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Abstract. This study addresses the challenge of assessing railway track
irregularities using convolutional neural networks (CNNs) and conformal
prediction techniques. Using high-fidelity sensor data from high-speed
trains, the study proposes a CNN model that outperforms state-of-the-
art results, achieving a mean unsigned error of 0.31 mm on the test set.
Incorporating conformal prediction with the CV-minmax method, the
model delivers prediction intervals with 97.18% coverage, averaging 2.33
mm in width, ensuring reliable uncertainty estimation. The model also
exhibits impressive computational efficiency, processing data at a rate
suitable for real-time applications, with the capacity to evaluate over
2,000 kilometers of track data per hour. These advances demonstrate
the potential of the model for practical implementation in continuous
monitoring systems, providing a contribution to the field of predictive
maintenance within the railway industry.

Keywords: Railway track integrity, convolutional neural networks, con-
formal prediction, predictive maintenance, sensor data analysis, machine
learning

1 Introduction

In the evolving landscape of transportation, railways play a pivotal role, offering
a blend of efficiency, reliability, and environmental sustainability. As rail net-
works burgeon, paralleled by an upsurge in speed and passenger expectations,
the imperatives of track safety and maintenance have ascended to the forefront
of railway operations. The integrity of railway tracks, susceptible to irregularities
due to wear and external forces, directly influences the safety, comfort, and op-
erational efficiency of rail services. Traditional track inspection methodologies,
although precise, grapple with limitations such as high operational costs, limited
coverage, and high latency between inspections. The advent of machine learning
and sensor technology indicates a transformative approach that allows continu-
ous, real-time monitoring of track conditions by collecting data from in-service
railway vehicles to generate predictive machine learning models.

This study delves into applying convolutional neural networks (CNNs) and
conformal prediction methods to preemptively identify track irregularities from
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dynamic responses of in-service railway vehicles. The research is based on the use
of high-fidelity sensor data from a high-speed train, embodying a shift from con-
ventional reactive maintenance strategies to a predictive maintenance paradigm.
The fusion of CNNs with conformal prediction offers a robust way to quantify the
uncertainty of predictions, improving the reliability of the predictive framework.
This integration not only showcases the potential of deep learning to decipher
complex patterns from high-dimensional data but also underscores the impor-
tance of conformal prediction in providing robust, uncertainty-aware inferences.

Focusing on the prowess of the convolutional neural network, the study high-
lights the architecture, training, and optimization decisions that underpin the
successful application of CNNs to the task at hand. CNNs are used because
of their ability to handle spatial hierarchies in data, making them especially
suitable for analyzing the nuanced dynamics captured by onboard sensors. The
investigation extends to the realm of conformal prediction, highlighting its util-
ity in giving prediction intervals that encapsulate the expected deviations with a
quantifiable confidence level. The results derived from this application of CNNs
and conformal prediction not only demonstrate a marked advancement in the
accuracy and reliability of track irregularity prediction but also show the way
for operationalizing these insights in real-world railway maintenance operations.

The prediction errors of the models, i.e., the difference between the pre-
dictions and the actual values, will have to be low enough so that it can be
determined if the operating limits are exceeded. The EN:13848-5 standard [8] is
used to establish a benchmark. This document contains operating limits for the
track measurements at various speeds. The strictest limits are deviations of 1
mm for 100-meter running means and standard deviations. Based on this, a 0.1
mm benchmark will be chosen for the mean unsigned error, ME. Furthermore,
to ensure that the predictions can be safely used to assess operating limits, fur-
ther benchmarks are established to say that the maximum of the unsigned errors
is below 0.5 mm. Since the limit values in [8] are only specified to the nearest
millimeter, a maximum unsigned error of less than 0.5 mm would imply that all
running means are within 0.5 mm of the actual value.

Kawasaki and Youcef-Toumi [11] give error ranges that would accept maxi-
mum unsigned errors of less than 4 mm and an ME of around 1 mm, while Hao
et al [9] set a benchmark of 0.25 mm and 0.45 mm of the mean unsigned error in
the wavebands [3 m, 42 m] and [42 m, 120 m], respectively. These are less strict
than our benchmarks mentioned above. We therefore set additional benchmarks
of an ME of 0.35 mm (the mean of 0.25 mm and 0.45 mm) and a maximum
unsigned error of 4 mm and call these the “satisfying” levels.

