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Abstract

We introduce an extension to the CLRS algorithmic learning benchmark, priori-
tizing scalability and the utilization of sparse representations. Many algorithms
in CLRS require global memory or information exchange, mirrored in its execu-
tion model, which constructs fully connected (not sparse) graphs based on the
underlying problem. Despite CLRS’s aim of assessing how effectively learned
algorithms can generalize to larger instances, the existing execution model be-
comes a significant constraint due to its demanding memory requirements and
runtime (hard to scale). However, many important algorithms do not demand
a fully connected graph; these algorithms, primarily distributed in nature, align
closely with the message-passing paradigm employed by Graph Neural Networks.
Hence, we propose SALSA-CLRS, an extension of the current CLRS benchmark
specifically with scalability and sparseness in mind. Our approach includes
adapted algorithms from the original CLRS benchmark and introduces new prob-
lems from distributed and randomized algorithms. Moreover, we perform a
thorough empirical evaluation of our benchmark. Code is publicly available at
https://github.com/jkminder/salsa-clrs.

1 Introduction

Neural algorithmic reasoning combines the learning power of neural networks with the principles of
algorithmic thinking. This fusion aims to promote logical reasoning and the ability to extrapolate.
This is widely considered a weak spot for neural methods. Algorithms take various shapes and deal
with sets, strings, images, or geometry. Several prominent and beautiful algorithms are concerned
with graphs and networks. Graph algorithms usually take up a significant portion of algorithmic
textbooks such as the CLRS textbook [1] and the CLRS benchmark [2], which is based on that
textbook. Interestingly, the CLRS benchmark translates every algorithmic problem into a common
graph-based format. This approach yields the significant advantage of utilizing a single architecture
across various scenarios. However, the emphasis on algorithmic diversity and unification in CLRS
introduces significant constraints that hinder scalability.

The CLRS-30 dataset contains 30 algorithms operating within a centralized execution model that
facilitates global information exchange, which is essential for numerous algorithms. This global
information exchange is enabled by enforcing all problems to operate on a complete graph — each
node can communicate with every other node, resulting in quadratic communication costs. To
maintain information on the original topology, the CLRS framework augments these complete graphs
with flags on each edge to indicate whether the edge exists in the input. This strategy has several
limitations. While CLRS highlights its proficiency in assessing out-of-distribution (OOD) capabilities,
the reliance on a fully connected graph execution model imposes significant memory and computation
constraints. This challenge is particularly pronounced as graph algorithms are often designed with
sparse graphs in mind [1].
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Figure 1: A visualization of the difference between the graph representation in SALSA-CLRS
and CLRS. When dealing with large complete graphs, the memory demands become exceedingly
impractical, leading to occurrences of Out-Of-Memory (OOM) errors. SALSA-CLRS enables the
evaluation of scalable architectures on graphs up to 100 times the size of the training graphs.

Furthermore, when learning algorithms that guarantee correctness for any input size, evaluating
models across a diverse range of large-scale inputs is crucial, as many studies have highlighted [3-8].
Apart from considering large-scale test graphs, relying solely on a single graph generation mechanism
can yield false conclusions about OOD performances [7]. The CLRS library in principle allows more
flexibility and a custom generation. However, the default CLRS-30 dataset used for benchmarking
provides OOD test graphs, limited to only four times the size of the training graphs, and both training
and test graphs stem from the same graph generation mechanism. While under the CLRS execution
model, moderately larger graphs (10x) might still be feasible on modern hardware, much larger
graphs — in the order of 100-fold scaling — become impossible to run due to their demanding memory
requirements (Figure 1).

To address these challenges, we propose a more concise strategy. We focus solely on graph algorithms,
which can follow a distributed execution model, thus reducing reliance on global memory and
information flow. This allows a transition to a sparse execution model. Furthermore, building upon
the findings presented in [6], which underscore the superior learning and OOD performance of
parallelized algorithms compared to their sequential counterparts, we also emphasize the importance
of encompassing problems from the realm of distributed and randomized algorithms. Towards
this end, we introduce SALSA-CLRS, a Sparse Algorithmic Learning benchmark for Scalable
Architectures. Extending CLRS, our benchmark i) leverages a sparse execution mode to enable OOD
test sets that cover graphs 100 times the size of training sets, ii) adds new graph generators for sparse
and diverse graphs, thus enabling a more thorough OOD evaluation and iii) incorporates distributed
and randomized algorithms that align more closely with the execution models used by Graph Neural
Networks (GNN&s).

2 SALSA-CLRS Benchmark

The SALSA-CLRS Benchmark follows the structure of CLRS [2]. Each data point comprises a graph
with n nodes and an algorithm trajectory. Each trajectory comprises a set of input, intermediate,
and output features. Specifically, the input features capture the input state of the algorithm, along
with positional identifiers for nodes to resolve tie-breaking scenarios. The intermediate features,
referred to as hints, correspond to interim values of algorithm variables. These hints provide insight
into the algorithm’s inner workings and act as a means to encourage models to adhere closely to the
algorithm’s execution. It is worth noting that execution without hints is possible and may even be
beneficial, as demonstrated in Section 3. Lastly, the output features directly relate to the solution
of the given problem. Moreover, each data point contains a trajectory length, defining the number
of steps required to solve the algorithm. Every feature is associated with a location — either a node,
an edge, or the entire graph — and possesses a corresponding type. SALSA-CLRS provides both
pre-defined train-validation-test splits, facilitating model comparison and the capability to generate
new data tailored to individual requirements. Beyond what CLRS-30 offers, SALSA-CLRS comes
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with diverse graph types to explore OOD capabilities further. For comprehensive information, see
Appendix A.3.2. The benchmark is implemented in PyG [9] and built with extendability in mind.

2.1 Algorithms

SALSA-CLRS encompasses a set of six algorithms, adapting four from the original CLRS paper and
introducing two novel additions from the field of distributed and randomized algorithms. The four
CLRS algorithms were selected to ensure the representation of input, hint, and output features on the
sparse graph: Breadth-first search (BFS), Depth-first search (DFS), Dijkstra, and Maximum Spanning
Tree (MST). Please refer to Appendix A.2 for more details. While the algorithms introduced by
CLRS-30 are inspired by sequential algorithms in the CLRS textbook, although in some cases heavily
parallelized, the message-passing paradigm — essentially the driving mechanism behind GNNs —
aligns closely with distributed computing principles. To encompass this perspective, we extend
our benchmark by introducing two new distributed algorithms, drawn from Mastering Distributed
Algorithms [10]. Numerous distributed algorithms incorporate randomness as a crucial component
of their computation. In light of this, we enhance the CLRS framework by including the concept of
randomness. In cases where an algorithm necessitates randomness, we precompute random values
and treat them as regular input to the algorithm. We introduce two new algorithms: Distributed
Maximal Independent Set (MIS) and Distributed Eccentricity. A description of both can be found in
Appendix A.2.

