SALSA-CLRS: A Sparse and Scalable Benchmark for
Algorithmic Reasoning

Julian Minder Florian Grotschla* Joél Mathys* Roger Wattenhofer
ETH Zurich ETH Zurich ETH Zurich ETH Zurich
jminder@ethz.ch fgroetschla@ethz.ch jmathys@ethz.ch wattenhofer@ethz.ch

Abstract

We introduce an extension to the CLRS algorithmic learning benchmark, priori-
tizing scalability and the utilization of sparse representations. Many algorithms
in CLRS require global memory or information exchange, mirrored in its execu-
tion model, which constructs fully connected (not sparse) graphs based on the
underlying problem. Despite CLRS’s aim of assessing how effectively learned
algorithms can generalize to larger instances, the existing execution model be-
comes a significant constraint due to its demanding memory requirements and
runtime (hard to scale). However, many important algorithms do not demand
a fully connected graph; these algorithms, primarily distributed in nature, align
closely with the message-passing paradigm employed by Graph Neural Networks.
Hence, we propose SALSA-CLRS, an extension of the current CLRS benchmark
specifically with scalability and sparseness in mind. Our approach includes
adapted algorithms from the original CLRS benchmark and introduces new prob-
lems from distributed and randomized algorithms. Moreover, we perform a
thorough empirical evaluation of our benchmark. Code is publicly available at
https://github.com/jkminder/salsa-clrs.

1 Introduction

Neural algorithmic reasoning combines the learning power of neural networks with the principles of
algorithmic thinking. This fusion aims to promote logical reasoning and the ability to extrapolate.
This is widely considered a weak spot for neural methods. Algorithms take various shapes and deal
with sets, strings, images, or geometry. Several prominent and beautiful algorithms are concerned
with graphs and networks. Graph algorithms usually take up a significant portion of algorithmic
textbooks such as the CLRS textbook [1] and the CLRS benchmark [2], which is based on that
textbook. Interestingly, the CLRS benchmark translates every algorithmic problem into a common
graph-based format. This approach yields the significant advantage of utilizing a single architecture
across various scenarios. However, the emphasis on algorithmic diversity and unification in CLRS
introduces significant constraints that hinder scalability.

The CLRS-30 dataset contains 30 algorithms operating within a centralized execution model that
facilitates global information exchange, which is essential for numerous algorithms. This global
information exchange is enabled by enforcing all problems to operate on a complete graph — each
node can communicate with every other node, resulting in quadratic communication costs. To
maintain information on the original topology, the CLRS framework augments these complete graphs
with flags on each edge to indicate whether the edge exists in the input. This strategy has several
limitations. While CLRS highlights its proficiency in assessing out-of-distribution (OOD) capabilities,
the reliance on a fully connected graph execution model imposes significant memory and computation
constraints. This challenge is particularly pronounced as graph algorithms are often designed with
sparse graphs in mind [1].

*Equal contribution.

J. Minder et al., SALSA-CLRS: A Sparse and Scalable Benchmark for Algorithmic Reasoning (Extended
Abstract). Presented at the Second Learning on Graphs Conference (LoG 2023), Virtual Event, November 27-30,
2023.

https://github.com/jkminder/salsa-clrs

SALSA-CLRS

CLRS

SALSA-CLRS

train test generalize

Figure 1: A visualization of the difference between the graph representation in SALSA-CLRS
and CLRS. When dealing with large complete graphs, the memory demands become exceedingly
impractical, leading to occurrences of Out-Of-Memory (OOM) errors. SALSA-CLRS enables the
evaluation of scalable architectures on graphs up to 100 times the size of the training graphs.

Furthermore, when learning algorithms that guarantee correctness for any input size, evaluating
models across a diverse range of large-scale inputs is crucial, as many studies have highlighted [3-8].
Apart from considering large-scale test graphs, relying solely on a single graph generation mechanism
can yield false conclusions about OOD performances [7]. The CLRS library in principle allows more
flexibility and a custom generation. However, the default CLRS-30 dataset used for benchmarking
provides OOD test graphs, limited to only four times the size of the training graphs, and both training
and test graphs stem from the same graph generation mechanism. While under the CLRS execution
model, moderately larger graphs (10x) might still be feasible on modern hardware, much larger
graphs — in the order of 100-fold scaling — become impossible to run due to their demanding memory
requirements (Figure 1).

To address these challenges, we propose a more concise strategy. We focus solely on graph algorithms,
which can follow a distributed execution model, thus reducing reliance on global memory and
information flow. This allows a transition to a sparse execution model. Furthermore, building upon
the findings presented in [6], which underscore the superior learning and OOD performance of
parallelized algorithms compared to their sequential counterparts, we also emphasize the importance
of encompassing problems from the realm of distributed and randomized algorithms. Towards
this end, we introduce SALSA-CLRS, a Sparse Algorithmic Learning benchmark for Scalable
Architectures. Extending CLRS, our benchmark i) leverages a sparse execution mode to enable OOD
test sets that cover graphs 100 times the size of training sets, ii) adds new graph generators for sparse
and diverse graphs, thus enabling a more thorough OOD evaluation and iii) incorporates distributed
and randomized algorithms that align more closely with the execution models used by Graph Neural
Networks (GNN&s).

2 SALSA-CLRS Benchmark

The SALSA-CLRS Benchmark follows the structure of CLRS [2]. Each data point comprises a graph
with n nodes and an algorithm trajectory. Each trajectory comprises a set of input, intermediate,
and output features. Specifically, the input features capture the input state of the algorithm, along
with positional identifiers for nodes to resolve tie-breaking scenarios. The intermediate features,
referred to as hints, correspond to interim values of algorithm variables. These hints provide insight
into the algorithm’s inner workings and act as a means to encourage models to adhere closely to the
algorithm’s execution. It is worth noting that execution without hints is possible and may even be
beneficial, as demonstrated in Section 3. Lastly, the output features directly relate to the solution
of the given problem. Moreover, each data point contains a trajectory length, defining the number
of steps required to solve the algorithm. Every feature is associated with a location — either a node,
an edge, or the entire graph — and possesses a corresponding type. SALSA-CLRS provides both
pre-defined train-validation-test splits, facilitating model comparison and the capability to generate
new data tailored to individual requirements. Beyond what CLRS-30 offers, SALSA-CLRS comes

SALSA-CLRS

with diverse graph types to explore OOD capabilities further. For comprehensive information, see
Appendix A.3.2. The benchmark is implemented in PyG [9] and built with extendability in mind.

2.1 Algorithms

SALSA-CLRS encompasses a set of six algorithms, adapting four from the original CLRS paper and
introducing two novel additions from the field of distributed and randomized algorithms. The four
CLRS algorithms were selected to ensure the representation of input, hint, and output features on the
sparse graph: Breadth-first search (BFS), Depth-first search (DFS), Dijkstra, and Maximum Spanning
Tree (MST). Please refer to Appendix A.2 for more details. While the algorithms introduced by
CLRS-30 are inspired by sequential algorithms in the CLRS textbook, although in some cases heavily
parallelized, the message-passing paradigm — essentially the driving mechanism behind GNNs —
aligns closely with distributed computing principles. To encompass this perspective, we extend
our benchmark by introducing two new distributed algorithms, drawn from Mastering Distributed
Algorithms [10]. Numerous distributed algorithms incorporate randomness as a crucial component
of their computation. In light of this, we enhance the CLRS framework by including the concept of
randomness. In cases where an algorithm necessitates randomness, we precompute random values
and treat them as regular input to the algorithm. We introduce two new algorithms: Distributed
Maximal Independent Set (MIS) and Distributed Eccentricity. A description of both can be found in
Appendix A.2.

2.2 Graph Types

Building upon investigations [7] of CLRS and different graph types, we enrich the diversity of graph
types compared to CLRS-30. While CLRS-30 works exclusively on Erdos-Renyi (ER) random graphs,
the study by Mahdavi et al. [7] underscores the limitation of relying solely on ER graphs to assess the
OQOD capabilities of architectures. Recognizing this, we propose that broadening the spectrum of
graph types is pivotal for a more comprehensive OOD evaluation. SALSA-CLRS comes with three
distinct graph generation mechanisms: Erdos-Renyi graphs (ER) [11], Watts Strogatz graphs (WS)
[12] — and Delaunay Graphs. In contrast to CLRS-30, we reduce the ER edge probability to just
above the minimum to maintain graph connectivity. WS graphs belong to the category of small-world
graphs and exhibit a low clustering coefficient [13]. While still sparse, WS graphs show a very
different structure. Delaunay graphs are planar and hence inherently sparse. We refer to Appendix
A.3.1 for associated graph parameters.

3 Empirical Evaluation

In this section, we undertake an empirical evaluation by comparing three baseline models. Our analy-
sis involves a comparison of training scenarios with and without hints, followed by comprehensive
testing across all SALSA-CLRS test sets. This evaluation sheds light on deficiencies in the models
on OOD test sets and therefore affirms the importance of the SALSA-CLRS benchmark.

Architectures. We use the same Encode-Process-Decode [14] from CLRS, but propose a slight
simplification. We omit the re-encoding of decoded hints to update the node hidden states. This
results in a simplification of the computational graph, making the architectures more scalable. We
compare three baseline processors, a GRU [15] adapted GIN? module [17], RecGNN [3], a recurrent
message-passing GNN for algorithmic tasks and PGN [18], which has shown promising performance
on the original CLRS benchmark. All architectures incorporate skip connections, implemented
by forwarding the encoded input and the two most recent hidden states to the processor. This
mechanism aids in mitigating vanishing gradient [19] issues. For a comprehensive overview of the
Encode-Process-Decode architecture, our proposed changes, and the baselines, please see Appendix
A4l

Experiments. Each baseline model is trained for each algorithm with and without the inclusion of
hints. Every run is confined to 100 epochs with early stopping. The batch size is eight graphs. All
reported values are means over five runs. For more details on the metrics and the experiments, see
Appendix A 4.

