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ABSTRACT

In this paper we delve deep in the Transformer architecture by investigating two of
its core components: self-attention and contextual embeddings. In particular, we
study the identifiability of attention weights and token embeddings, and the ag-
gregation of context into hidden tokens. We show that, for sequences longer than
the attention head dimension, attention weights are not identifiable. We propose
effective attention as a complementary tool for improving explanatory interpreta-
tions based on attention. Furthermore, we show that input tokens retain to a large
degree their identity across the model. We also find evidence suggesting that iden-
tity information is mainly encoded in the angle of the embeddings and gradually
decreases with depth. Finally, we demonstrate strong mixing of input information
in the generation of contextual embeddings by means of a novel quantification
method based on gradient attribution. Overall, we show that self-attention distri-
butions are not directly interpretable and present tools to better understand and
further investigate Transformer models.

1 INTRODUCTION

In this paper we investigate neural models of language based on self-attention by concentrating on
the concept of identifiability. Intuitively, identifiability refers to the ability of a model to learn stable
representations. This is arguably a desirable property, as it affects the replicability and interpretabil-
ity of the model’s predictions. Concretely, we focus on two aspects of identifiability. The first is
related to structural identifiability (Bellman & Astrom, [1970): the theoretical possibility (a priori)
to learn a unique optimal parameterization of a statistical model. From this perspective, we analyze
the identifiability of attention weights, what we call attention identifiability, in the self-attention
components of transformers (Vaswani et al., [2017), one of the most popular neural architectures
for language encoding and decoding. We also investigate foken identifiability, as the fine-grained,
word-level mappings between input and output generated by the model. The role of attention as a
means of recovering input-output mappings, and various types of explanatory insights, is currently
the focus of much research and depends to a significant extent on both types of identifiability.

We contribute the following findings to the ongoing work: With respect to attention indentifiability,
in Section [3} we show that — under mild conditions with respect to input sequence length and atten-
tion head dimension — the attention weights for a given input are not identifiable. This implies that
there can be infinitely many different attention weights that yield the same output. This finding chal-
lenges the direct interpretability of attention distributions. As a supplement, we propose the concept
of effective attention, a diagnostic tool that examines attention weights for model explanations by
removing the weight components that do not influence the model’s predictions.

*Equal contribution with authors in alphabetical order. Yang Liu initiated the transformer models study, per-
ceived and performed the study of attention identifiability and effective attention, i.e., Section 3 and Appendix
A, and contributed to the token attribution discussions and calculations.
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With respect to token identifiability, in Section[d] we devise an experimental setting where we probe
the hypothesis that contextual word embeddings maintain their identity as they pass through succes-
sive layers of a transformer. This is an assumption made in much current research, which has not
received a clear validation yet. Our findings give substance to this assumption, although it does not
always hold in later layers. Furthermore, we show that the identity information is largely encoded
in the angle of the embeddings and that it can be recovered by a nearest neighbour lookup after a
learned linear mapping from hidden to input token space.

In Section 5| we further investigate the contribution of all input tokens in the generation of the con-
textual embeddings in order to quantify the mixing of token and context information. We introduce
Hidden Token Attribution, a quantification method based on gradient attribution. We find that self-
attention strongly mixes context and token contributions. Token contribution decreases monoton-
ically with depth, but the corresponding token typically remains the largest individual contributor.
We also find that, despite visible effects of long term dependencies, the context aggregated into the
hidden embeddings is mostly local. We notice how, remarkably, this must be an effect of learning.

2 BACKGROUND ON TRANSFORMERS

The Transformer (Vaswani et al [2017) is currently the neural architecture of choice for natural
language processing (NLP). At its core it consists of several multi-head self-attention layers. In these
layers, every token of the input sequence attends to all other tokens by projecting its embedding to
a query, key and value vector. Formally, let @ € R% *9a be the query matrix, K € R%*% the
key matrix and V' € R%*9v the value matrix, where d, is the sequence length and dq and d, the
dimension of query and value vectors, respectively. The output of an attention head is given by:

. . QK"
Attention(Q, K, V)=A-V with A = softmax (D

Vg

The attention matrix A € R% *%s calculates, for each token in the sequence, how much the compu-
tation of the hidden embedding at this sequence position should be influenced by each of the other
(hidden) embeddings. Self-attention is a non-local operator, which means that at any layer a token
can attend to all other tokens regardless of the distance in the input. Self-attention thus produces so-
called contextual word embeddings, as successive layers gradually aggregate contextual information
into the embedding of the input word.

We focus on a Transformer model called BERT (Devlin et al., 2019), although our analysis can be
easily extended to other models such as GPT, (Radford et al., 2018} 2019) RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019b), or ALBERT (Lan et al.l 2020). BERT operates on input se-
quences of length ds;. We denote input tokens in the sentence as x;, where i € [1, ..., ds]. We use
x; € RY with embedding dimension d to refer to the sum of the token-, segment- and position
embeddings corresponding to the input word at position . We denote the contextual embedding at
position i and layer [ as e!. Lastly, we refer to the inputs and embeddings of all sequence positions as
matrices X and E, respectively, both in R% > ¢, For all experiments we use the pre-trained uncased
BERT-Base model as provided by |Devlin et al. (2019ﬂ

3 ATTENTION IDENTIFIABILITY

We begin with the identifiability analysis of self-attention weights. Drawing an analogy with struc-
tural identifiability (Bellman & Astrom), [1970), we state that the attention weights of an attention
head for a given input are identifiable if they can be uniquely determined from the head’s outputE]
We emphasize that attention weights are input dependent and not model parameters. However, their
identifiability affects the interpretability of the output, i.e., whether attention weights can provide the
basis for explanatory insights on the model’s predictions (cf.|Jain & Wallace (2019) and|Wiegreffe &
Pinter| (2019)). If attention is not identifiable, explanations based on attention may be unwarranted.

