26] and
[35]. The affectance aPw(v) of link lv caused by another link lw, with a given power assignment aPw(v)

P, is the interference of lw on lv relative to the power received, or

aPw(v) = min

(
1, cv

Pw/d
α
wv

Pv/`αv

)
= min

(
1, cv

Pw
Pv
·
(
`v
dwv

)α)
,

where the factor cv = β/(1− βN`αv /Pv) depends only properties of the link lv and on universal

constants. We let apv(w) denote a
Pp
v (w). We shall frequently drop the power assignment reference

P, which means then that we assume Pp. Let av(v) = 0. For sets S and T of links and a link lv,
let av(S) =

∑
w∈S av(w), aS(v) =

∑
w∈S aw(v), and aS(T ) =

∑
w∈S aw(T ). Using this notation,

Eqn. 1 can be rewritten as aPS (v) ≤ 1 (assuming S contains more than two links).
We define two more affectance notations. Let bv(w) = bw(v) = av(w)+aw(v) be the symmetric

version of affectance. Let âv(w) (b̂v(w)) be the length-ordered version, defined to be av(w) bv(w)

âv(w)

b̂v(w)

(bv(w)) if `v ≤ `w and 0 otherwise, respectively. These are extended in similar ways to affectances
to and from sets as defined for av(w). Notice that aS(S) = b̂S(S) = bS(S)/2.

(Non)-weak links A link is said to be non-weak if cv ≤ 2β. This is equivalent to Pv
`αv
≥ 2βN .

Intuitively, this means that the link uses power slightly more than the absolute minimum needed
to overcome ambient noise (the constant 2 can be replaced with any fixed constant larger than
1). Our theorems will often assume links to be non-weak. This is reasonable and often-used
assumption [35, 2, 9, 15] and can be achieved, if necessary, by scaling the powers.

Length classes A length class is any set R of links for which ∆(R) ≤ 2 (i.e., link lengths
vary by a factor no more than 2). Clearly, any link set L can be partitioned into log ∆(L) length
classes. We also refer to this as nearly-equilength class.

Independence We refer to links lv and lw as q-independent if they satisfy dvw ·dwv ≥ q2 ·`w`v. q-independent

A set of mutually q-independent links is said to be q-independent.
Independence is a pairwise property, and thus weaker than feasibility. The condition is

equivalent to aPv (u) · aPv (u) ≤ cvcw
q2α

, independent of the power assignment P. A feasible set is

necessarily β1/α-independent [21], but there is no good relationship in the other direction.
We give here an independence-strengthening result with better tradeoffs than the so-called

“signal-strengthening” result of [26]. The proof is in Appendix A.

Lemma 2.1 Any feasible set of links can be partitioned into 2qα/β + 1 or less different q-
independent sets.

3 Structural Properties

We begin with an interference measure.

Definition 3.1 Let L be a set of links and P,Q be two power assignments. Then

IPQ(L) ≡ max
S∈FQ(L)

max
lv∈L

b̂Pv (S) ,

where FQ(L) is the collection of subsets of L that are Q-feasible. IPQ(L)

When Pp is used as one (or both) of the assignments we will use p instead of Pp in the sub(super)-

scripts – thus Ipp (L) instead of I
Pp
Pp (L).

To get an intuitive handle on this measure, it instructive to look at inductive independence
number of a weighted graph, a graph parameter [1] that has recently started to receive increased
attention (e.g.[48]). We define this parameter in the context of the SINR model below (a very
similar definition for general weighted graphs can be found, for example in [28]).
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Definition 3.2 A set L is d-inductively independent for power assignment Pp if for any link d-inductively

independentlv and any Pp-feasible subset S ⊆ L, b̂pv(S) ≤ d.

The following equivalence is easy to see:

Observation 3.3 A set L of links is d-inductively independent for Pp iff Ipp (L) ≤ d.

When using different power assignments IPQ(L) gives us a handle on how power assignments
compare to each other. We will primarily use it in the setting where P = Pp, for some p ∈ (0, 1]
and where Q is (an) optimal arbitrary power assignment, thus allowing to associate oblivious
power to arbitrary power.

Here we give two structural results that characterize the utility of oblivious power assign-
ments. Both of these are best possible and answer long standing open questions. The first
characterizes the price of oblivious power, i.e., the quality of solutions using oblivious power
assignment relative to those achievable by unrestricted power assignments.

Theorem 3.4 For any set L of non-weak links, any 0 < p < 1, and any power assignment Q,
IpQ(L) = O(log log ∆).

To argue this theorem (Thm. 3.4), we need two lemmas to bound affectances of a link to and
from a set of links. Their proofs are given in Appendix B. The first handles the long links in S
with relatively high affectance. It originates in [21] (Lemma 4.4), but is generalized here in two
ways: to any power assignment Pp, and to sets with the weaker property of 2-independence.