2.2 Graph Types

Building upon investigations [7] of CLRS and different graph types, we enrich the diversity of graph
types compared to CLRS-30. While CLRS-30 works exclusively on Erdos-Renyi (ER) random graphs,
the study by Mahdavi et al. [7] underscores the limitation of relying solely on ER graphs to assess the
OQOD capabilities of architectures. Recognizing this, we propose that broadening the spectrum of
graph types is pivotal for a more comprehensive OOD evaluation. SALSA-CLRS comes with three
distinct graph generation mechanisms: Erdos-Renyi graphs (ER) [11], Watts Strogatz graphs (WS)
[12] — and Delaunay Graphs. In contrast to CLRS-30, we reduce the ER edge probability to just
above the minimum to maintain graph connectivity. WS graphs belong to the category of small-world
graphs and exhibit a low clustering coefficient [13]. While still sparse, WS graphs show a very
different structure. Delaunay graphs are planar and hence inherently sparse. We refer to Appendix
A.3.1 for associated graph parameters.

3 Empirical Evaluation

In this section, we undertake an empirical evaluation by comparing three baseline models. Our analy-
sis involves a comparison of training scenarios with and without hints, followed by comprehensive
testing across all SALSA-CLRS test sets. This evaluation sheds light on deficiencies in the models
on OOD test sets and therefore affirms the importance of the SALSA-CLRS benchmark.

Architectures. We use the same Encode-Process-Decode [14] from CLRS, but propose a slight
simplification. We omit the re-encoding of decoded hints to update the node hidden states. This
results in a simplification of the computational graph, making the architectures more scalable. We
compare three baseline processors, a GRU [15] adapted GIN? module [17], RecGNN [3], a recurrent
message-passing GNN for algorithmic tasks and PGN [18], which has shown promising performance
on the original CLRS benchmark. All architectures incorporate skip connections, implemented
by forwarding the encoded input and the two most recent hidden states to the processor. This
mechanism aids in mitigating vanishing gradient [19] issues. For a comprehensive overview of the
Encode-Process-Decode architecture, our proposed changes, and the baselines, please see Appendix
A4l

Experiments. Each baseline model is trained for each algorithm with and without the inclusion of
hints. Every run is confined to 100 epochs with early stopping. The batch size is eight graphs. All
reported values are means over five runs. For more details on the metrics and the experiments, see
Appendix A 4.

’Dijkstra and MST require edge weights, so we use GINE [16].
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Table 1: Scores for both models on all algorithms, reported as percentages. The used metric for
algorithms is denoted under the algorithm name. Models are trained only on ER graphs of size up to
n = 16 without hints (first column) and evaluated on larger sizes and different distributions (other
columns).

Graph Type ER WS Delaunay

n 16 80 160 800 1600 16 80 160 800 1600 16 80 160 800 1600

BFS GIN(E) 100.0 99.6 99.3 98.0 98.0 99.9 92.9 86.7 70.4 75.3 100.0 94.3 84.6 52.7 45.9

(Node Acc.)  PGN 100.0 99.8 99.5 99.0 98.9 100.0 95.5 88.7 75.9 80.6 100.0 98.2 90.4 53.6 40.3
RecGNN 100.0 99.8 99.5 99.3 99.2 100.0 97.8 94.2 82.2 82.1 100.0 98.5 92.0 67.1 55.6

DFS GIN(E) 49.3 30.6 19.7 18.1 16.5 29.7 159 16.8 22.3 20.1 46.7 28.0 25.1 23.4 23.2

(Node Acc.)  PGN 74.2 41.2 299 27.8 25.8 58.8 17.9 17.7 23.6 21.3 72.7 41.7 38.2 35.8 35.4

RecGNN  33.4 28.0 18.7 18.2 16.8 22.7 159 16.8 21.5 19.5 32.3 26.8 25.2 24.1 24.0

Dijkstra GIN(E) 98.0 89.8 84.3 75.8 72.8 95.4 85.0 79.9 61.4 52.6 97.4 81.6 70.4 46.5 39.9
(Node Acc.)  PGN 99.6 98.6 97.2 94.1 92.2 98.3 97.1 954 81.8 725 99.5 97.6 92.4 62.7 51.0
RecGNN 98.5 86.8 76.0 63.7 60.6 95.8 89.2 83.9 71.4 67.3 98.0 90.4 85.0 60.2 50.0

Eccentricity GIN(E) 57.3 7r.1 723 51.3 36.7 78.0 276 3.6 0.0 0.0 848 0.0 0.0 0.0 0.0
(Graph Acc.) PGN 100.0 100.0 100.0 100.0 64.6 100.0 93.8 100.0 25.6 5.2 100.0100.0 76.9 0.0 0.0
RecGNN  75.8 80.5 75.0 72.7 63.0 86.7 60.8 57.4 27.6 15.2 89.9 252 83 0.0 0.0
MIS GIN(E) 61.2 48.2 51.7 29.5 41.1 57.5 63.5 61.7 52.7 53.2 62.7 60.5 58.1 56.5 55.2
(Node F1) PGN 99.6 99.1 98.9 96.4 97.3 99.4 99.0 97.7 90.8 86.1 99.8 99.6 99.6 99.1 98.6
RecGNN  87.7 76.5 78.5 61.8 70.6 84.0 85.6 83.9 77.5 77.9 89.3 86.5 85.5 84.3 83.4
MST GIN(E) 92.6 79.1 77.6 745 72.9 89.6 753 T4.4 73.0 72.8 92.8 77.4 758 74.8 T4.7
(Node Acc.)  PGN 97.3 89.1 84.6 75.7 71.9 96.8 82.5 77.6 67.4 65.1 97.4 85.2 78.5 68.7 66.8
RecGNN  94.2 70.7 66.6 58.9 56.0 92.8 67.4 62.8 53.5 52.5 94.7 69.9 62.6 52.5 50.6

3.1 Evaluation

In Table 1, we showcase the performance of two baseline models on all SALSA-CLRS algorithms.
Note, as we increase the graph size, all models show a clear decline in performance. Furthermore,
we observe significant performance disparities among different graph types. Remarkably, different
algorithms show varying degrees of sensitivity to different graph types. For example, BFS shows
stability when applied to larger ER graphs, but its performance drops on large Delaunay graphs.
DFS shows the opposite behaviour. Similarly, the architectures show sensitivity to algorithms. For
example, RecGNN shows the best extrapolation performance on BFS, while PGN is clearly the
best on MIS. In general, the PGN model is often the best performer, in particular for DFS and
Eccentricity, and for MIS we even see a very strong performance up to the largest graph sizes. It
is worth mentioning that, consistent with previous findings [7], the incorporation of hints does not
lead to performance improvements across the board (see Tables 2 and 3). More details can be found
in Appendix A.4. It is important to emphasize the pivotal role of metrics selection. An example:
Despite seemingly excellent Node Accuracy scores of both baselines on BFS, the graph accuracy
shows a completely different picture (see Table 4). For larger graph instances, almost all graphs are
predicted incorrectly, despite achieving a near-perfect Node Accuracy. These findings underscore
SALSA-CLRS’s effectiveness in comprehensively evaluating architectural vulnerabilities in terms of
both scalability and graph diversity.