’Dijkstra and MST require edge weights, so we use GINE [16].

SALSA-CLRS

Table 1: Scores for both models on all algorithms, reported as percentages. The used metric for
algorithms is denoted under the algorithm name. Models are trained only on ER graphs of size up to
n = 16 without hints (first column) and evaluated on larger sizes and different distributions (other
columns).

Graph Type ER WS Delaunay

n 16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

BFS GIN(E) 100.0 99.6 99.3 98.0 98.0 99.9 92.9 86.7 70.4 75.3 100.0 94.3 84.6 52.7 45.9

(Node Acc.) PGN 100.0 99.8 99.5 99.0 98.9 100.0 95.5 88.7 75.9 80.6 100.0 98.2 90.4 53.6 40.3
RecGNN 100.0 99.8 99.5 99.3 99.2 100.0 97.8 94.2 82.2 82.1 100.0 98.5 92.0 67.1 55.6

DFS GIN(E) 49.3 30.6 19.7 18.1 16.5 29.7 159 16.8 22.3 20.1 46.7 28.0 25.1 23.4 23.2

(Node Acc.) PGN 74.2 41.2 299 27.8 25.8 58.8 17.9 17.7 23.6 21.3 72.7 41.7 38.2 35.8 35.4

RecGNN 33.4 28.0 18.7 18.2 16.8 22.7 159 16.8 21.5 19.5 32.3 26.8 25.2 24.1 24.0

Dijkstra GIN(E) 98.0 89.8 84.3 75.8 72.8 95.4 85.0 79.9 61.4 52.6 97.4 81.6 70.4 46.5 39.9
(Node Acc.) PGN 99.6 98.6 97.2 94.1 92.2 98.3 97.1 954 81.8 725 99.5 97.6 92.4 62.7 51.0
RecGNN 98.5 86.8 76.0 63.7 60.6 95.8 89.2 83.9 71.4 67.3 98.0 90.4 85.0 60.2 50.0

Eccentricity GIN(E) 57.3 7r.1 723 51.3 36.7 78.0 276 3.6 0.0 0.0 848 0.0 0.0 0.0 0.0
(Graph Acc.) PGN 100.0 100.0 100.0 100.0 64.6 100.0 93.8 100.0 25.6 5.2 100.0100.0 76.9 0.0 0.0
RecGNN 75.8 80.5 75.0 72.7 63.0 86.7 60.8 57.4 27.6 15.2 89.9 252 83 0.0 0.0
MIS GIN(E) 61.2 48.2 51.7 29.5 41.1 57.5 63.5 61.7 52.7 53.2 62.7 60.5 58.1 56.5 55.2
(Node F1) PGN 99.6 99.1 98.9 96.4 97.3 99.4 99.0 97.7 90.8 86.1 99.8 99.6 99.6 99.1 98.6
RecGNN 87.7 76.5 78.5 61.8 70.6 84.0 85.6 83.9 77.5 77.9 89.3 86.5 85.5 84.3 83.4
MST GIN(E) 92.6 79.1 77.6 745 72.9 89.6 753 T4.4 73.0 72.8 92.8 77.4 758 74.8 T4.7
(Node Acc.) PGN 97.3 89.1 84.6 75.7 71.9 96.8 82.5 77.6 67.4 65.1 97.4 85.2 78.5 68.7 66.8
RecGNN 94.2 70.7 66.6 58.9 56.0 92.8 67.4 62.8 53.5 52.5 94.7 69.9 62.6 52.5 50.6

3.1 Evaluation

In Table 1, we showcase the performance of two baseline models on all SALSA-CLRS algorithms.
Note, as we increase the graph size, all models show a clear decline in performance. Furthermore,
we observe significant performance disparities among different graph types. Remarkably, different
algorithms show varying degrees of sensitivity to different graph types. For example, BFS shows
stability when applied to larger ER graphs, but its performance drops on large Delaunay graphs.
DFS shows the opposite behaviour. Similarly, the architectures show sensitivity to algorithms. For
example, RecGNN shows the best extrapolation performance on BFS, while PGN is clearly the
best on MIS. In general, the PGN model is often the best performer, in particular for DFS and
Eccentricity, and for MIS we even see a very strong performance up to the largest graph sizes. It
is worth mentioning that, consistent with previous findings [7], the incorporation of hints does not
lead to performance improvements across the board (see Tables 2 and 3). More details can be found
in Appendix A.4. It is important to emphasize the pivotal role of metrics selection. An example:
Despite seemingly excellent Node Accuracy scores of both baselines on BFS, the graph accuracy
shows a completely different picture (see Table 4). For larger graph instances, almost all graphs are
predicted incorrectly, despite achieving a near-perfect Node Accuracy. These findings underscore
SALSA-CLRS’s effectiveness in comprehensively evaluating architectural vulnerabilities in terms of
both scalability and graph diversity.

4 Conclusion

As traditional algorithms are invariant to input size, scalability and extrapolation are important when
evaluating learned algorithmic reasoning models. Thus, we introduce SALSA-CLRS, an extension to
CLRS designed for scalable architectures and sparse graph representations. Addressing the limitations
of the original CLRS benchmark, SALSA-CLRS focuses on graph problems that align with distributed
execution models. This orientation fosters scalability and improved assessment of generalization ca-
pabilities, particularly for larger graph instances. In addition to four CLRS problems, SALSA-CLRS
incorporates two additional algorithms rooted in distributed and randomized paradigms. By including
diverse out-of-distribution (OOD) test sets, which involve graphs up to 100 times the scale of the
training set and encompass various graph types, our empirical evaluation underscores the critical role
of such extrapolation for a comprehensive assessment of algorithmic reasoning. These OOD tests un-
veil several limitations that might remain concealed when examined solely within the CLRS dataset’s
confines. SALSA-CLRS serves as a tool for advancing Neural Algorithmic Reasoning, facilitating the
evaluation of scalable architectures on sparse graphs.

SALSA-CLRS

References

[1] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022. 1

[2] Petar Velickovi¢, Adria Puigdomeénech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning bench-
mark. In International Conference on Machine Learning, pages 22084-22102. PMLR, 2022. 1,
2,8

[3] Florian Grotschla, Joél Mathys, and Roger Wattenhofer. Learning graph algorithms with
recurrent graph neural networks. 2022. URL https://arxiv.org/abs/2212.04934. 2, 3,
8,11

[4] Hao Tang, Zhiao Huang, Jiayuan Gu, Bao-Liang Lu, and Hao Su. Towards scale-invariant
graph-related problem solving by iterative homogeneous gnns. Advances in Neural Information
Processing Systems, 33:15811-15822, 2020. 8

[5] Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Gold-
blum, and Tom Goldstein. End-to-end algorithm synthesis with recurrent networks: Logical
extrapolation without overthinking. arXiv preprint arXiv:2202.05826, 2022.

[6] Valerie Engelmayer, Dobrik Georgiev, and Petar Velickovi¢. Parallel algorithms align with
neural execution. arXiv preprint arXiv:2307.04049, 2023. 2, 8

[7] Sadegh Mahdavi, Kevin Swersky, Thomas Kipf, Milad Hashemi, Christos Thrampoulidis, and
Renjie Liao. Towards better out-of-distribution generalization of neural algorithmic reasoning
tasks. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=xkrtvH1p3P. 2, 3,4, 8

[8] Beatrice Bevilacqua, Kyriacos Nikiforou, Borja Ibarz, Ioana Bica, Michela Paganini, Charles
Blundell, Jovana Mitrovic, and Petar Velickovi¢. Neural algorithmic reasoning with causal
regularisation. arXiv preprint arXiv:2302.10258, 2023. 2, 8

[9] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geomet-
ric, May 2019. URL https://github.com/pyg-team/pytorch_geometric. 3

[10] Roger Wattenhofer. Mastering distributed algorithms, 2020. 3, 8, 9

[11] Paul Erd6s and Alfréd Rényi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.
3,9

[12] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440-442, 1998. 3, 10

[13] Marc Barthélémy and Luis A Nunes Amaral. Small-world networks: Evidence for a crossover
picture. Physical Review Letters, 82(15):3180, 1999. 3, 10

[14] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018. 3, 11

[15] Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014. 3, 11

[16] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019. 3

[17] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. 3

[18] Petar Velickovié, Lars Buesing, Matthew Overlan, Razvan Pascanu, Oriol Vinyals, and Charles
Blundell. Pointer graph networks. Advances in Neural Information Processing Systems, 33:
2232-2244,2020. 3, 11

[19] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and
problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 6(02):107-116, 1998. 3

https://arxiv.org/abs/2212.04934
https://openreview.net/forum?id=xkrtvHlp3P
https://openreview.net/forum?id=xkrtvHlp3P
https://github.com/pyg-team/pytorch_geometric

SALSA-CLRS

[20] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014. 8

[21] Felix A Gers and E Schmidhuber. Lstm recurrent networks learn simple context-free and
context-sensitive languages. IEEE transactions on neural networks, 12(6):1333—-1340, 2001. 8

[22] Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. Advances in Neural Information Processing Systems, 34:6695-6706, 2021.
8

[23] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. 8

[24] Daniel Selsam, Matthew Lamm, Benedikt Biinz, Percy Liang, Leonardo de Moura, and David L
Dill. Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.
8

[25] Petar Velickovi¢ and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7), 2021.

[26] Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. Advances in
neural information processing systems, 31, 2018.