Denote p̂ = 1
min(1−p,p) for the rest of this section. p̂

Lemma 3.5 Let p be a constant, 0 < p < 1, τ be a parameter, τ ≥ 1, and Λ = (4(2βτ)1/α)p̂. Let
lv be a link and let Q be a 2-independent set of non-weak links in an arbitrary metric space, where
each link lw ∈ Q satisfies max(aPv (w), aPw(v)) ≥ 1/τ and `w ≥ Λ · `v. Then, |Q| = O(log log ∆).

For affectances below the threshold of Lemma 3.5, we bound their contributions for each
length group separately.

Lemma 3.6 Let q be a positive real value and lv be a link. Let S be a 2-independent and feasible
set of non-weak links belonging to a single length-class of minimum length at least qp̂/α ·`v. Then,
bpv(S) ≤ (maxlw∈S b

p
v(w)) +O(1/q).

The following corollary will be useful.

Corollary 3.7 Let S be a feasible set of non-weak nearly-equilength links. Then, S is O(1)-
inductively independent.

We are now ready to prove the core result, Thm. 3.4.

Proof: [of Thm. 3.4] Choose any lv ∈ L and any feasible subset S ⊆ L. We will show that
b̂pv(S) = O(log log ∆). By definition of b̂, we can assume that all links in S are larger than
lv, since b̂ is defined in such a way that all shorter links do not contribute to its value. With
this assumption, b̂p(S) = bp(S). Use the independence-strengthening lemma (Lemma 2.1) to

partition S into at most 2α+1

β + 1 different 2-independent feasible sets. Let S′ be one such set.

Let D = log ∆(L). We say that a link lw in S is short if `v ≤ `w < Dp̂/α · `v and long if
`w ≥ Dp̂/α · `v. We partition S′ into three sets:

S1: Long links lw with bv(w) ≥ 1/D,
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S2: Long links lw with bv(w) < 1/D, and

S3: Short links.

We bound the affectance bv(Si) of each set Si separately. By Lemma 3.5, |S1| = O(log log ∆(S1))
and thus bv(S1) ≤ 2|S1| = O(log log ∆(S)) = O(log log ∆(L)). Due to the choice of D, the set
S2 can be partitioned into D or less length classes. Each such class X satisfies the hypothesis
of Lemma 3.6 with q := D (recall that S1 is a 2-independent subset of S′). This implies that
bv(X) = O(1/D) and bv(S2) = O(1). The set S3 can be partitioned into logD ≤ p̂

α log log ∆(L)
length groups. For each group X, we apply Lemma 3.6 with q = 1, giving that bv(X) = O(1),
for a total of bv(S3) = O(log log ∆). Thus, bv(S

′) = bv(S1) + bv(S2) + bv(S3) = O(log log ∆), and
bv(S) ≤ (2α

β + 1)bv(S
′) = O(log log ∆).

The second main result gives an optimal bound on the inductive independence number for
Pp. This improves the previous bound of O(log n) [35].

Theorem 3.8 Fix a power assignment Pp for any 0 < p ≤ 1. Then any set L of non-weak links
is O(1)-inductively independent under Pp, i.e., Ipp (L) = O(1).

The following lemma is the crucial element, after which basic computations arguments lead
to Thm. 3.8 which we provide in Appendix C.

Lemma 3.9 Let L be a Pp-feasible set of non-weak links and lv be a link (not necessarily in L).
Then, âv(L) = O(1).

Proof: Let L(n) be the set of all Pp-feasible sets of non-weak links of size n. Define g(n) (a
function of n) to be the “optimum upper bound” on â, that is, g(n) := supL∈L(n) suplv âv(L).
Such a function exists, since âv(L) ≤ n for any set L of size n and any lv. We claim that g(n)
is indeed O(1), which implies the lemma. For contradiction, assume g(n) = ω(1).

Since g(n) = ω(1), we can choose a large enough n0 such that both of the following hold:

1. There exists L ∈ L(n0) and lv such that:

âv(L) ≥ 1

2
g(n0) . (2)

2. Define f(n) = 1
22

1
4c3

g(n)
. Then,

f(n0) ≥ (16 · 3αβ)1/(pα) . (3)

Here c3 is a fixed constant to be specified later.

We will prove our lemma by deriving a contradiction to Eqn. 2. To prove this, we partition
the link set L into L1 and L2 where L1 := {lw : `w ≤ f(n0) · `v} and set L2 := L \ L1 .

Claim 3.10 âv(L1) < 1
4g(n0).

Proof: By definition of â, we can ignore links in L1 smaller that lv. Since the maximum length
in L1 is ≤ f(n0) · `v, the remaining links in L1 can be divided into log f(n0) length classes. For
each length class C it holds that av(C) ≤ c3, by Corollary 3.7. Thus

av(L1) ≤ c3 log f(n0)
1
= c3

(
1

4c3
g(n0)− 1

)
<

1

4
g(n0) ,

where we have used the definition of f(n) in Equality 1.