2 Related work

Vehicle dynamics Traditionally, the integrity assessment of railway infrastruc-
ture has relied heavily on periodic inspections using specialized measurement
vehicles, a process that, while accurate, suffers from limitations such as high
costs, limited coverage, and the potential for subjective error. Ravitharan [18]
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highlight the operational benefits of proactive maintenance strategies, advocat-
ing for continuously monitoring track conditions using in-service railway vehicles,
a concept explored over the past two decades [11, 26]. Lee et al [12] underscores
the direct correlation between vehicle dynamics and track conditions, laying the
foundation for the use of vehicle dynamics as a means of assessing track quality.

Classic Methods Prior works have largely focused on classical mathematical anal-
ysis tools, such as Kalman filters, system identification techniques, digital and
analog processing, and other signal processing methods [3, 5, 11, 12, 15, 16, 22,
25]. These works have prioritized interpretable models over complex data-driven
solutions. These traditional methods often encounter mathematical difficulties,
such as the issue of double integration of accelerations to obtain positions, which
complicates their application in real-world scenarios [26].

Deep Learning Recent advances in machine learning, particularly in the applica-
tion of convolutional neural networks (CNNs), present promising alternatives to
traditional methods. Data-driven machine learning models have begun to shift
the paradigm in various domains, demonstrating superior performance in fields
such as image analysis [1, 17]. In the context of monitoring the condition of the
railway track, initiatives have explored the use of cameras on board and binary
classification techniques to differentiate between good and bad track conditions
[7, 14, 21, 27]. However, the adoption of machine learning in this domain is not
without its challenges. Despite their promise, these approaches face their own
set of limitations, including computational demands and the lack of severity
assessment in track irregularities [14].

Research by Hao et al [9] presents a notable advancement, which showcases
the potential of deep learning approaches to predict vertical track irregularities
with a high degree of precision. However, this method does not address lateral
irregularities and is based on simulated data, which may not fully capture the
complexity of real-world track conditions. Similarly, the use of autoencoders to
compress irregularity data presents innovative solutions but is again limited to
simulated environments and specific types of irregularities [13].

Exploring data-driven methods for road quality monitoring has also yielded
encouraging results, suggesting that similar approaches could be beneficial for
the maintenance of railway tracks [23].

3 Methodology and Data

This section outlines the methodology employed to predict railway track irreg-
ularities using Convolutional Neural Networks (CNNs) complemented by con-
formal prediction techniques to estimate the uncertainties of these predictions.
The section also includes a bit of background for these methods, how the CNN
is designed specifically for the task at hand, and training the model. In addition,
we will look at the data used for this project.
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Label Unit Description Notes

Position km Position along the track

Lateral left D1 mm Lateral irregularities of the left
and right rail in the D1
wavelength domain

D1 is the first
frequency band
with wavelengths
in [3 m, 25 m]

Lateral right D1 mm

Vertical left D1 mm Vertical irregularities of the left
and right rails in the D1
wavelength domainVertical right D1 mm

Lateral left D2 mm Lateral irregularities of the left
and right rail in the D2
wavelength domain

D2 is the second
frequency band
with wavelengths
in [25 m, 70 m]

Lateral right D2 mm

Vertical left D2 mm Vertical irregularities of the left
and right rails in the D2
wavelength domainVertical right D2 mm

Lateral left D3 mm Lateral irregularities of the left
and right rail in the D3
wavelength domain

D3 is the third
frequency band
with wavelengths
in [70 m, 200 m]

Lateral right D3 mm

Vertical left D3 mm Vertical irregularities of the left
and right rails in the D3
wavelength domainVertical right D3 mm

Table 1. Features in a sample of geometry dataset – With labels used in this project.

