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ABSTRACT
We present BuzzTrack, an email client extension that helps
users deal with email overload. This plugin enhances the
interface to present messages grouped by topic, instead of
the traditional approach of organizing email in folders. We
discuss a clustering algorithm that creates the topic-based
grouping, and a heuristic for labeling the resulting clusters
to summarize their contents. Lastly, we evaluate the cluster-
ing scheme in the context of existing work on topic detection
and tracking (TDT) for news articles: Our algorithm exhibits
similar performance on emails as current work on news text.
We believe that BuzzTrack’s organization structure, which
can be obtained at no cost to the end user, will be helpful
for managing the massive amounts of email that land in the
inbox every day.

ACM Classification: H5.2.f. [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
H4.3.c. [Information technology and systems applications]:
Communications applications. - Electronic mail. H3.3.a.
[Information storage and retrieval]: Information Search and
Retrieval. - Clustering.

General terms: Algorithms, Measurement, Design

Keywords: email, organization, clustering, topic detection,
topic tracking, sender behavior

INTRODUCTION
To help users deal with the growing amounts of email they re-
ceive, new structures of organization are needed. A paradigm
shift is taking place: Users are now turning to fast full-text
search functionality when looking for old emails in their
archive. However, sensibly organizing the unstructured in-
box is still a challenge. Typically, inbox data is viewed in a
list sorted by arrival time: There is no sense of importance,
coherence, or content.

In this paper, we address this challenge by grouping emails
into topics. A topic is a cohesive stream of information that
is relevant to the user – here, it consists of a number of
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emails which discuss or relate to the same idea, action, event,
task, or question, among others. Examples for topics are se-
quences of emails in which a meeting is organized and the
results are discussed, all emails in a newsletter, or an email
exchange with a coworker about a research idea. Topics are
not equivalent to threads. A thread consists of emails in the
same reply sequence. A topic may span several threads and
a thread may be distributed over several topics.

Several comparable approaches, such as task-, activity-, or
priority-oriented organization schemes, exist. Our method is
more general in that it covers all kinds of email-based dis-
cussions instead of just business processes or task-related
items. Another difference is that we seek to complement,
not replace existing email client functionality: The user’s in-
box stays untouched – we simply provide a view on the data,
which we integrate into the email client as a plugin, shown
in Figure 1.

Figure 1: Inbox view with BuzzTrack plugin; topic side-
bar on the left, grouped inbox view on the right.

Email organization has been stuck in the file-system-like
folder paradigm for a long time. Standard email clients, such
as Microsoft Outlook or Mozilla Thunderbird, store and dis-
play email in a folder hierarchy. Users have to set up these
folders and move emails into them manually or via user-
defined filter rules. While there has been much work on au-
tomatic foldering [4, 7, 14, 20], these methods are not widely
used. One reason for this is the distrust of users in the under-



lying classification algorithms: They fear that a misplaced
message may never receive the attention it deserves. In con-
trast, we never move messages out of the inbox, but provide
a view on the data.

A large proportion of users live with a flat inbox structure,
with just a few folders and filter rules for newsletters [16].
Our aim is to complement this flat structure with a view that
provides a fully automatic grouping of emails based on top-
ics, with no change to the inbox data and no additional cost
to the user.

How do we group emails into topics? Our techniques are
inspired by “topic detection and tracking” (TDT), a series
of NIST competitions [18] aimed at organizing news arti-
cles into coherent topics. As in TDT for news articles, the
core of our clustering algorithm is a simple text similarity
measure. Although email text is often of lower quality than
newspaper content, it is richer in non-textual information:
We can make use of sender-receiver relationships and be-
havioral measures such as the percentage of replied emails,
contact rankings based on email volume, past behavior, and
reply timing. The focus of our work was designing a clus-
tering algorithm which organizes email well, according to
standardized NIST measures. We investigated different clus-
tering methods and features, and present our findings in the
section on clustering.

Another problem we address is that of topic labeling: After
we identified topic groups, we label them so the user under-
stands their contents at a glance. We briefly present a heuris-
tic which uses the subject line for single-thread topics and
common subject or content words for multi-thread topics or
cases where the quality of the subject line is insufficient.