4 Conclusion

As traditional algorithms are invariant to input size, scalability and extrapolation are important when
evaluating learned algorithmic reasoning models. Thus, we introduce SALSA-CLRS, an extension to
CLRS designed for scalable architectures and sparse graph representations. Addressing the limitations
of the original CLRS benchmark, SALSA-CLRS focuses on graph problems that align with distributed
execution models. This orientation fosters scalability and improved assessment of generalization ca-
pabilities, particularly for larger graph instances. In addition to four CLRS problems, SALSA-CLRS
incorporates two additional algorithms rooted in distributed and randomized paradigms. By including
diverse out-of-distribution (OOD) test sets, which involve graphs up to 100 times the scale of the
training set and encompass various graph types, our empirical evaluation underscores the critical role
of such extrapolation for a comprehensive assessment of algorithmic reasoning. These OOD tests un-
veil several limitations that might remain concealed when examined solely within the CLRS dataset’s
confines. SALSA-CLRS serves as a tool for advancing Neural Algorithmic Reasoning, facilitating the
evaluation of scalable architectures on sparse graphs.
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A Appendix
A.1 Related Work

Algorithmic Learning. In recent years, the field of Algorithmic Learning has witnessed significant
advancements, driven by a convergence of ideas from neural network architecture and algorithmic
reasoning. To effectively tackle algorithmic tasks, models must incorporate a notion of variable
computation length that enables extrapolation to handle larger input states. Consequently, proposals
have emerged such as the differentiable Neural Turing machine [20] or RNNs with the capacity
to generalize across varying input lengths [21]. Schwarzschild et al. [22] successfully showed the
extrapolation capabilities of a recurrent architecture based on CNNs [23] with residual connections
on a series of algorithmic tasks, including mazes, prefix sums, and chess problems.

Recently, graph-based methods have gained traction, because of their capability to model different
sizes of inputs. In particular, the use of Graph Neural Networks (GNNs) has become a focus for
algorithmic learning. Notable instances of this trend include applications to problems like SAT, TSP,
and shortest path computations through algorithmic alignment [24—27]. Theoretical investigations
have established links between GNNs and dynamic programming algorithms, along with the parallel
computing paradigm [6, 28, 29]. Recent efforts have turned to improving the extrapolation capabilities
on extending extrapolation capabilities to handle larger graph instances in the context of algorithmic
reasoning problems [4, 30]. Grotschla et al. [3] present architectures capable of scaling up to sizes
1000 times that of the training data.

CLRS Benchmark. Introducing the CLRS benchmark, Velickovi¢ et al. [2] offer a comprehensive
benchmark featuring CLRS-30 a dataset with over 30 algorithms designed for algorithmic reasoning
tasks. This benchmark represents algorithms as graphs with task-specific inputs, outputs, and
intermediate states called hints. The CLRS has triggered a wide range of follow-up work. Ibarz
et al. [31] propose a generalist algorithmic learner, a single model capable of simultaneously
tackling all CLRS-30 algorithms. CLRS-30 evaluations include simple Out-Of-Distribution (OOD)
tests with graphs four times the size of the training graphs. Mahdavi et al. [7] provide an in-
depth exploration of OOD generalization within the CLRS framework, emphasizing the need for
diversified test sets consisting of more varied graphs. Several studies suggest that the inclusion
of hints, as suggested by the CLRS, is not necessarily beneficial [7, 8, 32]. Bevilacqua et al. [8]
introduce Causal Regularization, a data augmentation technique applied to hints, which enhances
OOD generalization capabilities. Their work indicates the effectiveness of hints when employed
correctly. Other architectural approaches to tackling the CLRS benchmark include [32-34]. Notably,
it has been shown that parallel counterparts of the sequential algorithms implemented in CLRS
prove to be more efficient to learn and execute of neural architectures, subsequently also leading to
improved OOD predictions [6].

A.2 Algorithms

Breadth-first search (BFS). The input is a pointer to the starting node. The output is the directed
BFS tree pointing from node to parent. Refer to Figure 6 for an example.

Depth-first search (DFS). The search starts at node 0, and the output is again the directed DFS
tree, pointing from leaf to root. Refer to Figure 7 for an example.

Dijkstra. The Dijkstra shortest path algorithm on a weighted graph. As input, the source node is
given. The output is the directed tree that corresponds to the shortest path from all nodes to the source
node, again pointing from the leaf to the source node. Refer to Figure 8 for an example.

Maximum Spanning Tree (MST). Prim’s algorithm for finding the Maximum Spanning Tree
(MST) of a weighted graph. As input, we are given a source node, and the output is the directed MST
pointing from leaf to root. Refer to Figure 9 for an example.

Distributed Maximal Independent Set (MIS). A Maximal Independent Set within a graph refers
to a maximal set of nodes where no two nodes are adjacent. Our implementation is derived from
the Fast MIS algorithm [10]. The algorithm relies on randomness, enabling a O(logn) distributed
runtime. The randomness is supplied as an input. The output is a mask over the nodes representing
the MIS. Refer to Figure 10 for a visualized example and to Algorithm 1 for an algorithm outline.
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Distributed Eccentricity. The eccentricity algorithm accepts a graph and a source node as input
and produces the source node’s eccentricity (also known as radius) as a scalar output. The eccentricity
is the maximum distance from the given node to any other node in the graph. It can be solved by a
combination of flooding a message through the graph and echoing the maximum value back to the
source node. See Algorithm 2 for an outline and Figure 11 for a visualized example.

Most of the chosen algorithms for SALSA-CLRS do not explicitly rely on the learned models to
perform value generalization by expressing the solution as topological encodings rather than scalar
values. However, computing the diameter in the Distributed Eccentricity task requires the models to
perform value generalization to larger scalar values for larger graphs. This might be one reason for
worse empirical performance compared to other tasks of the SALSA-CLRS benchmark. However, we
deem it important for the field of Neural Algorithmic Reasoning overall to consider the challenge of
value generalization, which is one of the motivations for expressing the Eccentricity task in this form.

Algorithm 1 Fast MIS 2 [10]

The algorithm operates in synchronous rounds, grouped into phases.

A single phase is as follows:

1) Each node v takes its precomputed random value (v) € [0, 1] and sends it to its neighbors.