6



Claim 3.11 âv(L2) ≤ 1
4g(n0),

Proof: Consider lw ∈ L2 such that d(sv, sw) is minimized. Denote this quantity by D. Let L3

be the set of links in L2 with receivers in B(sv, D/2) (the ball of radius D/2 around sv), and
set L4 := L2 \ L3.

Let us first handle affectances to L3 using the following (proof in Appendix C):

Proposition 3.12 |L3| ≤ 2 · 4α + 1.

Now using this proposition,

av(L3 ∪ {lw}) ≤ |L3|+ 1 ≤ 2 · (4α + 1) ≤ 1

8
g(n0) .

The last inequality holds if n0 is large enough (if not we can choose an larger n0, the previous
bounds will not be affected b this) since g(n) = ω(1).

We now consider L4 \ {lw}. Consider any lu ∈ L4 \ {lw}. Using that ru is at least D/2 away
from sv (due to being in L4) and the fact that we chose D := d(sv.sw), the triangle inequality
yields d(sv, ru) ≥ 1

3d(sw, ru). Thus,

av(L4 \ {`w}) ≤
∑

`u∈L4\{`w}

cu ·
Pv

d(sv, ru)α
`αu
Pu
≤ 3α2β

∑
u

Pv
Pw

Pw
d(sw, ru)α

`αu
Pu

= 3α2β
Pv
Pw

aw(L4) .

The first equality holds because lw and lu belong to the same feasible set, thus aw(u) =

cu
Pw

d(sw,ru)α
`αu
Pu

. Next we use that cu ≤ 2β as we consider non-weak links.

Since the power function Pp is non-decreasing and `w ≥ f(n0)·`v due to the choice of L2 ⊇ L4,
Pw ≥ Pp(f(n0) · `v) = f(n0)pαPv. Thus, Pv

Pw
≤ 1

f(n0)pα ≤
1

16·3αβ using Eqn. 3. By the definition

of g(n), aw(L4) ≤ g(n0). Thus,

av(L4 \ {lw}) ≤ 3α2β
1

16 · 3αβ
g(n0) ≤ 1

8
g(n0) ,

This completes the proof of Claim 3.11.

Combining Claims 3.10 and 3.11, we get that av(L) ≤ 1
2g(n0), contradicting Eqn. 2. This

completes the proof of Lemma 3.9.

We remark that the bounds in both theorems do not hold when there are weak links. Specif-
ically, we give a Ω(log n)-lower bound on inductive independence for weak links in Appendix
E. Also, the assumption that p > 0 is also necessary for both theorems; a similar construction
shows that inductive independence is Ω(log n) for Pp, where p = 1 + o(1).

4 Capacity Approximation

Using the characterization described above, it is possible to derive a simple single-pass algorithm
for maximizing capacity. This is, in fact, the same algorithm as used in [23] to maximize fixed
power capacity within a constant factor. It is a type of a greedy algorithm that falls under the
notion of “fixed priority”, as defined by Borodin et al [6]. We prove that this simple algorithm
even delivers the optimal oblivious-power approximation using Pp power assignments.

Theorem 4.1 For any Pp for which L is non-weak, Gr chooses a set X that is Pp-feasible such

that |X| ≥ |R|
2(2IpQ(L)+1)

for any power assignment Q and any set R ⊆ FQ(L).
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Algorithm 1 Gr(Set L = {l1, l2, . . . , ln} of links in increasing order of length)

1: S0 ← ∅
2: for i = 1 to n do
3: if b̂pSi−1

(li) ≤ 1/2 then

4: Si ← Si−1 ∪ {li}
5: end if
6: end for
7: X = {lv ∈ Sn : apSn(v) ≤ 1}

Proof: The structure of the proof is inspired by that of, e.g., [32]. First we show that the size
of R is not much larger than the size of S, second we relate the size of X to S and conclude the
statement. Let S = Sn and X be the sets computed by Algorithm Gr on input L. Consider
any Q and R as specified by the statement of the theorem. Let R′ be R′ := R \ S.

By definition of IpQ(L), b̂pv(R) ≤ IpQ(L), for each li ∈ S. Thus,

b̂pS(R) ≤ IpQ(L) · |S| , (4)

Due to lines 3 and 4 Algorithm Gr chose none of the links in R′. Using this and the definition
of b̂p yields that b̂pS(j) ≥ b̂pSj−1

(j) ≥ 1/2, for each lj ∈ R′, implying that

b̂pS(R′) ≥ |R′|/2 . (5)

Combining (4) and (5),

|R′| ≤ 2 · b̂pS(R′) ≤ 2 · b̂pS(R) ≤ 2IpQ(L) · |S| .