3.1 Data Collection and Preprocessing

The data used in this study comprise high-fidelity sensor readings from a high-
speed train, capturing various dynamic responses under operating conditions.
The preprocessing steps involved the removal of outliers and normalization and
segmentation to ensure compatibility with the CNN architecture. This prepro-
cessing facilitated the transformation of raw sensor data into a structured format
conducive to machine learning models.

Data are collected using multiple accelerometers located at various points
on the railway vehicle; see Fig. 1 for locations. The input data consist of time
series with measurements from each accelerometer. The output data consist of
the irregularities of the track in the lateral and vertical directions for the left
and right rails. These have been split into three frequency domains D1, D2,
and D3 with wavelengths of [3 m, 25 m], [25 m, 70 m], and [70 m, 200 m],
respectively, thus giving 12 output series. An outlier analysis found that five of
the sensors had regions where they were faulty; in these regions, the faulty data
were zeroed. Data were collected with a sampling frequency of ≈ 1000 Hz, and
this was interpolated to have a constant sample spacing of 0.167 m. The train
did not drive at a constant speed, so the spacing was irregular in the positional
domain before interpolation. The features in the track geometry (output) data
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Fig. 1. Data measurement locations of the vehicle dynamics. The red arrows indicate
the placement of the accelerometers on the axle boxes, bogies, and car body.

can be seen in Table 1 with a large table of all dynamics (input) features in
Appendix Table 4.

We then split the data into training and testing regions. The data have
287,827 observations in total, and the 1st to 23,827th sample, the 94,001st to
117,827th sample, and the 188,001st to 211,827th sample are used as the test
data. The training data consist of the 23,828th to 94,000th sample, the 117,828th
to 188,000th sample, and the 211,827th to 281,827th sample. These regions have
been shown in Fig. 2. The training data are further divided into training and
validation segments by splitting it into 9 regions and using 1 for validation and
the remaining 8 for training. Six of the nine regions are used for validation; a
separate model is trained for each of the six validation regions, and the results
are the mean across the six models.

3.2 Convolutional Neural Network (CNN) Architecture

The CNN architecture was designed to process time-series data, capturing spatial
and temporal dependencies inherent in the train’s dynamic responses. The model
comprises multiple convolutional layers, each followed by pooling layers to reduce
dimensionality and enhance feature extraction. Dropout layers were incorporated
to mitigate overfitting, ensuring the model’s generalizability across different track
conditions. The model consists of batch normalization of the input and then 3
hidden CNN layers using batch normalization, the ELU activation function, and
dropout of 60 %, with a final CNN layer to obtain the output [6, 10, 20]. The
first convolutional layer uses very large kernels to ensure that features with 300
m wavelengths can be captured. This is relevant as the irregularities can exhibit
wavelengths up to 200 m. A diagram of the final network has been shown in
Fig. 4.
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Fig. 2. Training and testing regions of the data. During the training of the models,
the training data is divided into training and validation segments by splitting it into 9
regions and using 1 for validation and the remaining 8 for training.

Hyperparameters, including the learning rate, number of convolutional layers,
kernel size, and dropout rate, were tuned using a combination of grid search
and cross-validation to find the optimal model configuration by comparing the
validation losses.

3.3 Conformal Prediction Framework

To quantify the uncertainty of CNN predictions, we applied conformal prediction
methods. These methods use residuals from the training dataset to construct pre-
diction intervals for new observations. Different variants of conformal prediction,
Näıve, Holdout, and Cross-Validation, were evaluated to determine the most ef-
fective approach for this application. The Cross-Validation variant can further
be split into three versions, CV, CV+, and CV-minmax [2, 4, 19, 24]. The best
intervals were produced by CV+ and CV-minmax, so the results will include
only these. These methods have assumption-free theoretical guarantees that the
α level interval contains > 1− α of the samples [4]. For our results, we will use
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Fig. 3. Depiction of the CNN after tuning the hyperparameters.

α = 0.05 intervals. The focus on CV+ and CV-minmax is due to the better
theoretical guarantees of these methods [4].