The rest of this paper is split into two parts: After reviewing
related work, a first section explains our email client plugin
and its functionality, while the rest discusses our clustering
and labeling algorithms.

RELATED WORK
The problem of email overload [23] is now widely acknowl-
edged and has found a lot of attention even in the popular
media. A variety of solutions have been proposed, including
task-based [22], activity-based [10], priority-based, [12], and
sender-based [3] organization schemes. For example, Dredze
et al. [10] provide successful algorithms to recognize emails
that belong to particular activities, such as organizing a con-
ference, reviewing papers, or purchasing equipment. Our ap-
proach is more general as it covers all kinds of discussions,
but comes at the price of slightly decreased accuracy.

Most similar to our work are the “personal topics” proposed
by Surendran et al. [21]. However, the mechanisms presented
there provide a retrospective view of past emails, whereas our
processing is an on-line scheme that is updated as new emails
come in. We had to apply simpler but less computationally
intensive schemes of topic clustering and labeling.

Automatic foldering [4, 7, 14, 20] also offers help in organiz-
ing email, but the user needs to manually create folders and
seed them with example data – a laborious task if many fine-
grained topics need to be differentiated. Many users distrust

these schemes because they might move emails out of sight,
never to be seen again [3].

While other models of text-based topic identification have
been proposed [6], the work presented here uses the same
techniques as topic detection and tracking for news articles
[18]. Allan et al. investigated making this technology more
accessible for normal users [2], but we are not aware of any
work that applied TDT to email.

There exists a considerable body of work on redesigning
email user interfaces, and grouping emails by various at-
tributes. Two examples are TaskMaster [5], which helps
users group emails, attachments, links, and other informa-
tion by outstanding task, and Bifrost [3], based on the simple
but ingenious idea of grouping emails based on the impor-
tance that the user manually assigned to contacts. In contrast,
we automatically display topic groups without requiring any
manual input. The user can still make manual corrections, if
desired.

APPLICATION OVERVIEW
This section presents the functionality of BuzzTrack, its im-
plementation, and usage.

BuzzTrack is implemented as an extension to Mozilla Thun-
derbird 1.5, but topic clustering and labeling is performed in
Python. We will make this software available for download
at www.buzztrack.net. The implementation contains
about 3,000 lines of JavaScript / XUL code and 14,000 lines
of Python code. Both components are platform-independent.

Figure 1 shows a typical screenshot of using BuzzTrack: A
topic list was added as a sidebar on the left, and the email
list on the right side groups emails by topic. When a new
email arrives, it is processed by the clustering component,
which returns either the decision to create a new topic for the
email or adds it to one of the existing topics. Depending on
application settings, each email can also be added to multiple
closest topics.

Each item in the sidebar shows additional information about
a topic: The topic label, a count and the names of all people
involved in the topic, and the number of unread and total
messages. In an expanded view, the full names of all topic
participants are shown. Figure 2 provides an example. When
the user clicks on a sidebar entry, the email list scrolls to the
topic.

Topics in the sidebar are generally sorted by last incoming
email. The user can “star” important topics to pull them to
the top of the list: This solves a common user problem that
important emails are quickly forgotten once they drop out
of the first few screens of the inbox [23]. The email list ig-
nores starring to mirror the traditional organization scheme
of many users.

Unlike with conventional folder-based systems, users do not
need to manually create or edit topic contents. However, they
can still manually fix mistakes made by the clustering algo-
rithm, either by drag-and-dropping items in the familiar way
or through context menus. Similarly, users can manually re-
name topic clusters.



Figure 2: Components and supported operations in
the topic sidebar.

We are also testing two experimental features: A useful “re-
ply expected” indicator marks topics in which the newest
email was addressed to the user and has not yet been replied
to. The other feature is “expand topic” / “contract topic” –
these two options pull less or more email into a certain topic
if the user thinks that the topic is too large or that important
messages have been left out. These operations retroactively
modify the clustering threshold for a given topic.

At present, we concern ourselves solely with incoming email
in the inbox. We assume that all spam has already been fil-
tered out, either by the spam filter integrated in the email
client or a filtering solution such as Spamato [1].