2) If r(v) < r(w) for all neighbors w of v, node v enters the MIS and informs its neighbors.

3) If v or a neighbor of v entered the MIS, v terminates (v and all edges adjacent to v are removed
from the graph), otherwise v enters the next phase.

Algorithm 2 Eccentricity, adapted from [10]

The algorithm is a combination of flooding and echoing. Each node can be either dead or alive.
Flooding:

1) The source node sends the initial flooding message 1 to all neighbors and marks itself dead.
2) Each other node v, upon receiving the message the first time, increases the message by 1 and
forwards it to all alive neighbors. Node v also remembers its parent, the node it got the flooding
message from. Once the messages are sent, it marks itself dead.

Echoing:

3) If a node receives a flooding message and all of its neighbors are dead, it echos the message
back to all of its dead neighbors and removes itself from the graph.

4) If a dead node v receives an echo message, it waits until it got an echo from all of its neighbors
besides its parent. Then v echos the maximum of the received echos back to its parent. Finally, it
removes itself from the graph.

5) Once the source node has received an echo from all its children, the maximum received value is
its eccentricity.

A.3 Dataset
A.3.1 Graph Types

Erdos-Renyi Graphs (ER) [11]. An ER graph is generated by choosing each of the "22’ % edges

with probability p. In CLRS-30 this p is sampled from a range of numbers between 0.01 and 0.813.
In ER-graphs the degree of a node grows linearly with the number of nodes in the graph for fixed p.
This means that when choosing a static p, the larger the graph is, the higher its connectivity. Different
from CLRS-30, we ensure connectedness on all graphs. As we are interested in sparse graphs, we
choose p to be a function of the number of nodes n. Hence, we require p to be as low as possible
while the graph still remains connected with a high probability. Erdés and Renyi showed that for
c< % for ER graphs G with number of edges F(G) ~ clnT” the graph G is almost surely connected

[35]. As the average number of edges in an ER graph is E(G) = (g)p we choose p to be

Inn
p=c——
n

where c is a scalar that is randomly sampled out of the interval (1,2) to increase the diversity in
dataset. See Figure 2 for examples.

3They sample for the range [0.1,0.2, ..., 0.9] and square it.
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Figure 2: Examples of ER graphs withn = 16 and p = clnT” ~ 0.173c.

k=2, p=0.1 k=4, p=0.1 k=4, p=0.2

.

Figure 3: Examples of WS graphs with n = 16.

Watt Strogatz Graphs (WS) [12]. A WS graph, a Small World graph [13], is created by taking a
ring lattice — a ring where each node is connected to k neighbors ( % neighbors on each side) — and
rewire each edge with probability p to a random other node. WS graphs have the characteristic that
they are globally connected but show local clustering. We also enforce connectivity on WS graphs.
As p — 0o WS graphs approach ER graphs with p ~ (3) “Yonk, so we keep p relatively small. We
randomly sample k from [4, 6, 8] and p from the interval of (0.05,0.2). See Figure 3 for examples.

Delaunay Graphs. Delaunay graphs are created by sampling n points in the plane and computing
the Delaunay triangulation. As the graph of a Delaunay triangulation is planar, its average degree is
below 6. See Figure 4 for examples.

A.3.2 Dataset Statistics

SALSA-CLRS provides a training set, a validation set, and 15 different test sets. The training and
validation sets follow closely the datasets CLRS-30, ER graphs with n sampled randomly from
[4,7,11,13, 16]. We slightly modify this and choose p as described in Section A.3.1 and increase the
size of the training and validation sets to 10000 and 1000, respectively.

Figure 4: Examples of Delaunay graphs with n = 16.
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The SALSA-CLRS dataset test extrapolation for graphs of size 5x, 10x,50x and 100x the size of
the training graphs, resulting in graphs of size 16, 80, 160, 800, and 1600. This results in 15 different
test sets across the three different graph types to measure different facets of OOD performance.

A.4 Evaluation
A.4.1 Architectures

We use the same Encode-Process-Decode framework [14] that CLRS builds on. An encoder —
specific to every input feature — produces a latent representation of the input features. These latent
representations are aggregated (max) to yield a 128-dimensional node hidden state. Similarly, a
per-feature decoder computes the features from the node’s hidden state. Notably, when dealing with
hints, our model diverges from the CLRS approach. While CLRS decodes the predicted hints in each
algorithmic step, calculates a loss, and then re-encodes these hints, our approach streamlines this
process. We only decode the hint predictions to calculate the loss and do not re-encode the decoded
hints afterward. In the process step, a message-passing layer updates the node embeddings. As part
of the process step, node hidden states undergo an update via a message-passing layer. In scenarios
necessitating randomness, the precomputed randomness is concatenated to the processor input. Hints
and outputs are decoded from the last two hidden states as well as the input state.

The following three processor modules are evaluated, all employing maximum aggregation and layer
normalization [36]. We define k! to be the hidden state of node v at timestep ¢ and F to be the
aggregation function.

GIN(E). Standard GIN module with a two-layer Multi-Layer Perceptron (MLP) with ReLu activa-
tions and batch norm. We also add a GRU (Gated Recurrent Unit) Cell [15] after the message passing
to improve training stability. The update without edge weights is defined as:

B GRU [@l ((1 LR+ F h@) ,hf]}
weN (v)

RecGNN. The architecture proposed by [3], originally named RecGRU-E. Before the message
passing step, an MLP is applied on the edges — the concated node embedding. After each message
passing update all node embeddings are passed through a GRU cell. For algorithms that requsire
edge weights, we concat the edge weight to each message before we pass it through the edge MLP ©.
The update without edge weights is defined as:

) ]

PGN. The PGN architecture is introduced in [18]. It defines the following components: The source
node linear layer ©,, the target node linear layer ©,, the two layer message MLP ©,,,,,, the skip
connection linear layer © 4y, the output linear layer ©,,; and a ReLu activation o. The update
without edge weights is defined as

h;+1:GRu[( F oo
weN (v)

B (@‘gmp(hm Ot [ F Oy (0.(H) + @tmz,,))])

wEN (v)

A.4.2 Experiments

We use early stopping with patience 30. The patience is kept this high because we observed that some
training runs dip quite strongly before finding a new optimum. Further, we use a plateau scheduler
with patience 10 and factor 0.1. The seeds selected are 42 — 46. To combat exploding gradients we
apply gradient clipping on the 2-norm of the weights. Adding 2-norm regularization on the hidden
node states also helps with training stability. We employ different learning rates for the baseline
models, determined by a hyperparameter sweep on the Dijkstra algorithm. For GIN(E) and PGN, we
use a learning rate of 0.0004239, and for RecGNN we use 0.0008.