[27] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learn-
ing the travelling salesperson problem requires rethinking generalization. arXiv preprint
arXiv:2006.07054, 2020. 8

[28] Andrew J Dudzik and Petar Veli¢kovi¢. Graph neural networks are dynamic programmers.
Advances in Neural Information Processing Systems, 35:20635-20647, 2022. 8

[29] Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019. 8

[30] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks. arXiv
preprint arXiv:2009.11848, 2020. 8

[31] Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Rébert
Csordés, Andrew Joseph Dudzik, Matko BoSnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea
Deac, Beatrice Bevilacqua, Yaroslav Ganin, Charles Blundell, and Petar Velickovié. A generalist
neural algorithmic learner. In Bastian Rieck and Razvan Pascanu, editors, Proceedings of
the First Learning on Graphs Conference, volume 198 of Proceedings of Machine Learning
Research, pages 2:1-2:23. PMLR, 09-12 Dec 2022. URL https://proceedings.mlr.
press/v198/ibarz22a.html. §

[32] Gleb Rodionov and Liudmila Prokhorenkova. Neural algorithmic reasoning without intermedi-
ate supervision. arXiv preprint arXiv:2306.13411, 2023. 8

[33] Cameron Diao and Ricky Loynd. Relational attention: Generaliz-
ing transformers for graph-structured tasks. In ICLR 2023, May 2023.
URL https://www.microsoft.com/en-us/research/publication/

relational-attention-generalizing-transformers-for-graph-structured-tasks/.

[34] Dobrik Georgiev, Danilo Numeroso, Davide Bacciu, and Pietro Lio. Neural algorithmic
reasoning for combinatorial optimisation. arXiv preprint arXiv:2306.06064, 2023. 8

[35] Paul Erd6s, Alfréd Rényi, et al. On the evolution of random graphs. Publ. math. inst. hung.
acad. sci, 5(1):17-60, 1960. 9

[36] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 11

[37] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax. 12

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

https://proceedings.mlr.press/v198/ibarz22a.html
https://proceedings.mlr.press/v198/ibarz22a.html
https://www.microsoft.com/en-us/research/publication/relational-attention-generalizing-transformers-for-graph-structured-tasks/
https://www.microsoft.com/en-us/research/publication/relational-attention-generalizing-transformers-for-graph-structured-tasks/
http://github.com/google/jax

SALSA-CLRS

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf. 12

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

SALSA-CLRS

A Appendix
A.1 Related Work

Algorithmic Learning. In recent years, the field of Algorithmic Learning has witnessed significant
advancements, driven by a convergence of ideas from neural network architecture and algorithmic
reasoning. To effectively tackle algorithmic tasks, models must incorporate a notion of variable
computation length that enables extrapolation to handle larger input states. Consequently, proposals
have emerged such as the differentiable Neural Turing machine [20] or RNNs with the capacity
to generalize across varying input lengths [21]. Schwarzschild et al. [22] successfully showed the
extrapolation capabilities of a recurrent architecture based on CNNs [23] with residual connections
on a series of algorithmic tasks, including mazes, prefix sums, and chess problems.

Recently, graph-based methods have gained traction, because of their capability to model different
sizes of inputs. In particular, the use of Graph Neural Networks (GNNs) has become a focus for
algorithmic learning. Notable instances of this trend include applications to problems like SAT, TSP,
and shortest path computations through algorithmic alignment [24—27]. Theoretical investigations
have established links between GNNs and dynamic programming algorithms, along with the parallel
computing paradigm [6, 28, 29]. Recent efforts have turned to improving the extrapolation capabilities
on extending extrapolation capabilities to handle larger graph instances in the context of algorithmic
reasoning problems [4, 30]. Grotschla et al. [3] present architectures capable of scaling up to sizes
1000 times that of the training data.

CLRS Benchmark. Introducing the CLRS benchmark, Velickovi¢ et al. [2] offer a comprehensive
benchmark featuring CLRS-30 a dataset with over 30 algorithms designed for algorithmic reasoning
tasks. This benchmark represents algorithms as graphs with task-specific inputs, outputs, and
intermediate states called hints. The CLRS has triggered a wide range of follow-up work. Ibarz
et al. [31] propose a generalist algorithmic learner, a single model capable of simultaneously
tackling all CLRS-30 algorithms. CLRS-30 evaluations include simple Out-Of-Distribution (OOD)
tests with graphs four times the size of the training graphs. Mahdavi et al. [7] provide an in-
depth exploration of OOD generalization within the CLRS framework, emphasizing the need for
diversified test sets consisting of more varied graphs. Several studies suggest that the inclusion
of hints, as suggested by the CLRS, is not necessarily beneficial [7, 8, 32]. Bevilacqua et al. [8]
introduce Causal Regularization, a data augmentation technique applied to hints, which enhances
OOD generalization capabilities. Their work indicates the effectiveness of hints when employed
correctly. Other architectural approaches to tackling the CLRS benchmark include [32-34]. Notably,
it has been shown that parallel counterparts of the sequential algorithms implemented in CLRS
prove to be more efficient to learn and execute of neural architectures, subsequently also leading to
improved OOD predictions [6].

A.2 Algorithms

Breadth-first search (BFS). The input is a pointer to the starting node. The output is the directed
BFS tree pointing from node to parent. Refer to Figure 6 for an example.

Depth-first search (DFS). The search starts at node 0, and the output is again the directed DFS
tree, pointing from leaf to root. Refer to Figure 7 for an example.

Dijkstra. The Dijkstra shortest path algorithm on a weighted graph. As input, the source node is
given. The output is the directed tree that corresponds to the shortest path from all nodes to the source
node, again pointing from the leaf to the source node. Refer to Figure 8 for an example.

Maximum Spanning Tree (MST). Prim’s algorithm for finding the Maximum Spanning Tree
(MST) of a weighted graph. As input, we are given a source node, and the output is the directed MST
pointing from leaf to root. Refer to Figure 9 for an example.

Distributed Maximal Independent Set (MIS). A Maximal Independent Set within a graph refers
to a maximal set of nodes where no two nodes are adjacent. Our implementation is derived from
the Fast MIS algorithm [10]. The algorithm relies on randomness, enabling a O(logn) distributed
runtime. The randomness is supplied as an input. The output is a mask over the nodes representing
the MIS. Refer to Figure 10 for a visualized example and to Algorithm 1 for an algorithm outline.

SALSA-CLRS

Distributed Eccentricity. The eccentricity algorithm accepts a graph and a source node as input
and produces the source node’s eccentricity (also known as radius) as a scalar output. The eccentricity
is the maximum distance from the given node to any other node in the graph. It can be solved by a
combination of flooding a message through the graph and echoing the maximum value back to the
source node. See Algorithm 2 for an outline and Figure 11 for a visualized example.

Most of the chosen algorithms for SALSA-CLRS do not explicitly rely on the learned models to
perform value generalization by expressing the solution as topological encodings rather than scalar
values. However, computing the diameter in the Distributed Eccentricity task requires the models to
perform value generalization to larger scalar values for larger graphs. This might be one reason for
worse empirical performance compared to other tasks of the SALSA-CLRS benchmark. However, we
deem it important for the field of Neural Algorithmic Reasoning overall to consider the challenge of
value generalization, which is one of the motivations for expressing the Eccentricity task in this form.

Algorithm 1 Fast MIS 2 [10]

The algorithm operates in synchronous rounds, grouped into phases.

A single phase is as follows:

1) Each node v takes its precomputed random value (v) € [0, 1] and sends it to its neighbors.

2) If r(v) < r(w) for all neighbors w of v, node v enters the MIS and informs its neighbors.

3) If v or a neighbor of v entered the MIS, v terminates (v and all edges adjacent to v are removed
from the graph), otherwise v enters the next phase.

Algorithm 2 Eccentricity, adapted from [10]

The algorithm is a combination of flooding and echoing. Each node can be either dead or alive.
Flooding:

1) The source node sends the initial flooding message 1 to all neighbors and marks itself dead.
2) Each other node v, upon receiving the message the first time, increases the message by 1 and
forwards it to all alive neighbors. Node v also remembers its parent, the node it got the flooding
message from. Once the messages are sent, it marks itself dead.

Echoing:

3) If a node receives a flooding message and all of its neighbors are dead, it echos the message
back to all of its dead neighbors and removes itself from the graph.

4) If a dead node v receives an echo message, it waits until it got an echo from all of its neighbors
besides its parent. Then v echos the maximum of the received echos back to its parent. Finally, it
removes itself from the graph.

5) Once the source node has received an echo from all its children, the maximum received value is
its eccentricity.

A.3 Dataset
A.3.1 Graph Types

Erdos-Renyi Graphs (ER) [11]. An ER graph is generated by choosing each of the "22’ % edges

with probability p. In CLRS-30 this p is sampled from a range of numbers between 0.01 and 0.813.
In ER-graphs the degree of a node grows linearly with the number of nodes in the graph for fixed p.
This means that when choosing a static p, the larger the graph is, the higher its connectivity. Different
from CLRS-30, we ensure connectedness on all graphs. As we are interested in sparse graphs, we
choose p to be a function of the number of nodes n. Hence, we require p to be as low as possible
while the graph still remains connected with a high probability. Erdés and Renyi showed that for
c< % for ER graphs G with number of edges F(G) ~ clnT” the graph G is almost surely connected

[35]. As the average number of edges in an ER graph is E(G) = (g)p we choose p to be

Inn
p=c——
n

where c is a scalar that is randomly sampled out of the interval (1,2) to increase the diversity in
dataset. See Figure 2 for examples.

3They sample for the range [0.1,0.2, ..., 0.9] and square it.

SALSA-CLRS

Figure 2: Examples of ER graphs withn = 16 and p = clnT” ~ 0.173c.

k=2, p=0.1 k=4, p=0.1 k=4, p=0.2

.

Figure 3: Examples of WS graphs with n = 16.

Watt Strogatz Graphs (WS) [12]. A WS graph, a Small World graph [13], is created by taking a
ring lattice — a ring where each node is connected to k neighbors (% neighbors on each side) — and
rewire each edge with probability p to a random other node. WS graphs have the characteristic that
they are globally connected but show local clustering. We also enforce connectivity on WS graphs.
As p — 0o WS graphs approach ER graphs with p ~ (3) “Yonk, so we keep p relatively small. We
randomly sample k from [4, 6, 8] and p from the interval of (0.05,0.2). See Figure 3 for examples.