3.4 Evaluation Metrics

The performance of the CNN model and the effectiveness of the conformal pre-
diction intervals were evaluated using a few metrics. For CNN, the metrics were
the mean and maximum of unsigned errors and the compute time. For conformal
prediction, the focus was on the accuracy of the prediction intervals measured
through the coverage probability (how often the true values were inside the in-
terval) and the width of the interval assessed through the mean and maximum
width.

4 Results

This section will present the results of this project for the best CNN model
constructed, the use of conformal predictions, and, lastly, the compute time
required to evaluate the model and produce prediction intervals.

4.1 CNN Predictions

The convolutional neural network (CNN) model showcased proficiency in pre-
dicting track irregularities from dynamic responses of in-service railway vehi-
cles. The model, after rigorous tuning, achieved a satisfactory mean unsigned
error (ME) by beating the “satisfying” benchmark for the ME. This significant



8 Andreas Plesner et al.

achievement is depicted in Fig. 4, illustrating the training and validation mean
errors across epochs, where the model’s performance is notably highlighted by
its capacity to maintain errors below the “satisfying” benchmark level.
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Fig. 4. The training and validation mean and maximum unsigned error during train-
ing for the best performing CNN model. The black dashed lines are the “satisfying”
benchmark levels. We can see that the model gets a satisfactory mean unsigned error
(ME), but the maximum is still off.

Architecture and hyperparameter optimization played a pivotal role in en-
hancing the model’s accuracy. The final CNN model utilized a sophisticated
arrangement of convolutional layers coupled with dropout regularization and
batch normalization techniques. These elements collectively contributed to a ro-
bust model capable of discerning the intricate patterns associated with track
irregularities from the vast and complex data derived from railway dynamics.

An extensive error analysis was conducted to dive into the predictive ca-
pabilities of the model and areas of improvement. This analysis was crucial in
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understanding the nuances of the model’s performance, including the instances
where it deviated from expected outcomes. Despite achieving high accuracy, the
model faced challenges with maximum errors, especially in the validation data,
prompting a detailed examination of error characteristics to identify potential
model enhancements. The result of this analysis showed that the model makes
the largest errors in regions with faulty sensor data. This is highlighted in Ta-
ble 2, which shows key statistics for the model evaluated on the test data. The
test data did not contain faulty sensor data. From the table, we see that the
model also gets a satisfactory mean, but not a satisfactory maximum, on the
test data. However, the aggregated maximum unsigned error is much smaller in
the test data compared to the validation data errors seen in Fig. 4. Additionally,
the model beats the state-of-the-art results from [9] for short wavelengths and
the aggregated mean unsigned errors (ME). However, the model falls short of
the 0.1 and 0.5 mm benchmarks for, respectively, the mean and maximum of
unsigned errors.

Thus, to further improve the model, the focus should be on the data used to
train the model. This might then eliminate the issues with missing sensor data.

Mean [mm] Maximum [mm]

Lateral left D1 0.14 2.54
Lateral right D1 0.13 2.62
Vertical left D1 0.27 2.23
Vertical right D1 0.28 2.56

Lateral left D2 0.20 3.55
Lateral right D2 0.18 3.49
Vertical left D2 0.30 2.28
Vertical right D2 0.31 2.63

Lateral left D3 0.35 7.33
Lateral right D3 0.33 7.61
Vertical left D3 0.63 6.58
Vertical right D3 0.64 6.19

Aggregates 0.31 7.61
Table 2. Mean and maximum of the unsigned test errors for each of the 12 output
features. Values highlighted in red and in bold are those that exceed satisfactory levels.
Recall that D1, D2, and D3 correspond to wavelengths of [3 m, 25 m], [25 m, 70 m],
and [70 m, 200 m], respectively. From this, the mean unsigned errors for the three
wavelength regions are 0.205 mm, 0.248 mm, and 0.486 mm, respectively.

4.2 Conformal Prediction

Integration of conformal prediction methods notably enhanced the predictive
capabilities of the CNN model. The CV+ and CV-minmax methods were used
to calculate the prediction intervals for the test data, which would improve the
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confidence in the model outputs for new predictions. The predictions are made
as a mean aggregate of the six model instances trained for each validation seg-
ment. As depicted in Fig. 5, the CV+ and CV-minmax methods achieved high
true value coverage rates, illustrating their effectiveness in encompassing data
variability. The CV+ intervals are slightly narrower than those for CV-minmax
but are overall very similar.