A.4.3 Metrics

For all problems, we report Graph Accuracy, referring to whether a graph was entirely solved correctly
or not. On the problems BFS, DFS, MIS, Dijkstra, and MST we report Node Accuracy, and for MIS

11
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we also report Node F1. As for Eccentricity, we predict a single scalar for the whole graph, the notion
of Node Accuracy and Node F1 is not applicable. To compute the Graph Accuracy for Eccentricity,
we round the predicted scalar and check whether it was correctly predicted. Additionally, we report
the Mean-Squared-Error (MSE) of the unrounded scalar prediction. For all problems predicting a
tree with Node Pointers* (BFS, DFS, Dijkstra, MST) each node either predicts its parent correctly
or not. An F1 score is not of interest here. It is important to highlight the reporting of all of these
metrics and their differences. The Node metrics can be misleading, as is apparent when comparing,
e.g., the Node Accuracy performance to the Graph Accuracy. If we predict a node mask, like in MIS,
the Node F1 score is the most indicative, as the Node Accuracy does not consider class imbalance.

A.4.4 Scalability

In Figure 5, we assess the scalability of SALSA-CLRS and CLRS by examining their GPU VRAM
utilization when used with the BFS algorithm. The figure shows the clear asymptotic advantage
brought by the sparsification in SALSA-CLRS. SALSA-CLRS manages inference of graphs as large
as 32768 nodes with less than 8GB of VRAM.

To obtain our results, we generated 10 graphs for each graph size using the default settings for
each benchmark. For more details regarding these graph types, please refer to Section 2.2. For
SALSA-CLRS, we employed the GIN architecture, while for CLRS, we compared the performance
of both the "trippled-mpnn" and "pgn" models. We processed all 10 graphs individually with a batch
size of 1. These measurements were conducted on an Nvidia A100 GPU boasting 80GB of VRAM.

Notably, CLRS is implemented in JAX [37], whereas SALSA-CLRS is based on PyTorch
[38], each of which reports memory usage differently. For CLRS, we report memory usage
as jax.local_devices() [gpu_id] .memory_stats() [’peak_bytes_in_use’] , while for SALSA-

CLRS, we use torch.cuda.max_memory_allocated() . These reported values might be notably

lower than what is indicated by the nvidia-smi tool, as the latter includes memory that is reserved but
not actively allocated.

It’s also worth noting that CLRS uses in-memory datasets, meaning that the entire dataset is stored in
RAM. While this approach offers runtime advantages, it can become a bottleneck when dealing with
large graphs and datasets due to high RAM usage. For example, a dataset with 1000 graphs of size
1600 does not fit on a machine with 64GB of RAM. In contrast, SALSA-CLRS offloads the dataset
to disk and dynamically loads the datapoints into RAM. As long as a single datapoint fits into RAM,
the dataset size is not a constraint.

A.5 Implementation of Node Pointers

A Node Pointer is used to encode the reference from one node to another and is often used to
represent the solutions of the algorithms, i.e., the BFS tree. However, not all fields that are of
type (*, Node, Pointer) behave exactly the same way. In the algorithms we have selected (BFS,
DFS, etc.), these fields share one property: The node pointer always points to a neighboring node.
Therefore, in order to derive these node pointers, the computational cost is proportional to the amount
of edges in the graph. However, for other algorithms that were part of CLRS-30 but are not yet
incorporated into SALSA-CLRS (Toposort, MST Kruskal, etc.), these node pointers are no longer
restricted in the same way. They could and must, in certain cases, point to arbitrary nodes in the graph
(and not just immediate neighbors). For this, all potential edges that could exist in the graph must be
considered — which is again in order of O(n?) and clashes with the idea of sparse computation on the
original topology.

In the example of topological sort, the topo feature, a node pointer, represents the output of the
algorithm. Each node points to the next element in the topological sort, and the last element points
to itself. This definition does not guarantee that the pointers are also part of the sparse graph. On
the other hand, in DFS, as it is implemented in CLRS, we compute the DFS tree starting at node 0.
The mentioned output feature pi , also of type node pointer, represents this tree by node pointers,

*A Node Pointer is a data type that serves as a reference to a single neighbor from among the various
neighbors connected to a node. To illustrate this concept, consider the case of a BFS tree (the result of the BFS
algorithm) in a graph, where a Node Pointer can be used to denote the edge leading to the parent node. We refer
to the original CLRS paper for more details.
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Figure 5: Scalability analysis of SALSA-CLRS and CLRS. Shown is the peak VRAM usage on a
NVIDIA A100 GPU with 80GB VRAM across 10 randomly sampled graphs with batch size 1 on the
BFS algorithm.

Figure 6: Example of BFS output. The red node corresponds to the source node, and the red edges
to the directed BFS tree.

pointing from child to parent. By definition, these nodes are neighboring, so pi can be encoded on a

sparse graph. Single Source Shortest Path uses topsort as a subroutine, so the hint topo_h encodes
the output of this topsort. Hence, we run into the same problem as described above. Kruskal uses the
pi variable in the union subroutine, which is not sparsely representable. For strongly connected

components, the scc_id output feature is a node pointer, pointing to the node with the lowest id in
each component. This, again, does not require that this edge exists in the sparse graph.
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Figure 7: Example of DFS output. The red node 0 corresponds to the source node, and the red edges
to the directed DFS tree.

S
o
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,( \.‘
o &

Figure 8: Example of Dijkstra output. The red node corresponds to the source node, and the red
edges to the directed shortest path tree.
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0.38

Figure 9: Example of MST output. The red node corresponds to the source node for Prim’s algorithm,
and the red edges to directed MST.

Figure 10: Example of MIS output. The red nodes correspond to the found Maximal Independent
Set.
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Figure 11: Example of an eccentricity output. The eccentricity of node 8 — the distance to the furthest
away node —is 3.
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Table 4: BFS Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 994 +038 925 +139  100.0 +00 100.0 £00 99.9 +o02 99.9 + 0.1

80 843 +139 594 +383 88.7 £59 88.1 £338 87.9 +338 81.7 130
160 575 +153 378 +£379 549 +215 66.3 +£87 558 £248 49.6 £252
800 2.2 +41 09 +14 0.2 o1 0.2 +03 4.6 te6s 1.8 +23
1600 0.1 +o02 0.0 +o1 0.0 £00 0.0 +00 0.4 +os6 0.0 +o1

WS 16 98.0 +42 92.8 +120 100.0 +00 100.0 00 100.0 £00 99.4 +13
80 5.7 £87 10.2 £138  13.1 +33 14.2 +36 325 +183  20.7 +135
160 0.2 +05 0.4 +o7 0.1 +o1 0.2 +02 1.0+12 1.3 +23
800 0.0 00 0.0 £00 0.0 £00 0.0 £00 0.0 £00 0.0 £00
1600 0.0 £o00 0.0 00 0.0 00 0.0 00 0.0 00 0.0 00