Delaunay Graphs. Delaunay graphs are created by sampling n points in the plane and computing
the Delaunay triangulation. As the graph of a Delaunay triangulation is planar, its average degree is
below 6. See Figure 4 for examples.

A.3.2 Dataset Statistics

SALSA-CLRS provides a training set, a validation set, and 15 different test sets. The training and
validation sets follow closely the datasets CLRS-30, ER graphs with n sampled randomly from
[4,7,11,13, 16]. We slightly modify this and choose p as described in Section A.3.1 and increase the
size of the training and validation sets to 10000 and 1000, respectively.

Figure 4: Examples of Delaunay graphs with n = 16.

SALSA-CLRS

The SALSA-CLRS dataset test extrapolation for graphs of size 5x, 10x,50x and 100x the size of
the training graphs, resulting in graphs of size 16, 80, 160, 800, and 1600. This results in 15 different
test sets across the three different graph types to measure different facets of OOD performance.

A.4 Evaluation
A.4.1 Architectures

We use the same Encode-Process-Decode framework [14] that CLRS builds on. An encoder —
specific to every input feature — produces a latent representation of the input features. These latent
representations are aggregated (max) to yield a 128-dimensional node hidden state. Similarly, a
per-feature decoder computes the features from the node’s hidden state. Notably, when dealing with
hints, our model diverges from the CLRS approach. While CLRS decodes the predicted hints in each
algorithmic step, calculates a loss, and then re-encodes these hints, our approach streamlines this
process. We only decode the hint predictions to calculate the loss and do not re-encode the decoded
hints afterward. In the process step, a message-passing layer updates the node embeddings. As part
of the process step, node hidden states undergo an update via a message-passing layer. In scenarios
necessitating randomness, the precomputed randomness is concatenated to the processor input. Hints
and outputs are decoded from the last two hidden states as well as the input state.

The following three processor modules are evaluated, all employing maximum aggregation and layer
normalization [36]. We define k! to be the hidden state of node v at timestep ¢ and F to be the
aggregation function.

GIN(E). Standard GIN module with a two-layer Multi-Layer Perceptron (MLP) with ReLu activa-
tions and batch norm. We also add a GRU (Gated Recurrent Unit) Cell [15] after the message passing
to improve training stability. The update without edge weights is defined as:

B GRU [@l ((1 LR+ F h@) ,hf]}
weN (v)

RecGNN. The architecture proposed by [3], originally named RecGRU-E. Before the message
passing step, an MLP is applied on the edges — the concated node embedding. After each message
passing update all node embeddings are passed through a GRU cell. For algorithms that requsire
edge weights, we concat the edge weight to each message before we pass it through the edge MLP ©.
The update without edge weights is defined as:

)]

PGN. The PGN architecture is introduced in [18]. It defines the following components: The source
node linear layer ©,, the target node linear layer ©,, the two layer message MLP ©,,,,,, the skip
connection linear layer © 4y, the output linear layer ©,,; and a ReLu activation o. The update
without edge weights is defined as

h;+1:GRu[(F oo
weN (v)

B (@‘gmp(hm Ot [F Oy (0.(H) + @tmz,,))])

wEN (v)

A.4.2 Experiments

We use early stopping with patience 30. The patience is kept this high because we observed that some
training runs dip quite strongly before finding a new optimum. Further, we use a plateau scheduler
with patience 10 and factor 0.1. The seeds selected are 42 — 46. To combat exploding gradients we
apply gradient clipping on the 2-norm of the weights. Adding 2-norm regularization on the hidden
node states also helps with training stability. We employ different learning rates for the baseline
models, determined by a hyperparameter sweep on the Dijkstra algorithm. For GIN(E) and PGN, we
use a learning rate of 0.0004239, and for RecGNN we use 0.0008.

A.4.3 Metrics

For all problems, we report Graph Accuracy, referring to whether a graph was entirely solved correctly
or not. On the problems BFS, DFS, MIS, Dijkstra, and MST we report Node Accuracy, and for MIS

11

SALSA-CLRS

we also report Node F1. As for Eccentricity, we predict a single scalar for the whole graph, the notion
of Node Accuracy and Node F1 is not applicable. To compute the Graph Accuracy for Eccentricity,
we round the predicted scalar and check whether it was correctly predicted. Additionally, we report
the Mean-Squared-Error (MSE) of the unrounded scalar prediction. For all problems predicting a
tree with Node Pointers* (BFS, DFS, Dijkstra, MST) each node either predicts its parent correctly
or not. An F1 score is not of interest here. It is important to highlight the reporting of all of these
metrics and their differences. The Node metrics can be misleading, as is apparent when comparing,
e.g., the Node Accuracy performance to the Graph Accuracy. If we predict a node mask, like in MIS,
the Node F1 score is the most indicative, as the Node Accuracy does not consider class imbalance.

A.4.4 Scalability

In Figure 5, we assess the scalability of SALSA-CLRS and CLRS by examining their GPU VRAM
utilization when used with the BFS algorithm. The figure shows the clear asymptotic advantage
brought by the sparsification in SALSA-CLRS. SALSA-CLRS manages inference of graphs as large
as 32768 nodes with less than 8GB of VRAM.

To obtain our results, we generated 10 graphs for each graph size using the default settings for
each benchmark. For more details regarding these graph types, please refer to Section 2.2. For
SALSA-CLRS, we employed the GIN architecture, while for CLRS, we compared the performance
of both the "trippled-mpnn" and "pgn" models. We processed all 10 graphs individually with a batch
size of 1. These measurements were conducted on an Nvidia A100 GPU boasting 80GB of VRAM.

Notably, CLRS is implemented in JAX [37], whereas SALSA-CLRS is based on PyTorch
[38], each of which reports memory usage differently. For CLRS, we report memory usage
as jax.local_devices() [gpu_id] .memory_stats() [’peak_bytes_in_use’] , while for SALSA-

CLRS, we use torch.cuda.max_memory_allocated() . These reported values might be notably

lower than what is indicated by the nvidia-smi tool, as the latter includes memory that is reserved but
not actively allocated.

It’s also worth noting that CLRS uses in-memory datasets, meaning that the entire dataset is stored in
RAM. While this approach offers runtime advantages, it can become a bottleneck when dealing with
large graphs and datasets due to high RAM usage. For example, a dataset with 1000 graphs of size
1600 does not fit on a machine with 64GB of RAM. In contrast, SALSA-CLRS offloads the dataset
to disk and dynamically loads the datapoints into RAM. As long as a single datapoint fits into RAM,
the dataset size is not a constraint.

A.5 Implementation of Node Pointers

A Node Pointer is used to encode the reference from one node to another and is often used to
represent the solutions of the algorithms, i.e., the BFS tree. However, not all fields that are of
type (*, Node, Pointer) behave exactly the same way. In the algorithms we have selected (BFS,
DFS, etc.), these fields share one property: The node pointer always points to a neighboring node.
Therefore, in order to derive these node pointers, the computational cost is proportional to the amount
of edges in the graph. However, for other algorithms that were part of CLRS-30 but are not yet
incorporated into SALSA-CLRS (Toposort, MST Kruskal, etc.), these node pointers are no longer
restricted in the same way. They could and must, in certain cases, point to arbitrary nodes in the graph
(and not just immediate neighbors). For this, all potential edges that could exist in the graph must be
considered — which is again in order of O(n?) and clashes with the idea of sparse computation on the
original topology.

In the example of topological sort, the topo feature, a node pointer, represents the output of the
algorithm. Each node points to the next element in the topological sort, and the last element points
to itself. This definition does not guarantee that the pointers are also part of the sparse graph. On
the other hand, in DFS, as it is implemented in CLRS, we compute the DFS tree starting at node 0.
The mentioned output feature pi , also of type node pointer, represents this tree by node pointers,

*A Node Pointer is a data type that serves as a reference to a single neighbor from among the various
neighbors connected to a node. To illustrate this concept, consider the case of a BFS tree (the result of the BFS
algorithm) in a graph, where a Node Pointer can be used to denote the edge leading to the parent node. We refer
to the original CLRS paper for more details.

12

SALSA-CLRS

—e— SALSA-CLRS (GIN)
40000 CLRS (tripplet-mpnn)
—e— CLRS (pgn)

30000

20000

VRAM Usage (MiB)
CLRS OOM

10000

;o

21 22 73 24 75 26 27 28 20 210 211 Q12 o13 Jia 215
Graph Size (nodes)

Figure 5: Scalability analysis of SALSA-CLRS and CLRS. Shown is the peak VRAM usage on a
NVIDIA A100 GPU with 80GB VRAM across 10 randomly sampled graphs with batch size 1 on the
BFS algorithm.

Figure 6: Example of BFS output. The red node corresponds to the source node, and the red edges
to the directed BFS tree.

pointing from child to parent. By definition, these nodes are neighboring, so pi can be encoded on a

sparse graph. Single Source Shortest Path uses topsort as a subroutine, so the hint topo_h encodes
the output of this topsort. Hence, we run into the same problem as described above. Kruskal uses the
pi variable in the union subroutine, which is not sparsely representable. For strongly connected

components, the scc_id output feature is a node pointer, pointing to the node with the lowest id in
each component. This, again, does not require that this edge exists in the sparse graph.

13

SALSA-CLRS

Figure 7: Example of DFS output. The red node 0 corresponds to the source node, and the red edges
to the directed DFS tree.

S
o
ol
,(\.‘
o &

Figure 8: Example of Dijkstra output. The red node corresponds to the source node, and the red
edges to the directed shortest path tree.