"nttps://github.com/google-research/bert
2Cf. Appendixfor more background on indentifiability.
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The output of a multi-head attention layer is the summation over each of the h single head outputs
(cf. Eq. 1) multiplied by the matrix H € R% *< with reduced head dimension d,, = d/h,

Attention(Q, K, V)H = AEW"V H = AT )

where WV € R4 projects the embedding E into the value matrix V.= EWV, and we define
T = EWV H. Here, the layer and head indices are omitted for simplicity, since the proof below
is valid for each individual head and layer in Transformer models. Intuitively, the head output is a
linear combination of the T' vectors using the attention as weighting coefficients. If the sequence
length, i.e. the number of weighting coefficient, is larger than the rank of 7', attention weights are
not uniquely determined from the head output; i.e., they include free variables. In other words,
some of the T rows are linear combinations of others. We now prove, by analyzing the null space
dimension of T, that attention weights are not identifiable using the head or final model output.

3.1 UPPER BOUND FOR RANK(T)

We first derive the upper bound of the rank of matrix T = EW Y H. Note that rank(ABC) <
min (rank(A), rank(B), rank(C)), therefore,

rank (T') < min (rank(E), rank(W "), rank(H)) 3)
< min(ds,d,d,d,,d,,d)
= min (ds, dy) .
The second step holds since rank(E) < min(ds, d), rank(W") < min(d,d,) and rank(H) <
min(d,, d).

3.2 THE NULL SPACE OF T'

The (left) null space LN(T") of T describes all vectors that are mapped to the zero vector by T":
LN(T) = {&7 e R™%|zTT = 0} 4)

Its special property is that, for A = [&1, &s, ..., £4.]T where &7

(A+ A)T = AT. (5)

are vectors in this null space,

If the dimension of LN(T") is not zero, there exist infinitely many attention weights A + A yield-
ing the exact same attention layer output and final model outputs. By applying the Rank-Nullity
theorem, the dimension of the null space is:

ds — dy, ifdg > d,
0, otherwise

dim(LN(T")) = ds — rank (T') > ds — min (ds, d,,) = { (6)
here we make use of the facts that dim(LN(7T")) = dim(N(T'T)) and rank(T') = rank(TT) where
N(T') represents the null space of a matrix T'. Equality holds if E, WV and H are of full rank and
their matrix product does not bring further rank reductions.

Hence, when the sequence length is larger than the attention head dimension (ds > d,), self-
attention is not unique. Furthermore, the null space dimension increases with the sequence length.
In the next section we show that the attention weights are also non-identifiable; i.e., the non-trivial
null space of T exists, even when the weights are constrained within the probability simplex.

3.3 THE NULL SPACE WITH PROBABILITY CONSTRAINTS

Since A is the result of a softmax operation, its rows are constrained within the probability simplex:
A > 0 (element-wise), and A1 = 1, where 1 € R% is the vector of all ones. However, the
derivation in Section does not take these constraints into account. It shows that A is not
unique, but it does not prove that alternative attention weights exist within the probability simplex,
and thus that A is not identifiable. Below, we show that A exists in LN(T") also when constraining

the weights of (A 4 A) to the probability simplex.
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For the row vectors from an alternative attention matrix A—f:fi to be valid distributions, we reguire, in
addition to A > 0 (element-wise) and Al =1, that A+ A > 0 (element-wise), and A1+ A1 = 1.
Furthermore, A must be in the (left) null space of T". We formalize the three conditions below:

a) AT =0 b)A1l=0 c)A>—-A (7)

Conditions (7p) and (7b) can be combined as A[T", 1] = 0, where [T", 1] is the augmented matrix re-
sulting from adding a column vector of ones to T'. Reusing the argument presented in Section (3.2)),
the dimension of its (left) null space is: dim(LN([T",1])) > max(ds — d, — 1,0). Thus, for
ds — d, > 1, the null space of [T, 1] exists: it is a linear subspace of LN(T").

We now prove that condition (7c) can also be satisfied. We begin by providing an intuitive justifica-
tion. The condition restricts the space of A from LN([T", 1]) to be a bounded region which could be
different for each row vector @ = (a1, as,...) of A. The null space LN([T", 1]) contains 0, defin-
ing a surface passing through the origin. Since a is a probability vector, resulting from a softmax
transformation, each of its components is strictly positive, i.e., A > 0 (element-wise). Hence, there
exists € > 0 such that any point a in the sphere centered at the origin with radius e will satisfy
condition (7), @ > —a. Crucially, this sphere intersects the null space, as they share the origin.
Any point in this intersection satisfies all three conditions in (7).

Formally, the construction of the null space vector a for the alternative attention weights a + a goes
as follows. For a vector @ = (ay, as,...) € LN([T', 1]), to ensure one of its negative components
a; < 0 satisfying condition ) that a; > —a;, one could shrink its magnitude into Aa with
0 < A < —a;/a;, so Ad; > —a,;. Considering all negative components i, the overall scaling factor is
Amaz = Mile fi)a, <0} (—a;/a;) so that the direction from the origin {\a|0 < X < A4, } satisfies
condition ). Here A4, is strictly greater than O because a; > 0. Only when there exists an
index ¢ that a; < 0 and a; ~ 0, then this particular null space direction a is highly confined. In the
extreme case, where a is a one-hot distribution, the solution should be an @ with only one negative
component. If such an @ does not exist in LN([T", 1]), the solution collapses to the trivial single
point @ = 0. However, in general, LN([T", 1]) with probability constraints is non-trivial.

3.4 EFFECTIVE ATTENTION

The non-identifiability of self-attention, due to the existence of the non-trivial null space of T,
challenges the interpretability of attention weights. However, one can decompose attention weights
A into the component in the null space All and the component orthogonal to the null space A

AT = (Al + AHYT = A*T (8)
since Al € LN(T) = AT = 0. Hence, we propose a novel concept named effective attention,
At =A- Projection; y (1) A, )

which is the part of the attention weights that actually affects the model output. The null space pro-
jection is calculated by projecting attention weights into the left null space basis, i.e., the associated
left singular vectors.

Here the definition of effective attention uses LN(T') instead of the null space LN([T, 1]) with
probability constraints. As a consequence, effective attention is not guaranteed to be a probability
distribution; e.g., some of the weights might be negative. One could define effective attention as the
minimal norm alternative attention using LN([T", 1]), or possibly constrain it within the probability
simplex. However, in this case, the minimal norm alternative attention is not orthogonal to the null
space LN(T') anymore. It seems unclear how to interpret the minimal norm alternative attention.
The reason being that the distinction between components that affect or do not affect the output
computatiorf) are defined with respect to LN(T") and not with respect to LN([T", 1]). In fact, there
may be useful information in the sign of the effective attention components. Although the combi-
nation of value vectors in the transformer architecture uses weights in the probability simplex, these
probability constraints on attention may not be necessary. Hence, we provide here the base version
of an effective attention, and leave the investigation of other formulations for future research.