Note that the user can exit the BuzzTrack view and return
to the traditional three-pane setup by clicking a button in the
toolbar.

CLUSTERING
This section explains our clustering algorithm for grouping
email into topics. It is similar to methods used for clustering
news messages. Email is much richer in information content
than the text of news articles, and we are able to use a large
number of features for matching together emails, which we
will discuss in detail.

The basic algorithm is single-link clustering with a distance
metric which consists of a tf · idf text similarity measure
and several non-textual attributes. We use an on-line cluster-
ing algorithm, as we are interested in immediately handling
incoming emails.

The output of our clustering algorithm is a decision score that
describes whether an email should be matched to a topic or
not. When this score is below a clustering threshold for all
existing clusters, the email is mapped to a new topic. Else, it
is mapped to any number of closest topics. We have experi-
mented with different methods for generating decision scores
from feature values, including brute-force guessing, linear
regression models, and linear support vector machines.

This section describes the preprocessing steps for emails
and gives details of the features used in generating decision
scores.

Preprocessing
In a first step, we parse each email’s headers, email body, and
attachments. We remember header information but only keep
the file names of attachments. For the text similarity metric
at the core of our algorithm, we need to clean and tokenize
the email body and subject into terms of one word each and
perform the following operations:

• We convert foreign characters into canonical form.
• We remove words with special characteristics. This in-

cludes HTML tags, style sheets, punctuation, and numbers.
These will often contain information not relevant to topic
matching.

• Identify parts-of-speech. For topic labeling, which occurs
later on, we apply a part-of-speech tagger from the NLTK
Lite toolkit for Python [15].

• We run the full text of subject and body through Text-
Cat [8], a language guesser. If the language in which the
email was written is known, we apply the Porter stemming
algorithm to stem all words into their basic forms. We cur-
rently handle English and German. These two languages
make up 99.6% of our corpus. We do not use the informa-
tion from the language guesser for any other purpose.

Clustering Features
We now review the features we have constructed from the
email data. We denote the N emails in the inbox with
m1, ...,mN and the M existing clusters, which represent one
topic each and contain one or more emails, with C1, ..., CM .
There exists a set of all n stemmed terms that appear in all
emails. We refer to these terms as t1, ..., tn.

The first feature is a text similarity metric. We regard emails
as weighted word occurrence vectors. For a preprocessed
email mj , we refer to the term frequency of term ti as tfi,j ,
and to the document frequency of ti as dfi. We now define
the term weight wi,j as follows:

wi,j =
{

(1 + log (tfi,j)) log N
dfi

if tfi,j ≥ 1
0 if tfi,j = 0

To determine text similarity, we use a standard cosine mea-
sure. Given two emails mi and mj , we define the text simi-
larity measure as follows:

simtext(mi,mj) =
∑n

k=1 wk,i · wk,j√∑n
k=1(wk,i)2 ·

√∑n
k=1(wk,j)2

A second measure is also text-based and measures subject
similarity: It calculates the overlap between the set of words
Si, Sj in the subject lines of two emails:

simsubject(mi,mj) =
2|Si ∩ Sj |
|Si|+ |Sj |

Next, we use two people similarity metrics that compare the
set of people participating in a topic with the set of people to
which the email is addressed. For an email mi, we derive a
set ppl(mi) with all email addresses in the From, To, and Cc
headers. Similarly, for each topic cluster Ck, there is a set of
senders ppl(Ck) which contains all email addresses from all



emails in the cluster. We define two people-based similarity
measures as follows:

simpeople,subset(mi, Ck) =
|ppl(mi) ∩ ppl(Ck)|

|ppl(mi)|

simpeople,overlap(mi, Ck) =
2|ppl(mi) ∩ ppl(Ck)|
|ppl(mi)|+ |ppl(Ck)|

These are equivalent to the SimSubset and SimOverlap
metrics introduced in [10]. We also remove the user from
the ppl sets, as he or she is by definition present on the
receiver list of every message.1 In addition, we introduce
two variants of these indicators that operate on the domain
name parts of sender addresses only, simdomains,subset and
simdomains,overlap. They help in recognizing emails coming
from different people in the same organization or company.