SALSA-CLRS

0.38

Figure 9: Example of MST output. The red node corresponds to the source node for Prim’s algorithm,
and the red edges to directed MST.

Figure 10: Example of MIS output. The red nodes correspond to the found Maximal Independent
Set.

15

SALSA-CLRS

€LFRLC TLFO8C I'LF6'1€ v8FC¥E 1TFC88 L8F8'8C ¢LF6'FVC 09F96C €LF0CE 0¥ F0C8 €9FT0C ¥9OFEICT 99FLGT LIFO06T PTFGLS NNOWY

LOFOTL SOFVTIL O0SFETL 1Y FLLL SOFLI6 6SF8 Q89 ¥rFC69 SYFGTL 6€FITL 0TFI96 I'SF899 SSFG'69 SrF9GL 8EFL6L 90FV 96 NODd

SEF6'7S 9SF0'GS 9SFP 9SG 6SF¥' 83 STFIT6 69FT'PG vY9F6°08 S9OFLCS TIF6'FS 1'TF098 Y FZ' €V TYrF0SY €vF967 SYFI9 19 LT1FI968 (DNID (H) LSIN
€11 F9°0G ¥€1 F6°¢S 60T F9C9 1'TCF6°69 1TFLT6 LI F9°CS 60T FG'€9 TEC F8'CY 6TCF¥'L9 8TF8T6 S8CF0°9G 06T F6°8G T8TF9°99 8LTFLOL €TFTT6 NNDWY

60F899 O01FL89 VvIFG8L STFCGR SO0FV L6 €EFIGY I'eF¥L9 9TF9LL VTFGCR 01F896 I'CF6° 1L 0TFLGL LTFI9F8 9TFI1'68 ¥0FE L6 NOd

LTFLVL LTFRVL TTFRGL 90FPLL 80F8C6 €TFRCTL vTFOEL VIFVTL OTFECL ¥1F968 TTF6'CL 0TFGTL L1FILL €IFT6L 80F9°C6 (BNID LSIN
S9OF0'88 9¥YF868 TTFLI6 ¥IF¥cT6 LOFGE6 09FR888 ¢¥FG06 9CTF8I16 61+F¢C6 S0F6C6 SSFLP] S€F9°G8 8TFE'88 LIFL8 L0FTTO6 NNDY

TIFT'66 LOFF'66 CTOFL66 10FL66 10F866 €1F2°86 80F9'86 €0FI'66 TOFIG66 10FL66 LOF6'86 S0F886 CTOFF66 10FV66 1'0F866 NODd

LEFTQL LEF6'8L 9¢F86L S€FI908 I'tF908 9TFRI] TTFC'E] €E€F86L VEFG6L 61FI'EY 9TFC6L 80FF'E] LTFC8L TTUF66L 6TF66L (DNID (H) SIN
VEFT'C6 0€FGC6 STFOE6 0TFP'E6 0TFET6 SEFV'I6 €€F8TI6 6TFCT6 9TFIT6 TTFEE6 9TFC'88 61F6°L8 STFI06 €TF006 TTFIEC6 NNDWY

€0FE66 TOFSG66 10FR866 10FR866 I10F666 PP FEE6 9TFRGE 90F886 €0F¥66 I1'0F8 66 S0F6'86 90F886 TOFS66 TOFI66 10FR66 NODd

0rYF€08 LE€F6°08 TEFGI8 0¢F¥'T8 TEFGTY 9TFY'E] 61 FET8 ¥vTFETY8 9TF0C8 1TFT T8 STFR08 S1F9€8 ¥TF808 61F91I8 $TFC T8 (BDNID SIN
'YL F€°92 ¥v1 FL9C OLI FG°6C 8LI F9°GE +0FF L6 LT F9°9¢ €T F¢°Lg 191 FF°6C ¥91 F€°9¢ 01 FEC'G6 LOTFH9T TT FL°LT ¥LI F0°GC 91TF6°CE 1'0F0°S6 NNDY

e F7' 9% 9vF809 68F8CL 89F6'¥8 1'0FC 66 €8FP'CE €8FG09 0LF6°08 09F8GR TOFRLE YEFGP8 LTFILR €TF0C6 STFCTV6 10FE66 NODd

I'vF09¢ TvFCLE VSFTSY SLFVVS 81FCTV6 Y F9°G6 TSFIBE €8FI'8F €6F¢GS SE€FT 16 9LF6'9¢ 18FF 0V TIFEES O0LFV'TY 81FTG6 (DNID (H) ensyfig
9€F0°0¢ ¥vF2'09 001 F0'98 L6FF 06 61F0°86 LLIFE LY vOTFF IL 681 F6°E8 171 FC'68 TY F8°G6 LLEFIY09 LLTFLEI I'TTFO9L ¥SIFRIR 91FG8 NNOWY

6€F0' 1S TIFLTI LOFF'T6 €0F9°L6 10FS66 09Fg'cL TIFRI8 €0FP'G6 TOFIL6 vO0FES86 LOFTT6 90FI¥6 SOFTL6 €0F986 10F9°66 NODd

9EF6°68 LEFGOY 9TFF 0L €1F9 I8 ¥0F¥ L6 I'YF9'C¢ 0vF¥'19 61F6°6L +v'1F0G98 LOFFG6 €TFRCL TTFYGL 9IFEPR I'IFY68 TOF0'86 (DNID ensyiq
SEFGRT 9€FLB8T 8&EFV6T TEFRIT LITFT 09 LTF6°LT TTFP 6T 61FL VL 9TFGET LLIFEGE 9eF0CT I'YFI'ET 9vFGET L¥F8CT I'61 €87 NNDWY

LEFGTE LEF6'IE LeFLTE 6¢FE8E 88F66L I'IFL°0C €1F6CC SOFT LT 91FO0LT 9LIFI9°LG E€TFIET €TF6'FVC STF6'9C LTFP'8E T6F0°C8 NOd

6TFC'GC 6TFE 9T LEFI9T 1'tFE8C 1'6F96¢€ 90F9°0C LOFLTC vOF8IT 90F8GT LE€F0'GT STFYLT 9TFG6T I'tF00T €TFy0€e SLFSGTY (BNID (H) sda
TSFOPC TSFI'WC €S+C'9C 8SFRI9C 6Vl FE'TE YIFSG6T 91FGTIC VIFYIT STF6'GT T8FLTT €Y F89T VvvFC'8T IYFL 8T S9F0'8C S+l F¥'€€ NNDY

I'TFpge 1TF8GE 8TFCBE 6¢FL IV I'el FL°TL 90F€TC 90F9°€c 80FLLT LTF6°LT 80T F8°8S I'TF8'GT 1TF8LE 9TF6°6C 8€FC IV 0l FT VL NODd

6CTFTET 6TFYET I'eFI'GT 1'€F08C €LFL IV SOFI'0C 90FE€CT 80F8I9L 60F6°ST 67 FL 6T SEFGIOT SEFI'QT 6€FL6T 0¥ F90¢ 18FE6F (DNID Sdd
0SF6°Ccy IV F9' 19 09F9°€8 €TFES6 00F0°00T LTFE6L 8€FILL 0TFGT6 80FL96 10F0°00T 90F9'86 S0F0°66 SO0FE66 TOFI66 00F0°00T NNODWY

TEFYOV ¥YTFTE€S 91FF68 80FGL6 00F000T 0TF908 9TFF9L 80F806 SOFI'96 00F000T €0FG'86 €0FL'86 1'0F966 ['0F866 00F000T NODd
001 FZ'FE ¥91 F8'CY 9T F6'89 €€ FG'6L 0Y FI'86 Y2e FH'H9 88T F9°09 64T FG'LL 0STFOE] V1 FT 66 TLEFGI98 T9CF6'98 68FT1°G6 T6FE'G6 PTF8'86 (BDNID (H) sd9
001 F9°¢G 8T FI°L9 SSF0°CT6 80FE¢86 00F000T €TFIC8 LYFTC8 0TFC¥6 I'IF8L6 00F000T Y0FZ66 v0OFE66 €0FS66 I'0F866 00F000T NNOWY

S9OFEOVY 0LF9€S SYFP06 L0FT8 00F0°00T LOF9°08 €€F6°GL STFL88 LOFGEH 00F0°00T T0F6'86 TOFO066 €0FS¢66 I'0F866 00F0°00T NODd
8CIF6°CY TLIFL TG 901 F9F]8 9SFET6 10F0°00T I'9FEGL 801 FF'0L SSFLIR TYF6C6 €0F6°66 STF0'86 91F0'8 90F€66 ¥0F966 10F000T (DNID Sdd
0091 008 091 08 91 0091 008 091 08 91 0091 008 091 08 91
Keunepaq SAM Rl

'$9381ua01d SB UQAIS QIe SIOqUINU ["SIULY UM paulel) AIe (f7) [im payiew
suny "Suni ¢ Ay} SSOIOE UOTIBIASP PIEPUR)S 9} OS[B SMOUS J[qe) oY, "AorInooy apoN 1oddns jey) swpIoS[e [[e U0 S[POW [}0q JO $9I00S AOBINJIY OPON :T el