Thus,
|R| ≤ |R′|+ |S| ≤ (2IpQ(L) + 1)|S| . (6)

Also, the definition of Gr ensures that the average affectance of links in S is small (at most
half). To see this, observe that,∑

lv∈S
aS(v) =

∑
li∈S

∑
lj∈S

aj(i)
1
=
∑
li∈S

∑
lj∈S:j<i

(aj(i) + ai(j))

2
=
∑
li∈S

∑
lj∈S:j<i

b̂j(i)
3
=
∑
li∈S

b̂Si−1(i) ≤ 1

2
|S| ,

which implies that the average affectance Ap(S) is 1
|S|aS(S) ≤ 1

2 . Explanation of numbered

(in)equalities in the above computation are as follows:

1. By rearrangement. Here j < i refers to the indices of the links as sorted by Algorithm Gr.
We also use the fact that by the definition of affectance it is

∑
li∈S ai(i) = 0.

2. By the way Algorithm Gr iterates over the links, j < i implies that `j ≤ `i. Thus

b̂j(i) = aj(i) + ai(j), by definition of b̂.

3. Since Si−1 = {lj : lj ∈ S, j < i} as specified by Algorithm Gr.

At least half the links will have at most double the average affectance, or

|X| = |{lv ∈ S|aS(v) ≤ 1}| ≥ 1

2
|S| . (7)

Combining (6) and (7) yields the claim.
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Theorem 4.2 There is a O(log log ∆)-approximation algorithm for PC-Capacity that uses Pp.

Proof: We consider OPT , a maximum capacity solution with arbitrary power, and a power
assignment Q that makes OPT feasible. We can apply Thm. 4.1 to note that Gr produces a
O(1 + IpQ(L)) solution. This observation proves the statement.

When there is a maximum power level and most links are weak, we can still attain the same
approximation ratio, as done in [23], by solving the problem separately for the weak links using
maximum power.

5 Applications

Apart from the optimal algorithm for capacity approximation in the previous section, both of
our structural results have numerous applications, improving the approximation ratio for many
fundamental and important problems in wireless algorithms. All our improvements come from
noticing that many existing approximation algorithms have bounds that are implicitly based
on IpQ(L) or Ipp (L) (or even the combination of both). Plugging in our improved bounds for
these thus gives the (poly)-logarithmic improvements for a wide variety of applications. We will
often omit proofs of our claims, as they are all of the same flavor. We indicate some of these
implications below.

Connectivity

Wireless connectivity — the problem of efficiently connecting a set of wireless nodes in an
interference aware manner — is one of the most important problems in wireless network research
[25]. Such a structure may underlie a multi-hop wireless network, or provide the underlying
backbone for synchronized operation of an adhoc network. In a wireless sensor network, the
structure can function as an information aggregation mechanism.

Recent results have shown that any set of wireless nodes can be strongly connected in O(log n·
(log n + log log ∆)) slots using mean power, using both centralized [25] and distributed [24]
algorithms. These results are directly improved by Thm. 4.2:

Theorem 5.1 Any set of links can be strongly connected in O(log n · log log ∆) slots using
power assignment Pp. This can be computed by either a poly-time centralized algorithm or a
O(poly(log n) log ∆)-time distributed algorithm.

Results for variations of connectivity such as minimum-latency aggregation scheduling and
applications of connectivity such as maximizing the aggregation rate in a sensor network benefit
from similar improvements. We refer the reader to [25] for a discussion of these problems and
their numerous applications.

Distributed Scheduling

A fundamental problem in wireless algorithms is to schedule a given set of links in a minimum
number of slots. O(log n) centralized algorithms for Pp-Scheduling, the version with given power
assignment Pp. This is obtained via repeated application of an algorithm that schedules a O(1)
factor of the links using a subroutine that solves the capacity problem (e.g. [23]). In [35],
a first distributed algorithm was given, with a O(log2 n) approximation ratio. Since this is a
distributed algorithm, the algorithm included an acknowledgement mechanism (via packets sent
from receivers to senders) to enable links to know when they have succeeded (and subsequently
stop running the algorithm). Assuming “free” acknowledgements, [22] improved the bound to
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O(log n) (using the same algorithm), but [35] remained the best result when acknowledgements
have to be implemented explicitly.

To examine this in more detail, we must introduce another complexity measure.

Definition 5.2 [35] The maximum average affectance Ap(L) of a link set L is Ap(L) :=

maxR⊆L
apR(R)

|R| .

It is easily verified that Ap(L) = O(IpQ(L) · χ(L)), where χ(L) denotes the minimum number Ap(L)

of slots in a feasible schedule of L (using arbitrary power). Similarly Ap(L) = O(Ipp (L) · χp(L))
where χp(L) denotes the minimum number of slots in a Pp-feasible schedule of L.