3 A key aspect of the concept of identifiability.
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Figure 1: (a) Each point represents the Pearson correlation coefficient of effective attention and raw
attention as a function of token length. (b) Raw attention vs. (c) effective attention, where each point
represents the average (effective) attention of a given head to a token type.

3.5 EMPIRICAL EVIDENCE

We conclude by providing some initial empirical evidence in support of the notion that effective at-
tention can serve as a complementary diagnostic tool for examining how attention weights influence
model outputs.

First, we show that effective attention can be detected, and can diverge significantly from raw at-
tention. In Figure [Ta] we illustrate how the Pearson correlation between effective and raw attention
decreases with sequence length. We use the same Wikipedia samples as in [Clark et al.[(2019) with
maximum sequence length 128. This result is in line with our theoretical finding in Eq. [f] that states
an increase in the dimension of the null space with the sequence length. Given a bigger null space,
more of the raw attention becomes irrelevant, yielding a lower correlation between effective and raw
attention. Notice how, for sequences with fewer than d, = 64 tokens, the associated null space
dimension is zero, and hence attention and effective attention are identical (Pearson correlation of
value 1). This loss of correlation with increased sequence length questions the use of attention as
explanation in practical models, where it is not uncommon to use large sequence lengths. A few ex-
amples include: BERT for question answering (Alberti et al.,|[2019) and XL-Net (Yang et al.| [ 2019a))
with ds = 512, or document translation (Junczys-Dowmunt, 2019) with ds = 1000.

To illustrate the point further, Figure |1{shows in (b) raw attention A and (c) effective attention A+,
using again the data of |Clark et al.|(2019). We compute the average attention of BERT and compare
it to the corresponding average effective attention. [Clark et al.|(2019) conclude that the [CLS] token
attracts more attention in early layers, the [SEP] tokens attract more in middle layers, and periods
and commas do so in deep layers. However, after a gradient based investigation, they propose that
attention to the [SEP] token is generally a “no-op”. The effective attention weights suggest a more
consistent pattern: while periods and commas seem to generally attract more attention than [CLS]
and [SEP], the peak of [SEP] token observed by raw attention has disappeared. Effective attention
provides an explanation: the [SEP] token peak is irrelevant to the computation of the output for
middle layers; i.e., it is in the null space component of the corresponding attention vector. The
same arguments also hold for the sharp peak of raw attention on punctuation tokens between layers
10 and 12. An additional example showing similar results can be found in Appendix [A.2] See
also Appendix [A.3] where we discuss in more depth a case where effective attention would support
interpretive conclusions that differ from those one might draw solely based on raw attention. In
conclusion, effective attention can help discover interesting interactions encoded in the attention
weights which may be otherwise obfuscated by the null attention.

4 TOKEN IDENTIFIABILITY

We now study the other fundamental element of transformers; the hidden vector representations of
tokens, or contextual word embeddings. It is commonly assumed that a contextual word embedding
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keeps its “identity”, which is tied to the input word, as it passes through the self-attention layers.
Specifically, we identify three cases where this assumption is made implicitly without justification.

* Visualizations/interpretations linking attention weights to attention between words, when
in fact the attention is between embeddings, i.e., mixtures of multiple words (Vaswani
et al., 2017; Devlin et al.l 2019; |Vigl 2019; (Clark et al.l 2019; Raganato & Tiedemann,
2018}, |Voita et al.l 2019} Tang et al., |2018; [Wangperawong, 2018} |Padigela et al.l 2019
Baan et al.| 2019; Dehghani et al.| |2019; |[Zenkel et al., 2019).

 Attention accumulation methods that sum the attention to a specific sequence position over
layers and/or attention heads, when the given position might encode a different mixture of
inputs in each layer (Clark et al., |2019; Baan et al., [2019; Klein & Nabi, |2019; |Coenen!
et al.,[2019).

* Using classifiers to probe hidden embeddings for word-specific aspects without factoring
in how much the word is still represented (Lin et al., [2019} [Peters et al., | 2018)).

To investigate this assumption we introduce the concept of foken identifiability, as the existence of
a mapping assigning contextual embeddings to their corresponding input tokens. Formally, we state
that an embedding e! is identifiable if there exists a classification function c(-) such that c(e!) = ;.
For identifiability we only require c(e!) to recover z; in a nearest neighbour sense within the same
input sentence. Therefore, for each layer [ we define ¢;(-) = NN(g;(-)), where NN is a 1-nearest
neighbour lookup, and ¢; : R? — R? is a continuous function mapping embeddings to vectors
of real numbers. Since we cannot prove the existence of g; analytically, we instead use a function
approximator §;(el) = &;, trained on a dataset of (el, x;) pairs. We then say that e! is identifiable
if ¢;(el) = NN(gi(el)) = x;. For evaluation we report the token identifiability rate defined as the
percentage of correctly identified tokens.

4.1 SETUP

For the experiments in this and subsequent sections we use the development dataset from the
Microsoft Research Paraphrase Corpus (MRPC) dataset (Dolan & Brockett, 2005), while in Ap-
pendix [D] we provide results on two additional datasets. The MRPC development set contains 408
examples with a sequence length d, between 26 and 92 tokens, with 58 tokens on average. We pass
all 408 sentences (21,723 tokens) through BERT and extract for each token the input embeddings x;
and the hidden embeddings €' at all layers. We then train § on the regression task of predicting input
tokens x; from hidden tokens e!. We experiment with two loss functions and similarity measures
for finding the nearest neighbour; cosine distance and Lo distance. We use 10-fold cross validation
with 70/15/15 train/validation/test splits per fold and ensure that tokens from the same sentence are
not split across sets. The validation set is used for early stopping. See Appendix for details.