Table 3 presents the aggregate statistics for the α = 0.05 intervals. It reveals
that although CV-minmax offers higher coverage at 97.18 % compared to CV+’s
95.76%, it produces wider intervals on average (2.33 mm for CV-minmax versus
1.78 mm for CV+). Notably, as will be shown later, the CV-minmax method’s
prediction intervals are computed faster than those of CV+, an advantage for
real-time applications.
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Fig. 5. Comparison of prediction intervals from CV+ and CV-minmax methods against
the true values of track irregularities for the vertical D3 (long wavelengths) irregularities
of the left rail. We see that the intervals often capture the true value, but there are
instances, where they fail.

4.3 Compute Time

A crucial aspect of the CNN model’s design was its ability to process and make
predictions at a rate that exceeds the operational speeds of high-speed railway
vehicles, which can reach speeds over 300 km per hour. The CNN model could
process 35.30 km of test data in 60.72 seconds using a GTX 970. Thus, the model
can process track data at a rate of 2093 km per hour. Meanwhile, for conformal
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Measure CV+ CV-minmax

True value coverage (%) 95.76 97.18
Average interval width (mm) 1.78 2.33
Maximum interval width (mm) 4.54 5.25

Table 3. Aggregate statistics for conformal prediction intervals using the CV+ and
CV-minmax methods. CV+ produces narrower intervals, but they have a slightly lower
coverage.

predictions, the CV-minmax and CV+ methods require 0.12 seconds and 12
minutes, respectively, to process the test data. This means they can process
track data at rates of over 1,000,000 km and 176.5 km per hour, respectively.

Thus, the CV+ method cannot process sufficiently fast. However, the CNN
model and CV-minmax demonstrated exceptional efficiency, capable of evaluat-
ing substantial lengths of track data within a constrained timeframe, thereby
ensuring its applicability in real-time monitoring systems. We propose a CNN-
based model with uncertainty quantified via conformal predictions as a solution
for continuous real-time monitoring of railway track conditions.

5 Conclusion

This research ventured into the domain of using data-driven machine learning
methods, with a focus on convolutional neural networks (CNNs) and conformal
prediction, to predict railway track irregularities from the observed dynamics
of in-service railway vehicles. The core achievement was the development of
a predictive model that not only delivered satisfactory accuracy in detecting
track irregularities but also incorporated conformal prediction to estimate the
uncertainty of these predictions reliably. Satisfactory results are set as a mean
unsigned error (ME) of 0.35 mm based on state-of-the-art results from related
work. Our model has a mean unsigned error of 0.31 mm on the test set, thus
improving the state-of-the-art results of [9]. Interestingly, the conformal predic-
tion methodology achieved a high coverage of 97.18 % of the true values, with
prediction intervals of an average width of 2.33 mm, thus ensuring a robust and
reliable predictive framework.

However, it was noted that, while the prediction coverage was impressively
high, the width of the intervals, though relatively small, indicates room for op-
timization to refine the precision further. These intervals were derived using
the CV-minmax method, highlighting the potential for real-time application of
this approach, given its ability to evaluate more than 1M km of track data per
hour. Additionally, the CNN model could process track data at a rate of more
than 2,000 km per hour. This efficiency underscores the feasibility of deploy-
ing this methodology in real-world settings, where it can serve as a cornerstone
for continuous real-time monitoring of railway track conditions using in-service
high-speed vehicles.
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The journey to improve the accuracy and reliability of track irregularity de-
tection through machine learning is far from over. Future endeavors can pivot
around several key areas to push the boundaries of current achievements. Pri-
marily, addressing the identified data issues will be crucial. This includes refining
sensor data quality by removing or correcting data from faulty sensors and han-
dling outliers more effectively. The model could, for instance, be made more
robust so that it can allow for faulty sensors.