Corollary 5.3 For any linkset L, Ap(L) = O(log log ∆ · χ(L)) and Ap(L) = O(χp(L)).

Specifically, it was shown in [35] that the distributed scheduling algorithm completes in
O(Ap(L) log n) rounds, and furthermore that Ap(L) = O(χp(L) log n) (which we now improve for
0 < p ≤ 1). The present work implies a O(log n) approximation (with acknowledgements). Using
Corollary 5.3), the original analysis of [35] can be applied to achieve a O(log n) approximation
factor using power assignment Pp. Along with [22], which covers the case for uniform power, this
solves the distributed scheduling problem optimally for all relevant polynomial powers (mean
power, in particular). This matches the best bound known for centralized algorithms.

Corollary 5.4 There is a randomized distributed O(log n)-approximate algorithm for Pp-Scheduling,
for any 0 < p < 1.

For comparison with arbitrary power, we can similarly use Corollary 5.3 to achieve a O(log n ·
log log ∆) approximation including acknowledgements, improving on theO(log n·(log n+log log ∆))-
factor implied by [35] and [23]. Let PC-Scheduling be the power-control version of the problem.
Refer to the power-control

Corollary 5.5 There is a randomized distributed algorithm for PC-Scheduling that is O(log log ∆·
log n)-approximate with respect to arbitrary power control optima. It can use any Pp power as-
signment, 0 < p < 1.

Spectrum sharing auctions

In light of recent regulatory changes by the Federal Communications Commission (FCC) opening
up the possibility of dynamic white space networks (see, for example, [5]), the problem of
dynamic allocation of channels to bidders (these are the wireless devices) via an auction has
become highly important [49, 50].

The combinatorial auction problem in the SINR model is as follows: Given k identical chan-
nels and n users (links), with each user having a valuation for each of the 2k possible subset of
channels, find an allocation of the users to channels so that each channel is assigned a feasible
set and the social welfare is maximized.

For the SINR model, recent work [28, 27] has established a number of results depending
on different valuation functions. Since these results are based on the inductive independence
number, Thm. 3.8 improves virtually all of them by a log n factor. For instance, an algorithm
was given in [28] for general valuations that achieves a O(

√
k log n · Ipp (L)) = O(

√
k log2 n)-

approximation. We achieve an improved result by simply plugging in Thm. 3.8.

Corollary 5.6 Consider the combinatorial auction problem in the SINR setting, for any fixed
power assignment Pp with 0 < p ≤ 1. There exist algorithms that achieve O(

√
k log n)-factor for

general valuations [28], O(log n + log k) approximation for symmetric valuations and O(log n)
approximation for Rank-matroid valuations [27].

Further applications on dynamic packet scheduling are given in Appendix D.
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A Missing Proof from Sec. 2: Independence Strengthening

Lemma 2.1 Any feasible set of links can be partitioned into b2qα

β c + 1 or less different q-
independent sets.

Proof: Let S be a feasible set and P a power assignment such that S is feasible for P. We form
a graph G on linkset S, such that two links lv and lw are adjacent if bPv (w) ≥ β/qα. Let Z be
Z := b2qα/βc.

We first show that G is Z-inductive (a.k.a. Z-degenerate, or Szekeres-Wilf number Z), which
means that there is an ordering of the vertices so that each vertex has at most Z neighbors that
appear later in the ordering.

Since S is feasible, aPS (v) ≤ 1, for any lv in S. Thus, bPS (S)/2 = aPS (S) ≤ |S|, so some link lu
satisfies

bPu (w) ≤ 2 .

It is then clear that for at most Z = b2qα/βc links lw does it hold that bPu (w) ≥ β/qα. We then
form a Z-inductive ordering of S by placing lu first, followed by the inductively constructed
ordering for S \ {lu}.
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Since G is Z-inductive, it is Z + 1-colorable. Consider a color class (a stable set) C. It holds
by definition for any pair lv, lw of links in C that

aPw(v) · aPv (w) ≤ β

qα
· β
qα
≤ cvcw

q2α
,

which implies that lv and lw are q-independent. Quantifying over all pairs in C, it follows that
C is q-independent.

B Full Proof of Thm. 3.4

We prove here the following main theorem.

Theorem 3.4 For any set L of non-weak links, any 0 < p < 1, and any power assignment Q,

IpQ(L) = O(log log ∆) .

To argue the theorem, we need two lemmas to bound affectances of a link to and from a set
of links. The first handles the long links in S with relatively high affectance. It originates in
[21] (Lemma 4.4), but is generalized here in two ways: to any power assignment Pp, and to sets
with the weaker property of 2-independence.

Definition B.1 We say that links lv and lw are t-close under power assignment P if,

max(aPv (w), aPw(v)) ≥ t.

For the rest of this section, denote p̂ := 1
min(1−p,p) .