The thread similarity measure is based on threading informa-
tion contained in the “References” and “In-Reply-To” email
headers. Almost all contacts in the corpus used modern email
clients that employed these headers. The simthread measure
gives the percentage of emails in the cluster which are in the
same thread as the new email:

simthread(mi, Ck) = |T |/|Ck|

The set T contains all mj ∈ Ck which are in the same thread
as mi.

We also add a number of simpler features, partly taken from
existing literature [10, 17], and enriched with additions:
• Sender rank: A ranking of contacts by the number of

emails received from them. We derive two additional fea-
tures by multiplying the sender rank with simsubject and
simtext.

• Sender percentage: Fraction of total emails in inbox which
came from the same sender in the past.

• Sender answers: Percentage of emails from the same sen-
der which have been answered by the user in the past.

• Time: A linear time decay measure indicating how much
time has passed since the last email in the topic.

• People count: Total number of people in the To/Cc headers
of an email.

• Reference count: Number of references to previous emails
in the header fields.

• Known people: Number and percentage of email addresses
in the To/Cc headers which have been seen before.

• Known references: Number and percentage of emails in
the references field whose ID matches an email we have
sent or received.

• Cluster size: Cluster size of the topic being compared.
• Has attachment: 1 if the email has an attachment, 0 else.

Generating Decision Scores
We use two methods to construct decision scores from fea-
tures. Both employ a linear combination of the feature val-
ues, which we normalize into a range of [0, 1]. In the “man-
ual” method, we take four features with high information
1The drawback of this choice is that we need a list of all email addresses of
the user – this is not immediately available from the email client, as there
may exist many aliases or forwarding addresses which the email client does
not know about.

gain, guess appropriate ranges for their weights, and run a
brute-force evaluator over the development set. For the sec-
ond method, we determined feature values for twelve high-
rank features in the development corpus, and trained a linear
support vector machine on the development set by sequential
minimal optimization [19] (“SMO”), as implemented in the
Weka toolbox [24].

Time Window
During single-link clustering, we only consider topic clusters
which have been active in the last 60 days. Statistics gener-
ated from the development corpus and existing research [13]
show that replies to emails typically arrive just days after the
previous email or never. However, we still need to be able to
catch topics with long inter-arrival times: For example, re-
minder emails or newsletters sent only once per month. As
we are not interested in organizing the user’s entire email
archive, topics older than than 60 days are dropped. A great
benefit of this design choice is that processing time per newly
arriving email is significantly reduced.

LABELING CLUSTERS
We use a simple heuristic for labeling clusters. In short, we
use significant common words from email subject lines, if
available, and resort to content words if the subject words
are not descriptive. While more elaborate schemes have been
presented [21], we cannot afford to spend much processing
power on deriving cluster labels on-line. A topic’s label is
recalculated every time a new email is added to it.

For this task, we use information from several sources: In the
preprocessing step, we use a tagger to identify nouns. During
clustering, we derive a tf · idf value for each stemmed word
term in each email. For each of these terms, we keep track of
its most popular non-stemmed version and the most popular
capitalized version.

Capitalization is an important factor: Users are well aware
of the favored capitalization of certain terms, which are often
very descriptive names or identifiers – “TDT,” “Sarah,” and
the like. These words also tend to have high tf · idf values,
and likely to appear in the topic label. In previous work [2,
21], only the lower-case version was shown.

Our algorithm distinguishes three cases:

1. If the topic consists of emails from just one thread with at
least two words in the common subject, and these words
have sufficiently high tf · idf weights, set the label to the
common subject (with “Re,” “Fwd,” and similar prefixes
removed). The first constraint ensures that we cover all
emails in a topic, while the last two constraints seek to
guarantee sufficient descriptiveness for the topic.