Further exploration of vehicle modeling offers a promising avenue for ad-
vancement. Transitioning the codebase to Julia has opened up new possibilities
for using scientific computing methods. For example, delving into the domain
of scientific machine learning, specifically through the lens of Neural Ordinary
Differential Equations (NODEs), presents an exciting frontier. This approach
could fundamentally change the way we model vehicle dynamics by integrat-
ing data-driven insights directly into the differential equations governing these
dynamics.

We tried using transfer learning to simulate vehicle dynamics and pre-training
the model on these simulated data. However, this did not produce the expected
benefits in this study, suggesting a potential misalignment in data formatting or
a lack of representation in the ODE system. Future research could aim to refine
these aspects, potentially leading to breakthroughs in model performance and
generalizability. Similarly, future work could try using physics-informed neural
networks (PINNs) to enhance the model by incorporating physical laws directly
into the learning process.

In sum, the groundwork laid by this project not only contributes to the
current body of knowledge but also charted a course for future research to explore
uncharted territories in railway track maintenance and safety through the lens
of advanced machine learning techniques.

A Appendix
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ID Label Unit Description

0 Position km Position along the track

1 Velocity km/h Velocity of the railway vehicle

2 AccB1Y m/s2 Lateral acceleration of axle box 1

3 AccB1Z m/s2 Vertical acceleration of axle box 1

4 AccCR1Y m/s2 Lateral acceleration of bogie A at axle box 1

5 AccCR1Z m/s2 Vertical acceleration of bogie A at axle box 1

6 AccB2Y m/s2 Lateral acceleration of axle box 2

7 AccB2Z m/s2 Vertical acceleration of axle box 2

8 AccCR2Y m/s2 Lateral acceleration of bogie A at axle box 2

9 AccCR2Z m/s2 Vertical acceleration of bogie A at axle box 2

10 AccB3Y m/s2 Lateral acceleration of axle box 3

11 AccB3Z m/s2 Vertical acceleration of axle box 3

12 AccCR3Y m/s2 Lateral acceleration of bogie A at axle box 3

13 AccCR3Z m/s2 Vertical acceleration of bogie A at axle box 3

14 AccB4Y m/s2 Lateral acceleration of axle box 4

15 AccB4Z m/s2 Vertical acceleration of axle box 4

16 AccCR4Y m/s2 Lateral acceleration of bogie A at axle box 4

17 AccCR4Z m/s2 Vertical acceleration of bogie A at axle box 4

18 AccB5Y m/s2 Lateral acceleration of axle box 5

19 AccB5Z m/s2 Vertical acceleration of axle box 5

20 AccCR5Y m/s2 Lateral acceleration of bogie B at axle box 5

21 AccCR5Z m/s2 Vertical acceleration of bogie B at axle box 5

22 AccB6Y m/s2 Lateral acceleration of axle box 6

23 AccB6Z m/s2 Vertical acceleration of axle box 6

24 AccCR6Y m/s2 Lateral acceleration of bogie B at axle box 6

25 AccCR6Z m/s2 Vertical acceleration of bogie B at axle box 6

26 AccB7Y m/s2 Lateral acceleration of axle box 7

27 AccB7Z m/s2 Vertical acceleration of axle box 7

28 AccCR7Y m/s2 Lateral acceleration of bogie B at axle box 7

29 AccCR7Z m/s2 Vertical acceleration of bogie B at axle box 7

30 AccB8Y m/s2 Lateral acceleration of axle box 8

31 AccB8Z m/s2 Vertical acceleration of axle box 8

32 AccCR8Y m/s2 Lateral acceleration of bogie B at axle box 8

33 AccCR8Z m/s2 Vertical acceleration of bogie B at axle box 8

34 AccCSAY m/s2 Lateral acceleration of car body at bogie A

35 AccCSAZ m/s2 Vertical acceleration of car body at bogie A

36 AccCSBY m/s2 Lateral acceleration of car body at bogie B

37 AccCSBZ m/s2 Vertical acceleration of car body at bogie B

38 Curvatura 1/m Curvature of the circle the track is forming

Table 4. Features in a sample of dynamics dataset – With provided labels and labels
used in this project.
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