4.2 EXPERIMENTAL RESULTS AND DISCUSSION

In a first experiment, we use a linear perceptron without bias and a non-linear MLP §M =¥ where
training, validation and test data all come from layer /. Figure [2a] shows the test set token iden-
tifiability rate of ¢ for [ = [1,...,12]. We also report a naive baseline §7'*"¢(el) = €!, i.e., we
directly retrieve the nearest neighbour of el from the input tokens. The results for Greve show
that, according to both similarity measures, contextual embeddings in BERT stay close to their input
embeddings up to layer 4, followed by a linear decrease in token identifiability rate. By training a
transformation to recover the original embedding, we see that most of the identity information is
still present in the contextualized embeddings. Specifically, a linear projection is enough to recover

93% of the tokens in the last layer based on a cosine distance nearest neighbour lookup.

This experiment shows that although the identifiablity rate decreases with depth, tokens remain
mostly identifiable across layers. Furthermore, we find that cosine distance is more effective to
recover identity than Lo distance. Therefore, we conjecture that BERT encodes most of the identity
information in the angle of the embeddings. Finally, |Lin et al.|(2019) show that BERT discards much
of the positional information after layer 3. However, tokens remain largely identifiable throughout
the model, indicating that BERT does not only rely on the positional embeddings to track token
identity. To provide further insights into contextual word embeddings, Appendix shows results
for recovering neighbouring input tokens.
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Figure 2: (a) Identifiability of contextual word embeddings at different layers. Here, g is trained and

tested on the same layer. (b) gig; , trained on layer [ and tested on all layers.

In a second experiment we test how well the §'" , trained only on (e!, ;) pairs from one layer [

generalizes to all layers, see Figure[2b] For [ = 1, the token identifiability rate on subsequent layers
drops quickly to below 70% at layers 11 and 12. Interestingly, for [ = 12 a very different pattern can
be observed, where the identifiability is 94% for layer 12 and then almost monotonically increases
when testing on earlier layers. Further, for [ = 6 we see both patterns.

This experiment suggests that the nature of token identity changes as tokens pass through the model,
and patterns learned on data from later layers transfer well to earlier layers. The experiment also
shows that layer 12 is behaving differently than the other layers. In particular, generalizing to layer
12 from layer 11 seems to be difficult, signified by a sudden drop in token identifiability rate. We
believe this is due to a task dependent parameter adaptation induced in the last layer by the next-
sentence prediction task which only uses the CLS token (cf. Appendix [B.4]for additional hints that
the last layer(s) behave differently). See Appendixfor results of g;47, g/ [ and gMLP.
Overall, the results of this section suggest that one can associate most hidden embeddings with their
input token, for example for drawing conclusions based on (effective) attention weights. However,
self-attention has the potential to strongly mix tokens across multiple layers, and hence it is unclear
whether token identifiability alone is enough to equate hidden embeddings with their input words,
or whether we also need to take into account exactly how much of the word is still contained in
the hidden embedding. In order to address this question, we now study the degree of information
mixing among embeddings, and introduce a tool to track the contributions of tokens to embeddings
throughout the model.

5 ATTRIBUTION ANALYSIS TO IDENTIFY CONTEXT CONTRIBUTION

We consider the role of the contextual information in the hidden embeddings, which is accumulated
through multiple paths in a multi-layer network. To shed more light on this process, we introduce
Hidden Token Attribution, a context quantification method based on gradient attribution (Simonyan
et al.| 2014) to investigate the hidden tokens’ sensitivity with respect to the input tokens.

5.1 HIDDEN TOKEN ATTRIBUTION

Gradient based attribution approximates the neural network function f(X') around a given sequence
of input word embeddings X € R% X9 by the linear part of the Taylor expansion:

(X +AX)~ f(X)+Vxf(X)T-AX (10)

With this, the network sensitivity is analyzed by looking at how small changes AX at the input
correlate with changes at the output. Since in the linear approximation this change is given by the

gradient Vo, f = % for a change in the i-th input token z; € R? of X, the attribution of
how much input token x; affects the network output f(X) can be approximated by the Lo norm
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Figure 3: (a) Contribution of the input token to the embedding at the same position. The orange line
represents the median value and outliers are not shown. (b) Percentage of tokens P that are not the
main contributors to their corresponding contextual embedding at each layer.

of the respective gradient: attr(xz;) = ||V, f||,. Since we are interested in how much a given

hidden embedding eé» attributes to the input tokens x;, i € [1,2, ..., d], we define the relative input

contribution Cé, ; of input x; to output f(X) = eé as

\% Sel
iill2 with V. =2 (11)
J 5:13,'

! |
Cij = Sdo ol T
Zk;0||v§c,j||2

Since we normalize by dividing by the sum of the attribution values to all input tokens, we obtain
values between 0 and 1 that represent the contribution of each input token x; to the hidden em-
bedding eé. Hidden Token Attribution differs from the standard use of gradient attribution in that,
instead of taking the gradients of the output of the model with respect to the inputs in order to explain
the model’s decision, we calculate the contribution of the inputs to intermediate embeddings in order
to track the mixing of information. Further details of this method are discussed in Appendix [C.T}

5.2 TOKEN MIXING: CONTRIBUTION OF INPUT TOKENS

We use Hidden Token Attribution to extend the results of Section ] showing how much of the input

token is contained in a given hidden embedding. In Figure [3al we report the contribution cé-! ; of

input tokens x; to their corresponding hidden embeddings €', at the same position j for each layer
l. After the first layer the median contribution of the input token is less than a third (30.6%). The
contribution then decreases monotonically with depth; at layer 6 the median is only 14.4% and after
the last layer it is 10.7%. In Appendix [C.3|we provide detailed results by word type. Next, we study
which input token is the largest contributor to a given hidden embedding eé. The corresponding

input token x; generally has the largest contribution. Figure shows the percentage P of tokens
that are not the highest contributor to their hidden embedding at each layer. In the first three layers
the original input x; always contributes the most to the embedding eé-. In subsequent layers, P
increases monotonically, reaching 18% in the sixth layer and 30% in the last two layers.

These results show that, starting from layer three, self-attention strongly mixes the input information
by aggregating context into the hidden embeddings. This is in line with the results from Section
where we see a decrease in token identifiability rate after layer three. Nevertheless, P is always
higher than the token identifiability error at the same layer, indicating that tokens are mixed in
a way that often permits recovering token identity even if the contribution of the original token is
outweighed by other tokens. This suggests that there is some “identity information” that is preserved
through the layers.