2. If there is more than one thread, try to find a subset of at
least two subject words which occur in every email’s sub-
ject, and have sufficiently high tf · idf weights. If such
words are found, set them as the topic label. This method is
very useful for finding newsletter labels, as they have sub-
jects of the form “FTD Newsletter - 28 Aug 2006,” “FTD
Newsletter - 4 Sep 2006,” and so on. In this example, the
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Figure 3: Example graph of occurs-after relationships
between high-tf ·idf terms. The numbers in parenthe-
ses give the average first position. Here, “your,” “with,”
and “shipped” are not nouns and not high-tf · idf
words. Due to stemming, “item” and “items” map to
the same term. The resulting label would be “Amazon
order status items”.

topic label will be “FTD Newsletter,” a good description of
the topic contents.

3. If the first two methods fail, we take the 3 highest-tf · idf
noun words for the cluster.

After having selected words for the label, how do we order
them? We go back to the tokenized mail structure and look
up the first occurrences of each word in each document’s sub-
ject plus body. Depending on their relative order, we con-
struct a directed, weighted graph of “occurs-after” relations.
Each edge in the graph has an associated count with the num-
ber of emails in which the source word occurs before the tar-
get word.

As the first word, we choose the one with the highest value
for total outgoing weight minus total incoming weight. We
then traverse the graph by choosing the highest-weight link
each. If two links share the same highest weight, we choose
the word with the lowest average first position of the word.
Figure 3 provides an example graph and result.

Note that we need to keep an extra tf · idf value for labeling:
We regard the emails of the entire cluster as one document
as compared to the entire document collection. This is useful
if many emails inside the cluster contain the same word, but
the word never occurs outside the cluster. This word is very
descriptive for the cluster, but with a per-document tf · idf
measure, its value may be too low.

We found that this method produces labels of sufficient qual-
ity. We did not specifically cover label quality in our evalu-
ations. In case the generated label is bad, the user can still
manually rename the topic as a last resort.

EVALUATION METHODOLOGY
For evaluating our clustering scheme, we follow the guide-
lines provided by NIST for the evaluation of topic detection
and tracking on news articles [18]. We give a short overview
here.

The TDT evaluation scheme defines two tasks: New Topic
Detection and Topic Tracking. In effect, the clustering eval-
uation is recast into two detection tasks.

The New Topic Detection Task (NTD) is defined to be the task
of detecting, in a chronologically ordered stream of emails,

the first email that discusses a new topic. For each email in
the stream, the output can be “yes” (the email is a new topic)
or “no” (the email is not a new topic).

The Topic Tracking Task (TT) is defined to be the task of as-
sociating incoming emails with topics that are known to the
system. A topic is “known” by its association with emails
that discuss it. Each target topic is defined by the first email
that discusses it. The tracking task is then to classify cor-
rectly all subsequent emails as to whether or not they discuss
the target topic. For each topic / email pair in the stream, the
output can be “yes” (the email belongs to the topic) or “no”
(the email does not belong to the topic).

For each decision in each task, the system must output the
decision score which describes the level of confidence with
which the classification was made. These scores will later be
used to find a threshold which presents the optimal trade-off
between misses and false alarms.

Detection quality is characterized in terms of the probability
of miss and false alarm errors, pmiss and pFA. These error
probabilities are combined into a single detection cost:

Cdet = Cmiss · pmiss · Ptarget + CFA · pFA · Pnontarget

where:

• Cmiss and CFA are the costs of a miss and a false alarm.
• pmiss and pFA are the conditional probabilities of a miss

and a false alarm.
Misses are false negatives: pmiss is equal to the number
of “yes” instances classified as “no,” divided by the total
number of “yes” instances.
False alarms are false positives: pFA is equal to the num-
ber of “no” instances classified as “yes,” divided by the
total number of “no” instances.

• Ptarget and Pnontarget are the a priori target probabilities
(Pnontarget = 1− Ptarget).

Relative costs for misses and false alarms depend on the
tasks. The a priori probabilities depend on the detection
probabilities for the corpus. From our development corpus,
we determined a value for Ptarget of 0.3 for the NTD task,
and a Ptarget of 0.02 for the TT task. As in the NIST evalua-
tion, we believe that misses are far more dramatic than false
alarms: We choose Cmiss = 1.0 and CFA = 0.1.

Lastly, Cdet is normalized such that a perfect system scores
0 and a trivial system which always emits “yes” or “no,” de-
pending on whether “yes” or “no” instances are more com-
mon, scores 1.