16

SALSA-CLRS

00F0°0 00F0°0 O00F00 O00F00 SLFOIT 00F0°0 00F00 00F00 O00F00 ¥SFVI 00F0°0 00F00 00F00 00F00 SLFSPEZ NNDWY
00F0°0 00F0°0 00F00 00F00 TSFITL 00F00 00F00 00F00 00F0O0 88FLGY 00F0°0 00F00 00F00 I10F00 19F669 NOd
00F0°0 00F00 00F00 O00F00 09F9FC 00F0°0 00F00 00F00 00F00 O0SF¥0C 00F0°0 00F00 00F00 00FO0 9SFL6C (DNID (H) LS
00F0°0 00F00 00F00 TOFT0O 8SIFLRS 00F0°0 00F00 00F00 I'OF1°0 08I F7 9% 00F0°0 00F00 00F00 80F90 6SIF89G9 NNDY
00F0°0 00F00 00F00 ¥0F90 I't +8'8L 00F0'0 00F00 00F00 €0FEO e ¥g¢'¢l 00F0°0 00F00 O00F00 CTIFOC €Y FC 6L NOd
00F0°0 00F00 00F00 00F00 OSFOEY 00F0°0 00F00 O00F00 O00F00 TI+YF00E 00F0°0 00F0°0 00F00 00F00 9¥FTEV (DNID LS
00F0°0 00F00 €0FE€0 FIF8Y TIF6 9V 00F0°0 00F00 ¥OFPO TTFTT LSFGIV 00F0°0 00F0°0 TOFTO STFICT SSFI'FF NNDOWY
SOFT'CT T6FT°0V ¥eEFI'G8 TTFTT6 +0F9I986 00FT°0 LIFET 99FTFPS ¥LFTT8 €0FT 86 €Y FC'9 98FOB8T €LFTIL T€F6'88 +0F9°86 NOd
00F0°0 00F0°0 00F00 O00F00 <CTTFEE 00F0°0 00F00 00F00 O00F00 <€TFVT 00F0°0 00F00 00F00 00FO0 STFEE (DNID (H) SIN
00F0'0 00F00 TTFLT 8LF9°6 €€ F09¢ 00F0°0 00F00 6TFOC 86F0°6 9% F9°C¢S 00F0°0 00F00 9T1F80 I'LFGG TelF1°99 NND>Y
VLFY LT 68FC IV 67 FCTL TTF6E6 90F6°86 90FG0 <€vFIOV IVIFE8S ¥8FFF] 90FI°86 STFO0CT SOILFLOT I'OIFTFL 9YFT 68 TOFRY 86 NOd
00F0'0 00F00 00F00 00F00 8SEFT9 00F0'0 00F00 00F00 O00F00 8TFGH9 00F0°0 00F00 00F00 00F0O0 TEFCTHO (HNID SIN
00F0°0 00F00 LIIFF 6T 09€F0 TS 80F966 6vFE'8 €9FIFI 60V FC 9V vTCF¥'99 TIFO066 60T FTI'CL €01 FF'E6 9YF8G6 9€¢F996 €9F0°G6 NNDOWY
00F0°0 00F00 CTYIFFF9 €0FL 66 00F000T 8YFC6 TLFSTE 10F0°00T 8TFE8S 00F000T §9F0°€8 00F0°00T 00F0°00T 00F0°00T 00F0°00T NOd
00F0°0 00F0°0 8SF0'EC ST FOLI STYF8¥VT TOLF86 68F9F 681 F98T 881 F0'6T Tir FE'GT LTTFO09T 6TEFT°LT 89 F1°9C 06€ F8°E€C 0¥ FE°GC (HNID (H) A&iomueddy
00F0°0 00F0°0 6TIFE8 9LEFTGC 6l F6°68 LE€LFTGT ¥'6TF9°LT L8EFH LS 1'6CF809 LSTFL I8 8YC F0'E9 6LTFL'TL 1'6€ F0'GL 05 FG 08 TITFRGL NND>Y
00F0°0 00F0°0 86IF69L 00F0°00T 00F0°00T €eFee SLF9°GC 10F0°00T I'T+8€6 00F0°00T 6% F9F9 00F0°00T 00F0°00T 00F0°00T 00F0°00T NOd
00F0°0 00F0°0 00F00 00F00 ¥TIF8¥ 00F0°0 00F0°0 08F9€ S6IFI LT L8 F08L OLIFL9E TYEFE TG 081 FE'TL SLIFTLL TITFE LS (BNID Aonuasog
00F0°0 00F00 00F00 00F00 £ F7 99 00F0°0 00F00 00F00 00F00 9SF6°0¢ 00F0°0 00F00 00F00 O00FO0 9IF8EL NND>Y
00F0°0 00F00 00F00 80F¥0 LOF9°LS 00F0°0 00F00 00F00 90F%0 F+TFSO0L 00F0°0 00F00 I'0F00 LeFe€E O01IFG68 NOd
00F0'0 00F00 O00F00 O00F00 ¥OIFEOV 00F0'0 00F00 00F00 O00F00 66FL8C 00F0°0 00F00 00F00 00F00 80IF86V (DNID (H) ensyhia
00F0°0 00F00 00F00 SYF¥'y 661 TV vL 00F0°0 00F00 <TOFTO VLFP'S LWCFT09 00F0°0 00F00 S0FE0 I'9F89 I9IFLI8 NND>Y
00F0°0 00F00 O00FT0 CTrFT 6T ¥IFOEC6 00F0°0 00F00 80F6°0 S8TFTLT 0vFV 9L 00F0°0 00F00 61FCS 69F8LE T'TFIV6 NODd
00F0°0 00F00 00F00 O00F00 € F+9°99 00F0°0 00F00 O00F00 O00F00 O0€FITIG 00F0°0 00F00 O00F00 <TOFCTO 9TFVEL (DNID ensyfiq
00F0°0 00F0°0 00F00 O00F00 SIHFE 00+0°0 00F00 00F00 00F0°0 00F00 00F0°0 00F0°0 00F00 00F00 SLFGT NND>Y
00F0°0 00F0°0 O00F00 O00F00 O0€TFYET 00+0°0 00F00 00F00 00F00 <TLFCE 00F0°0 00F0°0 00F00 00F00 LOEF66T NOd
00F0°'0 00F0°0 00F00 00F00 00F00 00F0°'0 00F00 00F00 00F00 00F00 00F0°0 00F00 00F00 00F00 00F00 (BNID (H) sda
00F0°0 00F00 00F00 00F00 00F00 00F0°0 00F00 00F00 00F00 00F00 00F0°0 00F00 00F00 00F0O0 00F00 NND>?Y
00F0°0 00F00 00F00 O00F00 ¥6TF6'ET 00F0'0 00F00 00F00 O00F00 TITFS6 00F0°0 00F00 00F00 O00FO0 LLEFT'ST NOd
00F0'0 00F00 O00F00 00F00 00F00 00F0°0 00F00 00F00 00F00 00F00 00F0°0 00F00 00F00 00F00 I'0F1°0 (DNID S4d
00F0°0 00F00 00F00 ¥8FL8T TOF666 00F0°0 00F00 €TFET SEIFLOT €1FV 66 T0OFO'0 €TFRT TSTFI6F 0€1 FL'I8 T'0F666 NNDOWY
00F0°0 00F00 TOFT 0O SIHFZIZ 00F000T 00F0°0 00F00 TOFZTO 9€FTFI 00F000T 00F0°0 €0FC0 L8FE99 8EFI'® 00F0°00T NOd
00F0°0 00F00 €0FC0 LLIFGLT 68TFC G 00F0°0 00F00 LOFFO 8€IFTOT 0T F8°26 TOFO'0 ¥IF6'0 6LEF]LE €8 FF 69 6€1 F5°C6 (NID (H) sdd
00F0°0 00F0°0 CTIFLT SIHFFES 00F0°00T 00F0°0 00F00 CTIFOT €81F9CE 00F0°00T 90FF'0 SIOFIT 8YCFRYGS 88F6'L8 TOF6°66 NNOMWY
00F0°0 00F0°0 +vOFEO0 €8FI°GE 00F0°00T 00F0°0 00F00 TOFTO €€FI'ET 00F0°00T 00F0°0 T0FZ0 SITF6FS 6SFL8 00F000T NOd
00F0°0 00F0°0 FIFLO 98CFI'GC 0TFE66 00F0°0 00F00 SO0FC0 L8FLGS TrF+0'86 TOFTO TIvFTT €SIFGLS 6€1FETF] 80FF 66 (BNID S4g
0091 008 091 08 91 0091 008 091 08 91 0091 008 091 08 91
Keunepaq SA i

‘sagejuaciad se USAIS ale sIoquINU [y “SIUTY YIIA
pauren aIe (f) Yim pdIe suny 'suni ¢ ay) SSOIOE UOTJBIASD PIEpue)s oy} OS[e SMOYS 9[qe) Y], ‘SWyIIoS[e [[& U0 S[opowW [oq JO $2100s AoeInody ydein) :¢ d[qe],

17

SALSA-CLRS

Figure 11: Example of an eccentricity output. The eccentricity of node 8 — the distance to the furthest
away node —is 3.

18

SALSA-CLRS

Table 4: BFS Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 994 +038 925 +139 100.0 +00 100.0 £00 99.9 +o02 99.9 + 0.1

80 843 +139 594 +383 88.7 £59 88.1 £338 87.9 +338 81.7 130
160 575 +153 378 +£379 549 +215 66.3 +£87 558 £248 49.6 £252
800 2.2 +41 09 +14 0.2 o1 0.2 +03 4.6 te6s 1.8 +23
1600 0.1 +o02 0.0 +o1 0.0 £00 0.0 +00 0.4 +os6 0.0 +o1

WS 16 98.0 +42 92.8 +120 100.0 +00 100.0 00 100.0 £00 99.4 +13
80 5.7 £87 10.2 £138 13.1 +33 14.2 +36 325 +183 20.7 +135
160 0.2 +05 0.4 +o7 0.1 +o1 0.2 +02 1.0+12 1.3 +23
800 0.0 00 0.0 £00 0.0 £00 0.0 £00 0.0 £00 0.0 £00
1600 0.0 £o00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00

Delaunay 16 993 +10 852 +289 100.0 +00 100.0 £00 100.0 +00 99.9 +o02
80 25.1 +286 17.5+177 351 +383 262 +115 534 +115 187 +s4
160 0.7 14 0.2 +o03 0.3 +o4 0.1 +o01 1.7 12 0.0 +00
800 0.0 00 0.0 £00 0.0 £00 0.0 £o00 0.0 00 0.0 £o00
1600 0.0 £o00 0.0 £00 0.0 £00 0.0 +o00 0.0 £00 0.0 £00