The strong mixing of information questions the common assumption that attention distributions can
be interpreted as “how much a word attends to another word”. However, the fact that tokens remain
identifiable despite information mixing opens a number of new interesting questions to be addressed
by future research. In particular, this seeming contradiction may be solved by investigating the space
in which hidden embeddings operate: is there a relation between semantics and geometric distance
for hidden embeddings? Are some embedding dimensions more important than others?
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Figure 4: (a) Relative contribution per layer of neighbours at different positions. (b) Total contribu-
tion per neighbour for the first, middle and last layers.

5.3 CONTRIBUTION OF CONTEXT TO HIDDEN TOKENS

In this section we study how context is aggregated into hidden embeddings. Figure [a] shows the
relative contribution of neighbouring tokens at each layer for the relative positions: first, second,
third, fourth and fifth together, sixth to 10th together, and the rest. The closest neighbours (1st)
contribute significantly more in the first layers than in later layers. Conversely, the most distant
neighbours (11th onwards) contribute the most in deeper layers (cf. Appendix [C.2). Despite the
progressive increase in long-range dependencies, the context in the hidden embeddings remains
mostly local. Figure [4b] represents the normalized total contribution aggregated over all tokens
from each of their neighbours at the first, middle and last layer. This figure shows that the closest
neighbours consistently contribute the most to the contextual word embedding regardless of depth.
On the other hand, we indeed observe an increase of distant contributions at later layers.

The results of this section suggest that BERT learns local operators from data in an unsupervised
manner, in the absence of any such prior in the architecture. This behavior is not obvious, since
attention is a highly non-local operator, and in turn indicates the importance of local dependencies
in natural language. While contribution is local on average, we find that there are exceptions, such
as the [CLS] token (cf. Appendix [C.3). Furthermore, using our Hidden Token Attribution method,
one can track how context is aggregated for specific tokens (cf. Appendix [C.4).

6 RELATED WORK

Input-output mappings play a key role in NLP. For example, in machine translation, they were in-
troduced in the form of explicit alignments between source and target words (Brown et al., [1993).
Neural translation architectures re-introduced this concept in the form of attention (Bahdanau et al.,
20135). The development of multi-head self-attention (Vaswani et al.,[2017) has led to many impres-
sive results in NLP. As a consequence, much work has been devoted to better understand what these
models learn, with a particular focus on using attention to explain model decisions.

Jain & Wallace|(2019) show that attention distributions of LSTM based encoder-decoder models are
not unique, and that adversarial attention distributions that do not change the model’s decision can
be constructed. They further show that attention distributions only correlate weakly to moderately
with dot-product based gradient attribution. [Wiegretfe & Pinter| (2019) also find that adversarial
attention distributions can be easily found, but that these alternative distributions perform worse on
a simple diagnostic task. |Serrano & Smith| (2019) find that zero-ing out attention weights based on
gradient attribution changes the output of a multi-class prediction task more quickly than zero-ing
out based on attention weights, thus showing that attention is not the best predictor of learned fea-
ture importance. [Pruthi et al.| (2019) demonstrate that self-attention models can be manipulated to
produce different attention masks with very little cost in accuracy. These papers differ in their ap-
proaches, but they all provide empirical evidence showing that attention distributions are not unique
with respect to downstream parts of the model (e.g., output) and hence should be interpreted with
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care. Here, we support these empirical findings by presenting a theoretical proof of the identifia-
bility of attention weights. Further, while these works focus on RNN-based language models with
a single layer of attention, we instead consider multi-head multi-layer self-attention models. Our
token classification and token mixing experiments show that non-identifiable tokens increase with
depth, further reinforcing the point that the factors that contribute to the mixing of information are
complex and deserve further study.

Voita et al.|(2019) and [Michel et al.|(2019) find that only a small number of heads in BERT have a
relevant effect on the output. These results are akin to ours about the non-identifiability of attention
weights, showing that a significant part of attention weights do not affect downstream components.
One line of work investigates the internal representations of transformers by attaching probing clas-
sifiers to different parts of the model. [Tenney et al.| (2019) find that BERT has learned to perform
steps from the classical NLP pipeline. Similarly, Jawahar et al.| (2019) show that lower layers of
BERT learn syntactic features, while higher layers learn semantic features. They also argue that
long-range features are learned in later layers, which agrees with our attribution-based experiments.

7 CONCLUSION

We used the notion of identifiability to gain a better understanding of transformers from different yet
complementary angles. We started by proving that attention weights are non-identifiable when the
sequence length is longer than the attention head dimension. Thus, infinitely many attention distri-
butions can lead to the same internal representation and model output. As an alternative, we propose
effective attention, a method that improves the interpretability of attention weights by projecting
out the null space. Second, we show that tokens remain largely identifiable through a learned linear
transformation followed by a nearest neighbor lookup based on cosine similarity. However, input to-
kens gradually become less identifiable in later layers. Finally, we present Hidden Token Attribution,
a gradient-based method to quantify information mixing. This method is general and can be used to
investigate contextual embeddings in self-attention based models. In this work, we use it to demon-
strate that input tokens mix heavily inside transformers. This result means that attention-based
interpretations, which suggest that a word at some layer is attending to another word can be im-
proved by accounting for how the tokens are mixed inside the model. We further show that context is
progressively aggregated into the hidden embeddings while some identity information is preserved.
Moreover, we show that context aggregation is mostly local and that distant dependencies become
relevant only in the last layers, which highlights the importance of local information for natural lan-
guage understanding. Our results suggest that some of the conclusions in prior work (Vaswani et al.,
2017; |Vig, 2019; [Marecek & Rosal, 2018 |Clark et al., 2019; [Raganato & Tiedemann, 2018; |Voita
et al., 2019; Tang et al., 2018; |[Wangperawong, |2018;; [Padigela et al., [2019; Baan et al., 2019} Lin
et al., 2019} Dehghani et al.| [2019; [Zenkel et all 2019; [Klein & Nabi, 2019; |Coenen et al., [2019)
may be worth re-examining from this perspective.