Lemma 3.5 Let p be a constant, 0 < p < 1, τ be a parameter, τ ≥ 1, and Λ = (4(2βτ)1/α)p̂.
Let lv be a link and let Q be a 2-independent set of non-weak links in an arbitrary metric space,
that are both 1

τ -close to lv under power assignment Pp and at least a Λ-factor longer than lv.
Then, |Q| = O(log log ∆).

Proof: The set Q consists of two types of links: those that affect lv by at least 1
τ under power

assignment Pp, and those that are affected by lv by that amount. We consider first the links of
the former type.

Consider a pair lw, lw′ in Q that affect lvby at least 1/τ under Pp, and suppose without loss
of generality that `w ≥ `w′ . Let l1 be the shortest link in Q. The affectance of lw on lv implies
that

cv

(
`pw`

1−p
v

dwv

)α
≥ 1

τ
,

which can be transformed to dwv ≤ `pw`1−pv (cvτ)1/α, and similarly, dw′v ≤ `pw′`
1−p
v (cvτ)1/α. Recall

that since lv is non-weak, cv ≤ 2β. By the triangular inequality, we have that

dw′w ≤ d(sw′ , rv) + d(rv, sw) + d(sw, rw)

= dw′v + dwv + `w

≤ 2`pw`
1−p
v (cvτ)1/α + `w

≤ 2`pw`
1−p
v (2βτ)1/α + `w

≤ `pw`1−p1 + `w ≤ 2`w ,

(8)
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using that Λ`v ≤ `1 ≤ `w. Similarly,

dww′ ≤ `w′ +
1

2
`pw`

1−p
1 . (9)

Applying 2-independence, on one hand, and multiplying (8) and (9), on the other, we obtain
that

4`w`w′ ≤ dw′w · dww′ ≤ 2`w′`w + `pw`
1−p
1 · `w , (10)

Cancelling a 2`w-factor, simplifying and rearranging, we have that

`pw ≥
2`w′

`1−p1

. (11)

Label the links in Q as l1, l2, . . . , l|Q| in increasing order of length, and define λi = li/l1. By
dividing both sides of (11) by `p1, we get that

λpi+1 ≥ 2λi .

Then, λ2 ≥ 21/p and by induction λt ≥ 2(1/p)t−1
. Note that ∆(Q) = l|Q|/l1 = λ|Q| ≥ 2(1/p)t , so

|Q| − 1 ≤ log1/p log2 ∆, and the claim follows.
The other case of links lw with av(w) ≥ 1/τ is symmetric, with the roles of p and 1 − p

switched, leading to a bound of 1 + log1/(1−p) lg ∆.

We shall in particular apply the lemma with τ = log ∆.
Lemma 3.5 bounds the number of longer links that affect a given link by a significant amount.

For affectances below that threshold, we bound their contributions for each length group sepa-
rately.

We first need the following geometric argument. Intuitively, we want to convert statements
involving the link lv into statements about appropriate links within the 2-independent set S.

Lemma B.2 Let lv be a link. Let S be a 2-independent set of nearly-equilength links and lu
be the link in S with duv minimum. Then, max(dwu, duw) ≤ 6dwv, for any link lw in S.

Proof: Let D = dwv and note that by definition duv ≤ D. By the triangular inequality and the
definition of lu,

dwu ≤ d(sw, rv) + d(rv, su) + d(su, ru) = dwv + duv + `u ≤ 2D + `u . (12)

Similarly,
duw ≤ duv + dwv + `w ≤ 2D + `w . (13)

Applying 2-independence, on one hand, and multiplying (12) and (13), on the other hand, we
have that

4`u`w ≤ dwu · duw < (2D + `u) · (2D + `w) .

It is then easily verified that D ≥ min(`u, `w)/2 ≥ max(`u, `w)/4, using that the links are
nearly-equilength. The claim then follows from (12) and (13).

Lemma 3.6 Let q be a positive real value and lv be a link. Let S be a 2-independent and
feasible set of non-weak nearly-equilength links of minimum length at least qp̂/α · `v. Then,
bpv(S) ≤ (maxlw∈S b

p
v(w)) + 1/O(q).
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Proof: Consider the link lu in S with duv minimum. By Lemma B.2, max(dwu, duw) ≤ 6dwv,
for any link lw in S.

Since `v ≤ `u, it holds that cv ≤ cu. Then, we have that

apw(v) = cv

(
`1−pv `pw
dwv

)α
≤ cu

(
(`u/q

p̂/α)1−p`pw
dwu/6

)α
=

6α

qp̂·(1−p)
apw(u) ≤ 6α

q
apw(u) .