Delaunay 16 993 +10 852 +289 100.0 +00 100.0 £00 100.0 +00 99.9 +o02
80 25.1 +286 17.5+177 351 +383 262 +115 534 +115 187 +s4
160 0.7 14 0.2 +o03 0.3 +o4 0.1 +o01 1.7 12 0.0 +00
800 0.0 00 0.0 £00 0.0 £00 0.0 £o00 0.0 00 0.0 £o00
1600 0.0 £o00 0.0 £00 0.0 £00 0.0 +o00 0.0 £00 0.0 £00

(b) Node Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 100.0 £01  98.8 +24 100.0 £00 100.0 £00 100.0 £00 100.0 +o00

80 99.6 +04 95.3 +92 99.8 +o0.1 99.8 +0.1 99.8 +0.1 99.6 +02
160 99.3 +06 95.1 +389 99.5 +03 99.6 + 0.1 99.5 +03 99.3 +05
800 98.0 + 1.6 86.9 £261  99.0 +02 98.7 +03 99.3 +04 99.0 + 05
1600 98.0 £15 86.5+272  98.9 +o02 98.5 +03 99.2 +04 98.6 + 056

WS 16 99.9 +03 99.2 +14 100.0 £00 100.0 £00 100.0 £00 100.0 0.1
80 92.9 +42 83.0 £250 95.5 +o7 96.1 +o0s5 97.8 1.1 96.7 + 038
160 86.7 +55 77.5 +249 88.7 +15 90.8 + 03 94.2 +20 92.5 +20
800 70.4 108  60.6 £288 75.9 +33 76.4 + 16 82.2 +47 77.6 £33
1600 75.3 te.1 64.4 +324 80.6 07 80.6 + 1.0 82.1 +23 793 +17

Delaunay 16 100.0 01 98.1 +40  100.0 £00 100.0 £00 100.0 £00 100.0 +0.0
80 94.3 +56 79.5 +323  98.2 +o07 97.5 + 08 98.5 + 03 95.3 +23
160 84.6 +106 689 £326 904 +45 894 +16 92.0 +55 83.6 60
800 527 +172 428 164 53.6 +£70 53.2 +24 67.1 £+118  51.5 +4.1
1600 459 +i158 342 +100 40.3 +65 40.8 +32 55.6 £100 42.9 +50

19



SALSA-CLRS

Table 5: DFS Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 0.1 £01 0.0 %00 184 +377 199 £307 0.0 +00 45 +78

80 0.0+00 0.0+00 0.0xo00 0.0 +00 0.0 00 0.0 00
160 0.0+00 00+00 0.0+00 0.0 00 0.0 +00 0.0 £00
800 0.0+00 0.0+00 0.0x00 0.0 +00 0.0 00 0.0 00
1600 0.0+00 0.0+00 0.0+00 0.0 00 0.0 +00 0.0 +00

WS 16 00+00 00zx00 9.5=+212 32 +72 0.0 £o00 0.0 00
80 00+00 00+00 0.0+00 0.0 00 0.0 £00 0.0 £o00
160 0.0 +00 0.0+00 0.0 00 0.0 +00 0.0 00 0.0 00
800 00+00 00+00 0.0+00 0.0 00 0.0 £00 0.0 £00
1600 0.0 £00 0.0 %00 0.0 00 0.0 +00 0.0 00 0.0 00

Delaunay 16 0.0+00 0.0+00 139 +204 138 +230 0.0+00 5.8 +115
80 0.0=+00 00x00 0.0+00 0.0 00 0.0 £o00 0.0 £o00
160 00+00 00+00 0.0+00 0.0 00 0.0 £00 0.0 £00
800 0.0+00 00+00 0.0+00 0.0 00 0.0 £00 0.0 £o00
1600 0.0+00 0.0+00 0.0=+00 0.0 £00 0.0 +00 0.0 £00

(b) Node Accuracy
GIN GIN (H) PGN PGN (H) RecGNN  RecGNN (H)
ER 16 493 +81 41.5+75 742 +140 82.0+092 334 +145 48.3 £ 191

80 30.6 +40 304 +23 41.2 £33 384 +27 28.0 65 22.8 +47
160 19.7 £39 200 +31 299 +26 26.9 +25 18.7 + 41 13.5 t4s6
800 18.1 £38 195 +26 27.8 £21 249 +23 18.2 +44 13.1 +41
1600 16.5+35 17.8 +25 25.8 +2.1 23.1 +23 16.8 +43 12.0 +36

WS 16 297 +49 250+37 588 +208 57.6+176 22.7 £82 353 +177
80 159 09 158 +06 179 +17 17.0 16 159 +15 13.5 +26
160 16.8 +08 16.8 £04 17.7 +038 17.2 + 05 16.8 + 14 14.7 + 19
800 223 +06 227 +07 23.6+0s6 229 +13 21.5 +16 19.4 +21
1600 20.1 +o05 20.6 +06 21.3 +0s6 20.7 + 1.1 19.5 + 14 17.9 + 17

Delaunay 16 46.7 +73  39.6 +o1 727 +131 799 +88 323 +149 50.2 +217
80 28.0+31 283 +31  41.7 £39 38.3 +£39 26.8 +538 21.8 +32
160 251 +31  26.1 £37 382 +238 34.7 £37 252 +53 19.4 +338
800 234 +29 253 +20 358 +21 31.9 +37 24.1 +52 18.7 + 36
1600 232 +290 252 +290 354 +21 31.5 £37 24.0 £52 18.5 £35
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Table 6: Dijkstra Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GINE GINE (H) PGN PGN (H) RecGNN  RecGNN (H)
ER 16 734 +26 498 +108 94.6+11 895+10 81.7+1610 7T3.8+16
80 0.2 +02 0.0 £ 00 378 £69 3.3 +37 6.8 +61 0.0 00

160 0.0 00 0.0 00 52 +19 0.0 £ o1 0.3 +os 0.0 £00
800 0.0 +00 0.0 +00 0.0 00 0.0 +00 0.0 £00 0.0 00
1600 0.0 +00 0.0 £00 0.0 +00 0.0 00 0.0 00 0.0 +o00

WS 16 51.6 £30 28.7 £99 764 +40 70.8 £24 604 +£27 509 +56
80 0.0 £00 0.0 00 172 £28 0.4 +o0s6 8.4 +74 0.0 £00
160 0.0 +00 0.0 +00 09 +o0s8 0.0 +00 0.2 +02 0.0 00
800 0.0 00 0.0 00 0.0 £00 0.0 00 0.0 00 0.0 £00
1600 0.0 £o00 0.0 +00 0.0 00 0.0 +00 0.0 +00 0.0 00