There are still many open questions for future research. For one, by constraining effective atten-
tion to the probability simplex, one could better compare it to standard attention, although in this
case non-influencing parts would be included in the weights. More research is needed to better un-
derstand the differences between these formulations. Further, we find that tokens mix and remain
largely identifiable. While these two conclusions are not necessarily at odds - a token can both gather
context information and still retain the essence of the original input word - we believe that the rela-
tionship between mixing and identifiability warrants further investigation. Moreover, it is becoming
increasingly difficult to compare all the new transformer variants, and it is hence important to gain
a deeper understanding of this class of models. The concepts introduced in this paper could help in
identifying fundamental differences and commonalities between variants of self-attention models.
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A IDENTIFIABILITY OF SELF-ATTENTION

A.1 BACKGROUND ON ATTENTION IDENTIFIABILITY

Often, the identifiability issue arises for a model with a large number of unknown parameters and
limited observations. Taking a simple linear model y = x13; + 2202 as an example, when there
is only one observation (y, x1, z2), model parameters 51 and 3 cannot be uniquely determined.
Moreover, in the matrix form Y = X3, by definition the parameter 3 is identifiable only if ¥ =
Xy and Y = X5 imply 81 = (2. So if the null space contains only the zero solution {3| XS =
0} = {0}, ie, X3 — XfBs = X(f1 — PB2) =0 = B1 — B2 = 0, the model is identifiable.
Therefore, the identifiability of parameters in a linear model is linked to the dimension of the null
space, which in the end is determined by the rank of X.

A.2 ADDITIONAL RESULTS OF THE EFFECTIVE ATTENTION VS. RAW ATTENTION RESULTS

In Figure[5] we provide a recreation of the figure regarding the attention of tokens towards the [SEP]
token found in (Clark et al.l 2019, Figure 2) with average attention as well as average effective
attention. Again, we see that most of the raw attention lies effectively in the null space, confirming
the pattern of Figure|l| The figures are produced using the code from |Clark et al.[(2019).
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Figure 5: Effective attention (a) vs. raw attention (b). (a) Each point represents the average effec-
tive attention from a token type to a token type. Solid lines are the average effective attention of
corresponding points in each layer. (b) is the corresponding figures using raw attention weights.

A.3 A CLOSER LOOK AT EFFECTIVE ATTENTION WEIGHTS

Here we discuss an example of how effective attention might lead to interpretive conclusions that
differ from raw attention. Figure[6] plots the attention weights (raw, effective, null) from one of the
attention heads in BERT’s layer 4, for the following passage:

”[CLS] research into military brats has consistently shown them to be better behaved than their
civilian counterparts. [SEP] hypotheses as to why brats are better behaved: firstly, military parents
have a lower threshold for misbehavior in their children; secondly, the mobility of teenagers might
make them less likely to attract attention to themselves, as many want to fit in and are less secure
with their surroundings; and thirdly, normative constraints are greater, with brats knowing that their
behavior is under scrutiny and can affect the military member’s career. teenage years are typically a
period when people establish independence by taking some risks away from their [SEP]”.

For readability, on the y-axis, we consider just the sentence “the mobility of teenagers might make
them less likely to attract attention to themselves, as many want to fit in and are less secure with
their surroundings”.

The following seems worth noticing:

» Raw attention weights are by and large concentrated either on the structural components,
[CLS] and [SEP], or on the semi-monotonic, near diagonal alignments.
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« Effective attention weights are more uniform, in general. They are still concentrated near
the diagonal elements, although less so than in raw attention. However, the attention on
[CLS] and [SEP] has vanished. The collapse of the [CLS] and [SEP] weights brings to
the surface other interesting things. As an example, we point out the highest weight on
the attention matrix, that is not on the diagonal. This involves (highlighted by means of
the yellow lines) the main verb of the selected sentence, "make”, whose object is ’them”
(teenagers), and the pronoun “them” (the direct object of the first sentence, “military brats”,
48 positions away). The two are co-referential, as both refer to the main subject of the
passage, military brats.

* Null attention weights are also more uniform than raw attention ones. Interestingly, they
seem to carry all the mass of the [CLS] and [SEP] tokens. There is a visible degree of
redundancy between the null attention weights and the effective ones, but also clear com-
plementary elements.

One should not extrapolate too much from a single observation. Further research is needed on this
topic. However, this example is a proof of concept that raw and effective attention can diverge
qualitatively, in significant ways. It agrees with the hypothesis that the weights on the structural
components may act as sinks, as observed in (Clark et al.,[2019)), but also tells us how this happens.
Furthermore, it indicates that attention in the null space can obfuscate other valuable interactions
that may be recoverable by inspecting effective attention.
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B TOKEN IDENTIFIABILITY EXPERIMENTS

B.1 EXPERIMENTAL SETUP AND TRAINING DETAILS

The linear perceptron and MLP are both trained by either minimizing the L2 or cosine distance loss
using the ADAM optimizer (Kingma & Bal, 2015) with a learning rate of « = 0.0001, 5; = 0.9 and
B2 = 0.999. We use a batch size of 256. We monitor performance on the validation set and stop
training if there is no improvement for 20 epochs. The input and output dimension of the models is
d = 768; the dimension of the contextual word embeddings. For both models we performed a learn-
ing rate search over the values o € [0.003,0.001, 0.0003, 0.0001, 0.00003, 0.00001, 0.000003]. The
weights are initialized with the Glorot Uniform initializer (Glorot & Bengiol [2010). The MLP has
one hidden layer with 1000 neurons and uses the gelu activation function (Hendrycks & Gimpel,
2016), following the feed-forward layers in BERT and GPT. We chose a hidden layer size of 1000
in order to avoid a bottleneck. We experimented with using a larger hidden layer of size 3072
and adding dropout to more closely match the feed-forward layers in BERT. This only resulted in
increased training times and we hence deferred from further architecture search.

We split the data by sentences into train/validation/test according to a 70/15/15 split. This way of
splitting the data ensures that the models have never seen the test sentences (i.e., contexts) during
training. In order to get a more robust estimate of performance we perform the experiments in
Figure 2a] using 10-fold cross validation. The variance, due to the random assignment of sentences
to train/validation/test sets, is small, and hence not shown.

B.2 GENERALIZATION ERROR

Figure [/| shows the token identifiability rate for train and test set for both models, linear and MLP,
when using L2 distance. Both models are overfitting to the same degree. The fact that the linear
model has about the same generalization error as the MLP suggests that more training data would
not significantly increase performance on the test set. Further, we trained the MLP on layer 11
using 50%, 80%, 90% and 100% of the training data set. The MLP achieved the following token
identifiability rate on the test set: 0.74, 0.8, 0.81, 0.82. This indicates that the MLP would not profit
much from more data.