(b) Node Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 100.0 £01 98.8 +24 100.0 £00 100.0 £00 100.0 £00 100.0 +o00

80 99.6 +04 95.3 +92 99.8 +o0.1 99.8 +0.1 99.8 +0.1 99.6 +02
160 99.3 +06 95.1 +389 99.5 +03 99.6 + 0.1 99.5 +03 99.3 +05
800 98.0 + 1.6 86.9 £261 99.0 +02 98.7 +03 99.3 +04 99.0 + 05
1600 98.0 £15 86.5+272 98.9 +o02 98.5 +03 99.2 +04 98.6 + 056

WS 16 99.9 +03 99.2 +14 100.0 £00 100.0 £00 100.0 £00 100.0 0.1
80 92.9 +42 83.0 £250 95.5 +o7 96.1 +o0s5 97.8 1.1 96.7 + 038
160 86.7 +55 77.5 +249 88.7 +15 90.8 + 03 94.2 +20 92.5 +20
800 70.4 108 60.6 £288 75.9 +33 76.4 + 16 82.2 +47 77.6 £33
1600 75.3 te.1 64.4 +324 80.6 07 80.6 + 1.0 82.1 +23 793 +17

Delaunay 16 100.0 01 98.1 +40 100.0 £00 100.0 £00 100.0 £00 100.0 +0.0
80 94.3 +56 79.5 +323 98.2 +o07 97.5 + 08 98.5 + 03 95.3 +23
160 84.6 +106 689 £326 904 +45 894 +16 92.0 +55 83.6 60
800 527 +172 428 164 53.6 +£70 53.2 +24 67.1 £+118 51.5 +4.1
1600 459 +i158 342 +100 40.3 +65 40.8 +32 55.6 £100 42.9 +50

19

SALSA-CLRS

Table 5: DFS Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 0.1 £01 0.0 %00 184 +377 199 £307 0.0 +00 45 +78

80 0.0+00 0.0+00 0.0xo00 0.0 +00 0.0 00 0.0 00
160 0.0+00 00+00 0.0+00 0.0 00 0.0 +00 0.0 £00
800 0.0+00 0.0+00 0.0x00 0.0 +00 0.0 00 0.0 00
1600 0.0+00 0.0+00 0.0+00 0.0 00 0.0 +00 0.0 +00

WS 16 00+00 00zx00 9.5=+212 32 +72 0.0 £o00 0.0 00
80 00+00 00+00 0.0+00 0.0 00 0.0 £00 0.0 £o00
160 0.0 +00 0.0+00 0.0 00 0.0 +00 0.0 00 0.0 00
800 00+00 00+00 0.0+00 0.0 00 0.0 £00 0.0 £00
1600 0.0 £00 0.0 %00 0.0 00 0.0 +00 0.0 00 0.0 00

Delaunay 16 0.0+00 0.0+00 139 +204 138 +230 0.0+00 5.8 +115
80 0.0=+00 00x00 0.0+00 0.0 00 0.0 £o00 0.0 £o00
160 00+00 00+00 0.0+00 0.0 00 0.0 £00 0.0 £00
800 0.0+00 00+00 0.0+00 0.0 00 0.0 £00 0.0 £o00
1600 0.0+00 0.0+00 0.0=+00 0.0 £00 0.0 +00 0.0 £00

(b) Node Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 493 +81 41.5+75 742 +140 82.0+092 334 +145 48.3 £ 191

80 30.6 +40 304 +23 41.2 £33 384 +27 28.0 65 22.8 +47
160 19.7 £39 200 +31 299 +26 26.9 +25 18.7 + 41 13.5 t4s6
800 18.1 £38 195 +26 27.8 £21 249 +23 18.2 +44 13.1 +41
1600 16.5+35 17.8 +25 25.8 +2.1 23.1 +23 16.8 +43 12.0 +36

WS 16 297 +49 250+37 588 +208 57.6+176 22.7 £82 353 +177
80 159 09 158 +06 179 +17 17.0 16 159 +15 13.5 +26
160 16.8 +08 16.8 £04 17.7 +038 17.2 + 05 16.8 + 14 14.7 + 19
800 223 +06 227 +07 23.6+0s6 229 +13 21.5 +16 19.4 +21
1600 20.1 +o05 20.6 +06 21.3 +0s6 20.7 + 1.1 19.5 + 14 17.9 + 17

Delaunay 16 46.7 +73 39.6 +o1 727 +131 799 +88 323 +149 50.2 +217
80 28.0+31 283 +31 41.7 £39 38.3 +£39 26.8 +538 21.8 +32
160 251 +31 26.1 £37 382 +238 34.7 £37 252 +53 19.4 +338
800 234 +29 253 +20 358 +21 31.9 +37 24.1 +52 18.7 + 36
1600 232 +290 252 +290 354 +21 31.5 £37 24.0 £52 18.5 £35

20

SALSA-CLRS

Table 6: Dijkstra Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GINE GINE (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 734 +26 498 +108 94.6+11 895+10 81.7+1610 7T3.8+16
80 0.2 +02 0.0 £ 00 378 £69 3.3 +37 6.8 +61 0.0 00

160 0.0 00 0.0 00 52 +19 0.0 £ o1 0.3 +os 0.0 £00
800 0.0 +00 0.0 +00 0.0 00 0.0 +00 0.0 £00 0.0 00
1600 0.0 +00 0.0 £00 0.0 +00 0.0 00 0.0 00 0.0 +o00

WS 16 51.6 £30 28.7 £99 764 +40 70.8 £24 604 +£27 509 +56
80 0.0 £00 0.0 00 172 £28 0.4 +o0s6 8.4 +74 0.0 £00
160 0.0 +00 0.0 +00 09 +o0s8 0.0 +00 0.2 +02 0.0 00
800 0.0 00 0.0 00 0.0 £00 0.0 00 0.0 00 0.0 £00
1600 0.0 £o00 0.0 +00 0.0 00 0.0 +00 0.0 +00 0.0 00

Delaunay 16 66.6 +43 403 +104 930414 876+07 T44+199 664 +33
80 0.0 00 0.0 00 19.2 +42 04 +o0s 4.4 +as 0.0 £o00
160 0.0 £ 00 0.0 £00 0.1 +o00 0.0 £00 0.0 £00 0.0 £o00
800 0.0 00 0.0 00 0.0 £o00 0.0 00 0.0 00 0.0 £00
1600 0.0 £o00 0.0 £00 0.0 +00 0.0 00 0.0 £00 0.0 £00

(b) Node Accuracy
GINE GINE (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 98.0 02 952 +13 99.6 01 993 +01 985+16 98.0 +o.1

80 89.8 £11 624 +70 98.6 +03 942 +25 86.8+154 32.9 216
160 843 +16 533 te2 972 05 92.0+23 76.0+221 250+174
800 75.8 22 404 +3.1 94.1 +06 87.1 £27 63.7+217 17.7 +122
1600 72.8 £23 369 +76 922 +07 845+34 60.6+277 164 +107

WS 16 954 +07 912 +35 983 +04 97.8+02 958 +42 95.5 +10
80 85.0+14 553 +93 97.1 £02 858 +60 89.2+141 363 +164
160 799 +19 48.1 £33 954 +03 809 +70 839+i189 294 +161
800 61.4 +40 38.6 +52 81.8 +12 60.5+83 714 +24 273 +123
1600 52.6 £41 35.6 +44 725 +60 524 +83 673 +177 26.6 +117

Delaunay 16 974 +04 942418 995401 992+01 980+19 974 +o4
80 81.6 £13 544 +713 97.6 +03 849 +68 904 +o97 35.6 +178
160 704 +26 452 +54 924 +07 728 +89 850=+100 29.5+170
800 46.5 £37 37.2 +41 627 +12 50.8 +46 602 +44 26.7 +144
1600 39.9 +36 36.0 £4.1 51.0+39 464 +31 50.0+36 26.3 + 141

21

SALSA-CLRS

Table 7: MST Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GINE GINE (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 432 +46 29.7 +56 792 +43 699 +61 568 159 245475

80 0.0 +00 0.0 £ 00 20 +12 0.0 +o1 0.6 £o0s8 0.0 00
160 0.0 00 0.0 00 0.0 £00 0.0 00 0.0 00 0.0 £00
800 0.0 +00 0.0 +00 0.0 00 0.0 +00 0.0 £00 0.0 00
1600 0.0 +00 0.0 £00 0.0 +00 0.0 00 0.0 00 0.0 +o00

WS 16 30.0 £41 204 +50 732 +91 657 +s838 444 +180 14.8 +54
80 0.0 £00 0.0 00 0.3 +o03 0.0 00 0.1 £o1 0.0 £00
160 0.0 +00 0.0 +00 0.0 00 0.0 +00 0.0 +00 0.0 00
800 0.0 00 0.0 00 0.0 £00 0.0 00 0.0 00 0.0 £00
1600 0.0 £o00 0.0 +00 0.0 00 0.0 +00 0.0 +00 0.0 00

Delaunay 16 430450 346+60 788 +41 726 +52 587 +158 260 +75
80 0.0 00 0.0 00 0.6 +o04 0.0 00 0.1 o2 0.0 £o00
160 0.0 £ 00 0.0 £00 0.0 £00 0.0 £00 0.0 £00 0.0 £o00
800 0.0 00 0.0 00 0.0 £o00 0.0 00 0.0 00 0.0 £00
1600 0.0 £o00 0.0 £00 0.0 +00 0.0 00 0.0 £00 0.0 £00

(b) Node Accuracy
GINE GINE (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 92.6 08 89.6 17 973 +04 964 +06 942 +23 87.5 £24