Delaunay 16 66.6 +43 403 +104 930414 876+07 T44+199 664 +33
80 0.0 00 0.0 00 19.2 +42 04 +o0s 4.4 +as 0.0 £o00
160 0.0 £ 00 0.0 £00 0.1 +o00 0.0 £00 0.0 £00 0.0 £o00
800 0.0 00 0.0 00 0.0 £o00 0.0 00 0.0 00 0.0 £00
1600 0.0 £o00 0.0 £00 0.0 +00 0.0 00 0.0 £00 0.0 £00

(b) Node Accuracy
GINE GINE (H) PGN PGN (H) RecGNN  RecGNN (H)
ER 16 98.0 02 952 +13 99.6 01 993 +01 985+16 98.0 +o.1

80 89.8 £11 624 +70 98.6 +03 942 +25 86.8+154 32.9 216
160 843 +16 533 te2 972 05 92.0+23 76.0+221 250+174
800 75.8 22 404 +3.1 94.1 +06 87.1 £27 63.7+217 17.7 +122
1600 72.8 £23 369 +76 922 +07 845+34 60.6+277 164 +107

WS 16 954 +07 912 +35 983 +04 97.8+02 958 +42 95.5 +10
80 85.0+14 553 +93 97.1 £02 858 +60 89.2+141 363 +164
160 799 +19 48.1 £33 954 +03 809 +70 839+i189 294 +161
800 61.4 +40 38.6 +52 81.8 +12 60.5+83 714 +24 273 +123
1600 52.6 £41 35.6 +44 725 +60 524 +83 673 +177 26.6 +117

Delaunay 16 974 +04 942418 995401 992+01 980+19 974 +o4
80 81.6 £13 544 +713 97.6 +03 849 +68 904 +o97 35.6 +178
160 704 +26 452 +54 924 +07 728 +89 850=+100 29.5+170
800 46.5 £37  37.2 +41 627 +12 50.8 +46 602 +44  26.7 +144
1600 39.9 +36 36.0 £4.1 51.0+39 464 +31 50.0+36 26.3 + 141
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Table 7: MST Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GINE GINE (H) PGN PGN (H) RecGNN  RecGNN (H)
ER 16 432 +46 29.7 +56 792 +43 699 +61 568 159 245475

80 0.0 +00 0.0 £ 00 20 +12 0.0 +o1 0.6 £o0s8 0.0 00
160 0.0 00 0.0 00 0.0 £00 0.0 00 0.0 00 0.0 £00
800 0.0 +00 0.0 +00 0.0 00 0.0 +00 0.0 £00 0.0 00
1600 0.0 +00 0.0 £00 0.0 +00 0.0 00 0.0 00 0.0 +o00

WS 16 30.0 £41 204 +50 732 +91 657 +s838 444 +180 14.8 +54
80 0.0 £00 0.0 00 0.3 +o03 0.0 00 0.1 £o1 0.0 £00
160 0.0 +00 0.0 +00 0.0 00 0.0 +00 0.0 +00 0.0 00
800 0.0 00 0.0 00 0.0 £00 0.0 00 0.0 00 0.0 £00
1600 0.0 £o00 0.0 +00 0.0 00 0.0 +00 0.0 +00 0.0 00

Delaunay 16 430450 346+60 788 +41 726 +52 587 +158 260 +75
80 0.0 00 0.0 00 0.6 +o04 0.0 00 0.1 o2 0.0 £o00
160 0.0 £ 00 0.0 £00 0.0 £00 0.0 £00 0.0 £00 0.0 £o00
800 0.0 00 0.0 00 0.0 £o00 0.0 00 0.0 00 0.0 £00
1600 0.0 £o00 0.0 £00 0.0 +00 0.0 00 0.0 £00 0.0 £00

(b) Node Accuracy
GINE GINE (H) PGN PGN (H) RecGNN  RecGNN (H)
ER 16 92.6 08 89.6 17 973 +04 964 +06 942 +23 87.5 £24

80 79.1 13  51.6 £45 89.1 16 79.7 £38 T70.7 +278 29.0 67
160 77.6 £17 495 +43 84.6 17 756 +t45 66.6+282 257 +es6
800 745 +20 45.0 £42 757 £20 69.5+55 589 +20 21.3 +64
1600 729 +22 432 +40 719 £21 668 +51 56.0+285 20.1 +63

WS 16 89.6 +14 86.0 £21 96.8 +10 96.1 £10 92.8 +238 82.0 £ 40
80 753 +10 549 +e62 82.5+24 T745+39 674 +29 320+73
160 744 +14 527 +65 77.6 +26 725 +45 628 +232 29.6 +60
800 73.0 £24  50.9 +64 674 +£31 692 +44 535+290 249+73
1600 72.8 £23 54.1 +69 65.1 £33 688 +59 52.5+171 28.8 +387

Delaunay 16 928 +08 9l.1+15 974405 96.7+05 947+21 882 +21
80 774 06 584 +59 852 +15 T77.7+41 699 +21 342 +s4
160 758 +11 564 56 785 +14 743 +50 62.6+29 31.9+71
800 748 +17  55.0+56 68.7+10 T714+65 525+134 28.0+72
1600 747 +17 549 %55 66.8 £09 71.0x67 50.6+113 27.8+73
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Table 8: MIS Results. The table shows also the standard deviation across the 5 runs. Runs marked
with (H) are trained with hints. All numbers are given as percentages.

(a) Graph Accuracy
GIN GIN (H) PGN PGN (H) RecGNN  RecGNN (H)
ER 16 6.2+32 33 +2s 98.8 +02 98.6 £04 56.1 131  44.1 +538

80 0.0 00 0.0 +00 89.2 +46 889 +31 55+71 2.6 £15
160 0.0 +00 00=+o00 741 +101 762+73 0.8+16 0.1 02
800 0.0 00 0.0 +00 10.7 +105  18.0+s86 0.0 +00 0.0 £00
1600 0.0+00 0.0+00 2.0+25 5.2 +43 0.0 £o00 0.0 £00

WS 16 6.5+28 4.4 +23 98.1 + 06 98.2 +03 526 +146 46.5 +57
80 0.0 £00 0.0+o00 844 +s4 822 +74 9.0 +9s 42 +1.1
160 0.0 £00 00=+o00 583 +141 54.1+66 2.0+29 0.4 +o4
800 0.0+00 0.0+00 4.6+43 23 +17 0.0 00 0.0 00
1600 0.0+00 0.0+00 0.5=+06 0.1 +o00 0.0 +00 0.0 £00

Delaunay 16 6.1 +38 33 +22 989+06 98.6+04 56.0+133 469 +62
80 0.0 £00 0.0=+00 939 +22 922 +22 9.6 +78 48 +14
160 0.0+00 0.0+00 87.2+49 85.1 £34 1.7+22 0.3 +03
800 0.0 £00 00=+o00 41.2+s89 40.1+91 0.0=+00 0.0 £00
1600 0.0 £00 0.0 +00 17.4 £74 15.1+65 0.0 %00 0.0 00