We do not report the generalization error for the models trained to minimize cosine distance, as the
linear and non-linear perceptrons perform almost equally.
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Figure 7: Train and test token identifiability rates for the linear perceptron and MLP.
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B.3 ADDITIONAL RESULTS FOR FIGURE [2B]

Figure [2b] in the main text only shows results of the linear perceptron trained to minimize cosine
distance on layers | = [1,6,11,12] and tested on all other layers. Figures |§| and |10| show the
corresponding results for the linear perceptron trained to minimize cosine distance, and for the
MLP trained to minimize L2 and cosine distance respectively. Overall, all figures show the same
qualitative trends as presented in Section [ of the main text: Generalizing to later layers works
considerably worse than the other way around. The linear perceptrons seem to generalize better
across layers, likely due to the MLPs overfitting more to the particular layers they are trained on.
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Figure 8: Linear Perceptron trained to minimize L2 distance generalizing to all layers.
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Figure 9: MLP trained to minimize L2 distance generalizing to all layers.
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Figure 10: MLP trained to minimize cosine distance generalizing to all layers.
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B.4 TOKEN IDENTITY - FROM HIDDEN TOKENS TO HIDDEN TOKENS

Figure |11| shows results for identifying tokens across single layers of BERT, i.e., the input to g is
(e}, x;) in the first layer, and subsequently (e}, e!~"), where I = [1, ..., 12]. This experiment gives
further insight into what kinds of transformations are applied by each transformer layer separately,
as opposed to the cumulative transformations shown in Section [4] of the main text. Interestingly,
even the naive baselines perform well across single layers. This shows that BERT only applies
small changes to the contextual word embeddings, whereas overall the angle (as indicated by the
naive baseline using cosine distance) is affected less than the magnitude of the word embeddings

(indicated by the naive baseline using L2 distance).

Figure [TT|shows that tokens are on average more difficult to identify across later layers. In the main
text we hypothesize that the qualitative change seen in later layers could be due to a task-specific
parameter adaptation during the second (next sentence prediction) pre-training phase. A possible
reason is that during this pre-training-phase, BERT only needs the [CLS] token in the last layer,
which is qualitatively very different form the first (masked language modeling) pre-training phase,
where potentially all the tokens are needed in the last layer.

To further verify this hypothesis we experimented with BERT fine-tuned on two datasets, MRPC and
CoLA (Warstadt et al., |2018). During the fine-tuning phase, similar to the next sentence prediction
pre-training phase, only the [CLS] token is needed at the last layer. If task-dependent parame-
ter adaptation indeed has a different influence on the last layer(s) than on earlier layers, then we
should be able to see a difference between the finetuned and non-finetuned cases. Figures[12]and[I3]
compare the naive baselines across single layers for BERT finetuned on MRPC and CoLA, respec-
tively. Indeed, one can see a remarkable decrease in identifiability across the last layer for L2-based
nearest neighbour lookup, further indicating that the last layers are indeed more strongly affected
by different fine-tuning objectives. Nearest neighbour lookup based on cosine distance is affected
much less, indicating that in terms of token identifiability, the last layers are only slightly affected
by fine-tuning.
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Figure 11: Token identifiability across single layers. These results are for non fine-tuned BERT on
MRPC.
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Figure 12: Token identifiability across single layers, comparing non fine-tuned (dashed) BERT
against BERT fine-tuned on MRPC (solid).
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Figure 13: Token identifiability across single layers, comparing non fine-tuned BERT (dashed)
against BERT fine-tuned on CoLA (solid).

21



Published as a conference paper at ICLR 2020

B.5 TOKEN IDENTITY - RECOVER NEIGHBOURING INPUT TOKENS

In Section[d of the main text we show that tokens at position ¢ remain largely identifiable throughout
the layers of BERT. In this section we show results of a related experiment, where we test how much
information about tokens at neighbouring positions is contained in a contextual word embedding.
More formally, the input to g is (el,z;+1), where k € {1,2,3}. Thus, we try to recover input
token @; . from hidden token e!. Figures and show the results of for gl |, gl EP,

GMLE and giin | respectively. In the figures, blue corresponds to “previous” tokens and red to “next”
tokens.

From the figures we can see that tokens do contain information about neighbouring tokens that
lets us recover the neighbouring tokens based on a transformation and subsequent nearest neigh-
bour lookup. The identifiability rate drops both with increasing k, but also with increasing depth.
Interestingly, recovering left (blue) and right (red) neighbours shows different behaviour, indicat-
ing that BERT is treating left and right context differently, despite having been pre-trained using a
bi-directional language modeling objective.

Overall, neighbouring tokens can be recovered to a much lower degree than same-position tokens
(cf. Sectionfd).
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Figure 14: Recovering neighbouring input tokens using QZ)’; .-
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Figure 15: Recovering neighbouring input tokens using gc”;l;j .-
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Figure 16: Recovering neighbouring input tokens using g’L”;f;.
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Figure 17: Recovering neighbouring input tokens using Qf;”l
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C CONTEXT CONTRIBUTION ANALYSIS

C.1 HIDDEN TOKEN ATTRIBUTION: DETAILS

The attribution method proposed in Section [5.1] to calculate the contribution of input tokens to a
given embedding does not look at the output of the model but at the intermediate hidden representa-
tions and therefore is task independent. Since the contribution values do not depend on the task that
is evaluated, we can compare these values directly to attention distributions, which are also task-
independent. In this way, we can compare to other works in the literature (Vig, [2019; |Clark et al.,
2019; |[Klein & Nabi, 2019} |Coenen et al., |2019; [Lin et al., 2019) by using the publicly available
pretrained BERT model in our analyses without fine-tuning it to a specific task.

Furthermore, since we are not interested in analysing how the input affects the output of the model
but in quantifying the absolute contribution of the input tokens to the hidden embeddings, we use the
L5 norm of the gradients. If we were analyzing whether the input contributed positively or negatively
to a given decision, the dot-product of the input token embedding with the gradient would be the
natural attribution choice (Porner et al., 2018)).