Also, using that the links in S are non-weak, cw ≤ 2cu, and

apv(w) = cw

(
`pv`

1−p
w

dvw

)α
≤ 2cu

(
(`u/q

p̂/α)p`1−pw

dwu/6

)α
≤ 2cu

6α

qp̂·p

(
2 · `1−pw `pu
dwu

)α
≤ 2

2α · 6α

q
apw(u) ,

where we use in the second-to-last inequality that the links are nearly-equilength.
Thus,

bp(S, v)− bp(u, v) = apS\{u}(v) + apv(S \ {u}) ≤ (1 + 2α+1)
6α

q
apu(S) ≤ (1 + 2α+1)

6α

q
,

where the last inequality uses the feasibility of S.

C Remainder of the Proof of Thm. 3.8

We present here the proof of Thm. 3.8.

Theorem 3.8 Fix Pp for any 0 < p ≤ 1. Then any set L of non-weak links is O(1)-inductively
independent under Pp, i.e., Ipp (L) = O(1).

Proof: Consider any S ∈ Fp(L) and any lv ∈ L. We will show that b̂Pv (S) = O(1), proving the

theorem. By definition, b̂Pv (S) ≤
∑

lw≥lv av(w) +
∑

lw≥lv aw(v). For the first term we obtain
that ∑

lw≥lv

av(w) = âv(L) = O(1).

In the above transformation, the first equality is due to the definition of b̂Pv (S) and the second
is from Lemma 3.9. The second sum

∑
lw≥lv aw(v) is known to be O(1) (Lemma 7, [35]). The

proof is completed.

Proof of Proposition 3.12

Proof: By Lemma 2.1, L3 can be divided into 2 ·4α+1 sets, each of which is 4-independent. For
contradiction, if |L3| > 2 · 4α + 1, then at least one of these sets must be of size at least 2. Thus,
there would be two different links lx and ly that are members of L3 and are 4-independent.

However, since lx, ly ∈ L3, we can argue that

d(x, y)
1
≤ `x + d(rx, ry)

2
≤ `x +D

3
≤ `x + 2`x ≤ 3`x ,

Explanation of numbered inequalities:

1. By triangle inequality.

2. Observing that both rx and ry are in B(sv, D/2) (due to the definition of L3) and using
triangle inequality.

3. Since `x = d(sx, rx) ≥ D/2 as rx ∈ B(rv, D/2) (since lx ∈ L3) and d(sx, rv) ≥ D (by
definition of D)

We can similarly show that d(y, x) ≤ 3`y. Then d(x, y) · d(y, x) ≤ 9`x`y, contradicting
4-independence.
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D Additional Applications

Dynamic Packet Scheduling

Dynamic packet scheduling to achieve network stability is one of the fundamental problems in
(wireless) network queueing theory [45]. In spite of its long history, this fundamental problem
has been considered only recently in the SINR model (see [37, 34, 3]). The problem calls for
an algorithm that can keep queue sizes bounded in a wireless network under stochastic arrivals
of packets at senders. A measure called efficiency between 0 and 1 is used to capture how well
a given algorithm does compared to a hypothetical best algorithm. We refer the reader to the
aforementioned papers for exact definitions and motivations related to this problem.

The state-of-the-art results for this problem have been achieved very recently and simulta-
neously in [3] and [34]. In spite of differences in the algorithm and assumptions made, both are
based on the scheduling algorithm of [35] and achieve a similar result. Recall that the maximum

average affectance is Ap(L) = maxR⊆L
apR(R)

|R| and χp(L) is the minimum number of slots in a

Pp-feasible schedule of L. Let φ(L) = Ap(L)
χp(L) .

The result in [34, 3] can be succinctly expressed as follows.

Theorem D.1 [34, 3] There exists a distributed algorithm that achieves Ω
(

1
logn·(1+φ(L))

)
-

efficiency for any link set L.

Since the best bound on φ(L) known was O(log n) [35], both papers claimed Ω( 1
log2 n

)-efficiency.

Results in this paper show that φ(L) = O(1) (Corollary 5.3), we get the following improved
result:

Corollary D.2 There exists a distributed algorithm that achieves Ω
(

1
logn

)
-efficiency for any

power assignment Pp (0 < p ≤ 1).

Since Corollary 5.3 also shows that φ(L) = Ap(L)

χ(L)
= O(log n · log log ∆), we also get the

following improved bound for power control:

Corollary D.3 There is a distributed algorithm with Ω( 1
logn·log log ∆)-efficiency, with respect to

power control optima.

Multi-hop Scheduling

The following constitute logarithmic improvements over [35]:

Corollary D.4 There is a distributed algorithm for multi-hop scheduling that runs in O(χp(L) log n+
D log2 n) slots, where D is the maximum pathlength. Also, there exists a centralized O(log n)-
approximation of the combined problem of routing and multi-hop scheduling.

E The Case of Weak Links

Let us recall that a link lv is a weak link if Pv
lαv
< 2β. As we have mentioned before, intuitively,

a non-weak link is one that succeeds with some slack in the presence of ambient noise N only.
An alternative interpretation of this statement is that ambient noise plays a minor role. This is
true for many realistic settings.