Cdet,norm = Cdet/ min(Cmiss · Ptarget, CFA · Pnontarget)

The normalized minimum detection cost characterizes the
overall performance of a clustering scheme.

CORPUS
To carry out the evaluation, we needed a corpus to compare
clustering results with a defined target. We manually created
a corpus of topics from the email of one of the authors.

Why not use or adapt an existing corpus? One consideration
was to use the Enron corpus [14] and manually group emails



into topic groups, possibly using as a guide the existing or-
ganization structure of users with a large number of folders.
However, we rejected this idea for three reasons: First, be-
cause we would essentially organize a stranger’s email, we
would have no idea about what constitutes a topic for that
person. Second, one of the features we use in clustering is
the threading information present in email headers (“Ref-
erences” and “In-Reply-To”). These headers are present in
only few messages of the Enron corpus, although there have
been efforts to reconstruct thread structures based on mes-
sage contents and undocumented Microsoft Exchange head-
ers [25]. Lastly, the author whose email was used kept all
communication from the past years – unlike with the Enron
corpus, we could be sure no emails would be missing in the
evaluation.

The corpus was manually divided into topics by its owner. It
covers one academic semester at ETH Zurich, with the first 4
months used as a development set. The test set with the last 2
months of email data was used to get final results only. Fig-
ure 4 shows the resulting split. We use a fixed trained model
derived from the development set to generate decision scores,
since users are unlikely to have large amounts of prelabeled
data to train the classifier on.

Development Set Test Set
Number of emails: 1586 817
Time range: Oct 1, 2005 to Feb 1, 2006 to

Jan 31, 2006 Mar 31, 2006
Languages: 730 English 420 English

851 German 397 German
Number of topics: 537 269
avg(emails/topic): 2.95 3.03
std(emails/topic): 5.64 4.91
max(emails/topic): 69 47

Figure 4: Corpus statistics.

What criteria were used to assign emails to topics? The name
“topic” means different things to different people, and the
definitions are very subjective. Here are some typical exam-
ples for topics in the corpus:

• All emails belonging to the same newsgroup.
• All emails from a small-volume sender with whom only

one subject was discussed.
• For larger-volume senders, emails were subdivided further

into coherent conversations. For example, one topic con-
tains emails from a colleague inquiring about the owner’s
experience with a particular brand of digital camera. In
a second thread, a number of emails are exchanged dis-
cussing image quality. Half a week later, in yet another
thread, the sender has bought the camera in question and is
proudly sending a test photo.

• Conversations with multiple people, about the same activ-
ity. For example, one topic covers all emails of the process
of recommending candidates for an internship: Emails are
exchanged with the candidate and two company recruiters.

Two difficulties are thread drift and topic drift. Thread drift
means that a topic contains several threads, as in the digi-
tal camera example. The average topic in the development
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Figure 5: Information gain ranking of features from
development corpus data: New Topic Detection and
Topic Tracking tasks.

set consists of 2.44 threads. Topic drift means that the same
thread contains information about different topics: One par-
ticularly annoying example is a colleague who uses the “Re-
ply To” button instead of “New Mail”: When emailing the
author, he simply searched for the last email from the cor-
pus owner, hit “Reply To,” and only sometimes deleted the
quoted text. This type of behavior is hard to detect, as con-
tinued threads are usually very strong signals of an email be-
longing to an existing topic. Gladly, the average number of
topics per thread in the development corpus is just 1.04 – this
problem applies to only a small number of emails.

EVALUATION RESULTS
Which features help in making correct decisions? For the de-
velopment corpus, we calculated the information gain mea-
sure for each feature, measured as H(C|F ), with class C
(“yes”/“no”) and feature F . Features that are more useful
for decisions will have higher information gain. Figure 5
shows the information gain of each feature for performing
both tasks on the development corpus. While textual, thread-
based and people-based attributes are useful in both tasks,
other attributes seem less valuable. One striking result is that
our linear time decay measure does not help in clustering
emails, due to the high number of topics being discussed in
parallel. One the other hand, it is no surprise that the attach-
ment indicator is useless for clustering purposes.