80 79.1 13 51.6 £45 89.1 16 79.7 £38 T70.7 +278 29.0 67
160 77.6 £17 495 +43 84.6 17 756 +t45 66.6+282 257 +es6
800 745 +20 45.0 £42 757 £20 69.5+55 589 +20 21.3 +64
1600 729 +22 432 +40 719 £21 668 +51 56.0+285 20.1 +63

WS 16 89.6 +14 86.0 £21 96.8 +10 96.1 £10 92.8 +238 82.0 £ 40
80 753 +10 549 +e62 82.5+24 T745+39 674 +29 320+73
160 744 +14 527 +65 77.6 +26 725 +45 628 +232 29.6 +60
800 73.0 £24 50.9 +64 674 +£31 692 +44 535+290 249+73
1600 72.8 £23 54.1 +69 65.1 £33 688 +59 52.5+171 28.8 +387

Delaunay 16 928 +08 9l.1+15 974405 96.7+05 947+21 882 +21
80 774 06 584 +59 852 +15 T77.7+41 699 +21 342 +s4
160 758 +11 564 56 785 +14 743 +50 62.6+29 31.9+71
800 748 +17 55.0+56 68.7+10 T714+65 525+134 28.0+72
1600 747 +17 549 %55 66.8 £09 71.0x67 50.6+113 27.8+73

22

SALSA-CLRS

Table 8: MIS Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 6.2+32 33 +2s 98.8 +02 98.6 £04 56.1 131 44.1 +538

80 0.0 00 0.0 +00 89.2 +46 889 +31 55+71 2.6 £15
160 0.0 +00 00=+o00 741 +101 762+73 0.8+16 0.1 02
800 0.0 00 0.0 +00 10.7 +105 18.0+s86 0.0 +00 0.0 £00
1600 0.0+00 0.0+00 2.0+25 5.2 +43 0.0 £o00 0.0 £00

WS 16 6.5+28 4.4 +23 98.1 + 06 98.2 +03 526 +146 46.5 +57
80 0.0 £00 0.0+o00 844 +s4 822 +74 9.0 +9s 42 +1.1
160 0.0 £00 00=+o00 583 +141 54.1+66 2.0+29 0.4 +o4
800 0.0+00 0.0+00 4.6+43 23 +17 0.0 00 0.0 00
1600 0.0+00 0.0+00 0.5=+06 0.1 +o00 0.0 +00 0.0 £00

Delaunay 16 6.1 +38 33 +22 989+06 98.6+04 56.0+133 469 +62
80 0.0 £00 0.0=+00 939 +22 922 +22 9.6 +78 48 +14
160 0.0+00 0.0+00 87.2+49 85.1 £34 1.7+22 0.3 +03
800 0.0 £00 00=+o00 41.2+s89 40.1+91 0.0=+00 0.0 £00
1600 0.0 £00 0.0 +00 17.4 £74 15.1+65 0.0 %00 0.0 00

(b) Node Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 822 +25 799 +20 998 +01 99.8+01 93.6+22 922 +o07

80 816 £19 799 +22 99.6+02 994 +01 90.0+23 88.7+17
160 80.8 £24 782 +27 995+02 994 +02 90.1 +£25 88.3 +238
800 83.6+15 834 +0s 98.8+06 988+05 879+19 85.6+35
1600 80.8 +25 792+16 989 +05 989 +o07 88.2+26 847455

WS 16 842 +21 83.1+19 99.8+01 997401 933+22 929 +os
80 82.0+26 795+34 994 +03 995+02 926+26 922 +19
160 823 +24 798 +33 988+06 99.1+03 922420 91.8+26
800 843 +19 832+22 958 +26 98.6+08 91.8+33 90.5+43
1600 834 +26 81.8+26 933+44 982+13 914+35 88.8+60

Delaunay 16 825+32 80.6+31 999 +o01 998 +o01 943 +20 935+07
80 824 +30 80.6+35 99.8+01 99.7+01 934120 924 +14
160 81.5+32 798 +36 99.8+01 99.7+02 93.0+25 91.7 £22
800 809 +37 789 +37 995+02 994 +07 925+30 89.8 +46
1600 803 40 782 +37 993 +03 99.1+12 92.1+34 88.0+65

(c) Node F1
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 612 +70 521 +142 99.6+01 99.6+01 87.7 +43 84.9 +10

80 482 +111 268 £177 99.1 04 98.8 03 76.5 68 73.5 +52
160 51.7+1m1 294 +181 989 +05 98.7+05 785 +6s6 744 +30
800 295 +172 9.5 £381 964 +18 964 +16 61.8+109 51.8+190
1600 41.1 +146 183 +137 973 +13 974 +17 70.6 £94 60.1 +193

WS 16 575 +72 50.8+131 994 +03 993 +o02 84.0+50 82.4 +1.1
80 63.5 £7.1 505 +174 99.0 +06 99.0 £04 85.6+53 85.2 +35
160 61.7 +86 45.1 200 977 +11 982 +os5 83.9 +e7 83.7 £52
800 527 +128 340+199 90.8+53 963+19 T75+105 752+1s
1600 532 +131 325+199 86.1+£87 957 +20 T7.9+104 T2.1+158

Delaunay 16 62.7+83 565+140 998 +01 99.7+01 893 +36 875+10
80 60.5 +73 46.3 £200 99.6 £02 99.5+02 86.5+45 84.9 +29
160 58.1 +97 40.9 £+ 224 996 +02 994 +o03 855 +59 83.4 +47
800 56.5+111 37.0+231 991 +04 988 +14 843 +73 79.0 + 103
1600 552 +116 35042209 98.6+07 98.2+25 834 +32 75.1 £ 150

23

SALSA-CLRS

Table 9: Eccentricity Results. The table shows also the standard deviation across the 5 runs. Runs
marked with (H) are trained with hints. Graph Accuracy is given as percentages and Graph MSE is
the Mean-Squared-Error (lower is better).

(a) Graph Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 573 +212 253 +410 100.0 £00 100.0 £00 75.8 +262 95.0 +63
80 77.1 £175 23.8 +390 100.0 £00 100.0 £00 80.5 +350 96.6 +36
160 723 +180 26.1 £368 100.0 £00 100.0 £00 75.0 +£391 95.8 +4s6
800 513 +342 17.1 +329 100.0 £00 100.0 £00 72.7 +279 93.4 +103
1600 36.7 +176 16.0+217 64.6+149 83.0 65 63.0 £248 72.1 +209
WS 16 780 +187 253 +422 100.0 £00 100.0 £00 86.7 £257 99.0 £ 12
80 27.6 195 19.0 +188 93.8 +2.1 88.3 +13 60.8 £20.1 66.4 +224
160 3.6 +380 18.6 189 100.0 £01 100.0 £01 57.4 +387 46.2 +409
800 0.0 £00 4.6 £89 25.6 £75 34.8 +72 27.6 £294 14.1 +63
1600 0.0 00 9.8 £102 5.2 +33 9.2 +43 152 +137 83 +49
Delaunay 16 84.8 +124 248 +425 100.0+00 100.0+00 899 +194 99.6 +o0s8
80 0.0 00 170 + 125 100.0 £00 99.7 +o03 252 +376 51.0 £360
160 0.0 +00 3.0+58 769 198 644 +142 83 +119 194 + 117
800 0.0 +o00 0.0 +o00 0.0 +o00 0.0 +o00 0.0 +o00 0.0 +o00
1600 0.0 00 0.0 00 0.0 £ 00 0.0 00 0.0 00 0.0 00
(b) Graph MSE
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 47.7 £2716 186.8 + 1546 0.0 00 0.0 00 14.8 + 96 6.2 +52
80 26.0 + 205 248.5 +1925 0.0 00 0.0 00 11.1 + 118 52 +37
160 439 +342 274.6 2119 0.1 01 0.1 +00 13.7 + s 5.0 +36
800 47.3 + 401 442.7 +3905 1.4 +23 0.2 +00 15.0 + 112 6.3 +56
1600 93.4 +437 357.5 +2103 22.7 +59 12.2 + 03 33.7 £ 139 29.0 £219
WS 16 18.8 110 220.6 + 1816 0.0 00 0.0 00 10.2 +94 2.9 +22
80 501.0 + 3016 524.5 +2779 153.3 + 1020 87.7 £289 98.9 +64.1 306.6 + 207.0
160 348.4 +2497 382.3 + 5816 2.1 +17 0.4 +o02 31.2 +231 84.8 + 707
800 2381.8 £ 13552 1815.2 + 13156 1699.8 + 14113 578.5 + 4354 527.5 + 3916 1797.0 + 9184
1600 2555.7 + 15182 1894.6 + 14217 1706.9 + 14153 632.4 + 4683 573.9 +2519 1761.0 + 11148
Delaunay 16 114 +63 217.6 +173.1 0.0 +00 0.0 +00 8.4 +92 2.0+13
80 590.4 + 4036 524.7 + 7542 2.8 +13 1.0 +o0s5 73.1 + 541 58.1 +748
160 1706.9 + 1025.6 1523.9 + 19567 131.0 + 1322 100.0 + 934 238.9 +2184 552.6 +456.0
800 11779.4 + 63403 12865.6 + 7419.7 11461.5 + 46528 8983.4 + 49775 6091.6 + 21610 13097.1 + 24124
1600 24314.6 + 133441 34168.0 £ 133136 26683.1 £77490 222104 + 72244 18734.3 £ 19857 29640.9 + 6097.9

24

	1 Introduction
	2 SALSA-CLRS Benchmark
	2.1 Algorithms
	2.2 Graph Types

	3 Empirical Evaluation
	3.1 Evaluation

	4 Conclusion
	A Appendix
	A.1 Related Work
	A.2 Algorithms
	A.3 Dataset
	A.3.1 Graph Types
	A.3.2 Dataset Statistics

	A.4 Evaluation
	A.4.1 Architectures
	A.4.2 Experiments
	A.4.3 Metrics
	A.4.4 Scalability

	A.5 Implementation of Node Pointers