In any case, for our first result relating oblivious to arbitrary power (Thm. 3.4), the restriction
to non-weak links is not relevant. After all, the problem is about power control, thus any
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algorithm can easily choose a power level high enough to ensure non-weakness of links, simply
by scaling up the (oblivious) power used.

For our second result (Thm. 3.8), the assumption is relevant. Non-weakness is a reasonable
and well-known assumption. Indeed, all of the applications improved by Thm. 3.8 refer to claims
in [35], which as stated apply to non-weak links only. It has been understood since then, that
the results of [35] apply to weak links as well. In our case however, we will show that both of
the assumptions for the positive result in Thm. 3.8 are necessary: that p > 0 and that the links
are non-weak.

We modify a construction that originally was given in [22] for uniform power assignments and
adopt it to our setting. The basic construction is as follows: There are links Z = {l1, . . . , ln},
with the length `i of link li being (i+1)1/α. The distance from li to lj with i < j is (c(j+1))2/α,
for a constant c to be specified. Namely, dαji = dαij = (2(max(i, j) + 1))2, for any i, j. It
is straightforward to verify that this yields a metric instance. The construction satisfies the

property that for i > j under uniform power, ai(j) = θ
(
j
i2

)
. Thus suffices to ensure that the

out-affectance from link 1 is a harmonic sum, a1(Z) = Ω(log n), and that the in-affectance of
any link is at most 1, for appropriately chosen c.

We first show that the inductiveness cannot be bounded by a constant when using power
functions that grow slower than a polynomial of positive degree. The key property needed is
that affectance from a short link is significantly less than that from a long link at the same
location, and that this holds even when link lengths are scaled up uniformly. This scale-free
property is not shared by functions with f(x) = xo(1), which allows us to apply known lower
bounds for the case of uniform power.

Theorem E.1 Let P be a power assignment with p(`) = `1/h(`), for h = ω(1). Then, there is
a set L of n non-weak links, P-feasible, satisfying maxl∈L â

P
l (L) = Ω(log n). Thus, Ipp (L) =

Ω(log n).

Proof: This result was shown to hold for uniform power in the full version of [22]. We show
how to scale up that instance so that affectances differ only by a constant factor from the case
with uniform power.

Define the inverse h−1(y) as the smallest x such that h(x) ≥ y, and observe that it is defined
on all positive reals. Given n, we scale the instance Zn by the factor Q = h−1(log n). Let
N = `n = n1/α. Then,

p(ln)

p(l1)
=

(QN)1/h(QN)

Q1/h(Q)
≤ N1/h(QN) ≤ N1/ logn ≤ 21/α .

Thus, powers and affectances differ from the uniform power case by at most a constant factor.
Hence, the lower bound of Ω(log n) applies.

We next show that weak links do not have the constant inductiveness property.

Theorem E.2 There is a set L of weak links, that is Pp-feasible, satisfying maxl∈L â
p
l (L) =

Ω(log n), for any 0 ≤ p ≤ 1. Thus, Ipp (L) = Ω(log n).

Proof: We simulate the instance Zn using weak links. The inter-link distances remain identical,
modulo an appropriate scaling factor. The variations in link lengths are simulated by lengths
very close to maximum possible length.

Specifically, link i is assigned length `i such that ci = (i + 1)β. That is, `
(1−p)α
i = i

(i+1)βN .

Set X = ( 1
βN )1/(1−p). Then dαji = dαji = X · (cmax i, j + 1)2. Also,

`αi
dαji

=
i/(i+ 1)

(c(max(i, j) + 1))2
,
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and
Pi
Pj

=

(
`i
`j

)pα
=

[i/(i+ 1)]p/(1−p)

[j/(j + 1)]p/(1−p)
≤ 2p/(1−p) .

Then,

api (j) = (j + 1)β

(
i

i+ 1
· j + 1

j

)p/(1−p)
· j

(j + 1)c(max(i, j) + 1)2
.

In particular, sett c = 2β2p/(1−p),

api (j) ≥
(j + 1)β2p/(1−p)

c(max(i, j) + 1)2
=

j + 1

2(max(i, j) + 1)2
.

Thus, we see that Z is feasible: for any j,

aZ(j) ≤
∑
k<j

1

2(j + 1)
+
∑
k>j

1

2(k + 1)

2

<
1

2
+
j + 1

2

∞∑
k=j+1

1

k(k + 1)
= 1 .

Also, the out-affectance from link 1 is large:

a1(Z) ≥
n∑
j=2

c2

j + 1
= c2(Hn − 3/2) = Ω(log n) ,

where c2 ≥ β2−(p/(1−p)+1)/c and Hn =
∑

i≥1 1/i is the harmonic number.
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