We use Detection Error Tradeoff (DET) curves [18] to visu-
alize the trade-off between the missed detection rate pmiss

and the false alarm rate pFA. The curves are constructed by
sweeping the clustering threshold through the system space
of decision scores. At each point in the score space, pmiss
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Figure 7: TT Task: DET curve with minimum cost
points.

and pFA are estimated and plotted as a connected line. We
mark the point on the curve for which the detection cost Cdet

is minimized. Figures 6, 7, 8, and 9 show results for the
test corpus. For reference, we included results for simpler
decision scores derived from text similarity only – the main
feature used in traditional TDT.

These results are comparable in performance to that of cur-
rent work on TDT in news articles [11]: In comparison, our
TT quality is a bit worse, and NTD performance a bit bet-
ter. This demonstrates that while the text quality of emails is
low in comparison to news articles, we were able to leverage
the extra information present in email. The difficulty of this
model is the highly subjective definition of topics and depen-
dence on tastes of users. Difficulties arise for the clustering
algorithm when new emails arrive for a topic without sharing

Task text only manual SMO
NTD 0.575 0.503 0.425
TT 0.396 0.184 0.171

Figure 8: Minimum detection cost Cdet,norm for NTD
and TT tasks.

people or vocabulary with the previous emails. Typical ex-
amples are topics which reflect a user’s role, e.g. as a system
administrator: Printer problems and account requests are in
the same topic, but deriving a connection between the two
is hard. For the user, the consequence is that topics may of-
ten need to be manually merged. However, high false alarm
rates also present a problem in on-line new event detection
for news content.

In addition to the results presented here, we have also experi-
mented with supervised clustering, where tracking errors are
instantly corrected during evaluation. This resulted in im-
proved TT performance, as discussed in [9].

With our current Python 2.4 implementation, running on a
PC with a 1.8 GHz Pentium-M processor and 1 GB RAM,
100 active clusters and 350 emails in these topics, clustering
an incoming email takes between 10 ms and 500 ms. In the
same state, labeling each topic takes approximately 100 ms.
Such short delays are acceptable to email client users.

FUTURE WORK
In the future, we want to further improve clustering perfor-
mance, based on the broad range of existing work for news
articles. Also, we plan to investigate methods clustering to-
gether related topics, which may be constructed from exist-
ing decision scores. The topic corpus we built from email
data is actually hierarchical, and the TDT evaluation guide-
lines already suggest ways of evaluating hierarchical clus-
tering methods. Finally, we would also like to experiment
with BuzzTrack’s user interface and introduce useful addi-
tions. For example, instead of the grouping scheme proposed
here, the inbox view could provide context by showing a vi-
sual map of emails related to the one currently selected.

CONCLUSION
Users of email in today’s corporate environments deal with
large amounts of incoming email. To stay on top of it, they
rely on methods such as manually sorting emails into folders
or searching through an unstructured inbox. We designed,
implemented, and evaluated a system which, at no cost to
the user, generates a sensible structure for the contents of the
inbox. Namely, we structure the inbox by topic – emails re-
volving around the same question, idea, or theme. This is a

Task pmiss pFA Success Prec Rec
NTD text 0.07 0.29 0.78 0.61 0.93

manual 0.03 0.38 0.74 0.56 0.97
SMO 0.03 0.30 0.79 0.61 0.97

TT text 0.03 0.02 0.98 0.13 0.71
manual 0.10 0.02 0.98 0.20 0.90
SMO 0.08 0.02 0.98 0.19 0.92

Figure 9: Quality measures in minimum cost point for
NTD and TT tasks.



broader perspective than existing approaches which focus on
task- or business process-related email sorting. Unlike au-
tomatic foldering, the user does not need to manually create
folders or create a root set for learning folder contents: New
topics are recognized automatically. Our clustering methods
and their evaluation were inspired by the work in the TDT
(topic detection and tracking) community, and we found that
these techniques also perform well on email data. We devel-
oped the BuzzTrack plugin for a popular email client to ac-
cess this functionality through a user-friendly interface. We
believe this will be a valuable tool for users in the real world.
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