(b) Node Accuracy
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 822 +25 799 +20 998 +01 99.8+01 93.6+22 922 +o07

80 816 £19 799 +22 99.6+02 994 +01 90.0+23 88.7+17
160 80.8 £24 782 +27 995+02 994 +02 90.1 +£25 88.3 +238
800 83.6+15 834 +0s 98.8+06 988+05 879+19 85.6+35
1600 80.8 +25 792+16 989 +05 989 +o07 88.2+26 847455

WS 16 842 +21 83.1+19 99.8+01 997401 933+22 929 +os
80 82.0+26 795+34 994 +03 995+02 926+26 922 +19
160 823 +24 798 +33 988+06 99.1+03 922420 91.8+26
800 843 +19 832+22 958 +26 98.6+08 91.8+33 90.5+43
1600 834 +26 81.8+26 933+44 982+13 914+35 88.8+60

Delaunay 16 825+32 80.6+31 999 +o01 998 +o01 943 +20 935+07
80 824 +30 80.6+35 99.8+01 99.7+01 934120 924 +14
160 81.5+32 798 +36 99.8+01 99.7+02 93.0+25 91.7 £22
800 809 +37 789 +37 995+02 994 +07 925+30 89.8 +46
1600 803 40 782 +37 993 +03 99.1+12 92.1+34 88.0+65

(c) Node F1
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 612 +70 521 +142 99.6+01 99.6+01 87.7 +43 84.9 +10

80 482 +111 268 £177 99.1 04 98.8 03 76.5 68 73.5 +52
160 51.7+1m1 294 +181 989 +05 98.7+05 785 +6s6 744 +30
800 295 +172 9.5 £381 964 +18 964 +16 61.8+109 51.8+190
1600 41.1 +146 183 +137 973 +13 974 +17 70.6 £94 60.1 +193

WS 16 575 +72 50.8+131 994 +03 993 +o02 84.0+50 82.4 +1.1
80 63.5 £7.1 505 +174 99.0 +06 99.0 £04 85.6+53 85.2 +35
160 61.7 +86 45.1 200 977 +11 982 +os5 83.9 +e7 83.7 £52
800 527 +128 340+199 90.8+53 963+19 T75+105 752+1s
1600 532 +131 325+199 86.1+£87 957 +20 T7.9+104 T2.1+158

Delaunay 16 62.7+83 565+140 998 +01 99.7+01 893 +36 875+10
80 60.5 +73 46.3 £200 99.6 £02 99.5+02 86.5+45 84.9 +29
160 58.1 +97 40.9 £+ 224 996 +02 994 +o03 855 +59 83.4 +47
800 56.5+111 37.0+231 991 +04 988 +14 843 +73 79.0 + 103
1600 552 +116 35042209 98.6+07 98.2+25 834 +32 75.1 £ 150
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Table 9: Eccentricity Results. The table shows also the standard deviation across the 5 runs. Runs
marked with (H) are trained with hints. Graph Accuracy is given as percentages and Graph MSE is
the Mean-Squared-Error (lower is better).

(a) Graph Accuracy
GIN GIN (H) PGN PGN (H) RecGNN  RecGNN (H)
ER 16 573 +212 253 +410 100.0 £00 100.0 £00 75.8 +262 95.0 +63
80 77.1 £175 23.8 +390 100.0 £00 100.0 £00 80.5 +350 96.6 +36
160 723 +180 26.1 £368 100.0 £00 100.0 £00 75.0 +£391  95.8 +4s6
800 513 +342  17.1 +329  100.0 £00 100.0 £00 72.7 +279 93.4 +103
1600 36.7 +176 16.0+217 64.6+149 83.0 65 63.0 £248  72.1 +209
WS 16 780 +187 253 +422 100.0 £00 100.0 £00 86.7 £257 99.0 £ 12
80 27.6 195 19.0 +188 93.8 +2.1 88.3 +13 60.8 £20.1  66.4 +224
160 3.6 +380 18.6 189 100.0 £01  100.0 £01 57.4 +387 46.2 +409
800 0.0 £00 4.6 £89 25.6 £75 34.8 +72 27.6 £294 14.1 +63
1600 0.0 00 9.8 £102 5.2 +33 9.2 +43 152 +137 83 +49
Delaunay 16 84.8 +124 248 +425 100.0+00 100.0+00 899 +194 99.6 +o0s8
80 0.0 00 170 + 125 100.0 £00 99.7 +o03 252 +376  51.0 £360
160 0.0 +00 3.0+58 769 198 644 +142 83 +119 194 + 117
800 0.0 +o00 0.0 +o00 0.0 +o00 0.0 +o00 0.0 +o00 0.0 +o00
1600 0.0 00 0.0 00 0.0 £ 00 0.0 00 0.0 00 0.0 00
(b) Graph MSE
GIN GIN (H) PGN PGN (H) RecGNN RecGNN (H)
ER 16 47.7 £2716 186.8 + 1546 0.0 00 0.0 00 14.8 + 96 6.2 +52
80 26.0 + 205 248.5 +1925 0.0 00 0.0 00 11.1 + 118 52 +37
160 439 +342 274.6 2119 0.1 01 0.1 +00 13.7 + s 5.0 +36
800 47.3 + 401 442.7 +3905 1.4 +23 0.2 +00 15.0 + 112 6.3 +56
1600 93.4 +437 357.5 +2103 22.7 +59 12.2 + 03 33.7 £ 139 29.0 £219
WS 16 18.8 110 220.6 + 1816 0.0 00 0.0 00 10.2 +94 2.9 +22
80 501.0 + 3016 524.5 +2779 153.3 + 1020 87.7 £289 98.9 +64.1 306.6 + 207.0
160 348.4 +2497 382.3 + 5816 2.1 +17 0.4 +o02 31.2 +231 84.8 + 707
800 2381.8 £ 13552 1815.2 + 13156 1699.8 + 14113 578.5 + 4354 527.5 + 3916 1797.0 + 9184
1600  2555.7 + 15182 1894.6 + 14217 1706.9 + 14153 632.4 + 4683 573.9 +2519 1761.0 + 11148
Delaunay 16 114 +63 217.6 +173.1 0.0 +00 0.0 +00 8.4 +92 2.0+13
80 590.4 + 4036 524.7 + 7542 2.8 +13 1.0 +o0s5 73.1 + 541 58.1 +748
160 1706.9 + 1025.6 1523.9 + 19567 131.0 + 1322 100.0 + 934 238.9 +2184 552.6 +456.0
800 11779.4 + 63403 12865.6 + 7419.7 11461.5 + 46528  8983.4 + 49775 6091.6 + 21610 13097.1 + 24124
1600 24314.6 + 133441 34168.0 £ 133136  26683.1 £77490 222104 + 72244  18734.3 £ 19857  29640.9 + 6097.9
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