C.2 CONTEXT IDENTIFIABILITY: DETAILS

To calculate the relative contribution values shown in Figure ] we firstly calculate the mean of the
left and right neighbours for each of the groups of neighbours, i.e., first, second, third, fourth and
fifth, sixth to 10th and, from 11th onwards. Then we aggregate the values averaging over all the
tokens in the MRPC evaluation set. Finally, we normalize for each group so that the sum of the
contribution values of each group is one. In this way, we can observe in which layer the contribution
of a given group of neighbours is the largest.

Our results on context identifiability from Section [5.3] complement some of the studies in previous
literature. In (Jawahar et al.,[2019) the authors observe that transformers learn local syntactic tasks
in the first layers and long range semantic tasks in the last layers. We explain this behavior from
the point of view of context aggregation by showing that distant context acquires more importance
in the last layers (semantic tasks) while the first layers aggregate local context (syntactic tasks).
Furthermore, the results showing that the context aggregation is mainly local, specially in the first
layers, provide an explanation for the increase in performance observed in (Yang et al.,2018)). In that
work, the authors enforce a locality constraint in the first layers of transformers, which pushes the
model towards the local operators that it naturally tends to learn, as we show in Figure[db] improving
in this way the overall performance.

C.3 CONTEXT CONTRIBUTION TO CLS TOKEN

In this section we use Hidden Token Attribution to look at the contribution of the context to the
[CLS] token, which is added to the beginning of the input sequence by the BERT pre-processing
pipeline. This is an especially interesting token to look at because the decision of BERT for a
classification task is based on the output in the [CLS] token. Furthermore, like the [SEP] token,
it does not correspond to a natural language word and its position in the input sequence does not
have any meaning. Therefore, the conclusion that context is on average predominantly local (cf.
Section @]}, is likely to not hold for [CLS].

The second and final pre-training task that BERT is trained on is next sentence prediction. During
this task, BERT receives two sentences separated by a [SEP] token as input, and then has to predict
whether the second sentence follows the first sentence or not. Therefore, it is expected that the
context aggregated into the [CLS] token comes mainly from the tokens around the first [SEP] token,
which marks the border between the first and second sentence in the input sequence. In Figure|18|we
show the contribution to the [CLS] token from all of its neighbours averaged over all the examples
in the MRPC evaluation set for the first, middle and last layers. In Figure [I8a] the [CLS] token
is placed at position O and we see how the context contribution comes mainly from the tokens
around position 30, which is roughly the middle of the input examples. In Figure [I8b] we center
the contribution around the first [SEP] token and indeed, it becomes clear that the [CLS] token is
aggregating most of its context from the tokens around [SEP], i.e., from the junction between both
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sentences. In particular, the two tokens with the highest contribution are the tokens directly before
and after [SEP]. Also, it seems that the second sentence contributes more to [CLS] than the first one.

These results give an insight on what information BERT uses to solve next sentence prediction and

serves as an illustrative example of how Hidden Token Attribution can be used to analyze transform-
ers.
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Figure 18: Normalized total contribution to the [CLS] token (a) centered around [CLS] at position
0 (b) centered around [SEP].

C.4 TRACKING CONTEXT CONTRIBUTION

Here we show examples of how Hidden Token Attribution can track how context is aggregated for
a given word at each layer. For reasons of space we show only few words of a randomly picked
sentence of the MRPC evaluation set, which is tokenized as follows:

[CLS] he said the foods ##er ##vic ##e pie business doesn ’ t fit
the company ’ s long - term growth strategy . [SEP] " the foods
##er ##vic ##e pie business does not fit our long - term growth
strategy . [SEP]

[CLS]
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Figure 19: [CLS]: Aggregates context from all tokens but more strongly from those around the first
[SEP] token. We hypothesize that this is due to the Next Sentence Prediction pre-training.
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Figure 20: he: Aggregates most context from the main verb of the sentence, ”said”.
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Figure 21: said: Aggregates context mainly from its neighborhood, the main verb of the subordinate
sentence and the border between the two input sentences.
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Figure 22: fit: In the first layers it aggregates most context from its neighborhood and towards the
last layers it gets the context from its direct object (strategy) and from the token with the same
meaning in the second sentence.
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Figure 23: long: It is part of a composed adjective (long-term) and aggregates most of its context
from the other part of the adjective (term) as well as from the same tokens in the second sentence.
Interestingly, it mostly ignores the hyphen.
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Figure 24: strategy: Aggregates context from the word growth, which is the first one of the noun
phrase “growth strategy”.
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Figure 25: [SEP]: This token that has no semantic meaning aggregates context mostly from [CLS]
and its own neighborhood.
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C.5 TOKEN CONTRIBUTIONS BY POS TAG

Here we show the contribution of input tokens to hidden representations in all layers split by part-of-
speech (POS) tag (Toutanova et al.l[2003)). The POS tags are ordered according to the contribution

in layer 12.
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Figure 26: Layer 1: Most token types are equally mixed and have already less than 35% median
contribution from their corresponding input. The only exception are the [CLS] tokens, which remain
with over 40% median original contribution.
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Figure 27: Layer 2: Similar to the previous layer with less contribution over all and [SEP] behaving
similarly to [CLS].
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Figure 28: Layer 3: Similar to layer 2 with decreasing contribution overall.
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Figure 29: Layer 4: The original input contribution to [CLS] and [SEP] falls significantly. The trend
that the word types will follow until the last layer is already clear: Most nouns (NNP, NNS, NN),
verbs (VBN, VB, VBD, VBP), adjectives (JJ, JJS) and adverbs (RBR, RBS) keep more contribution
from their corresponding input embeddings than words with “less” semantic meaning like Wh-
pronouns and determiners (WP, WDT), prepositons (IN), coordinating conjunctions (CC), symbols
(SYM), possessives (PRP$, POS) or determiners (DT).
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Figure 30: Layer 5: The trend started in the previous layer continues, with a reduction of internal
variability within those word types with less original contribution.

o
W
S

Contribution
o o o
= N N
w o w
—

| —
T
T 1
S
T 1
T 1
| T
| —
L
| —
b L

Hl

[ N |

—{T+—
HIH
—]T
HH
—{T+—
—{ T+
—T
—{
—{
— T
—T
—{ T+
—{T—

— T

—{T}+—
HH
—
—{T

0.104 % L
0.05 T
L VW ZzZ = Z AV TYVO OOV AEL VN AEONLLOYLCZOE @ s E 0o v a
z =z «Q o = o | o > o o 0 o< O £ o o 4 = 0 o o u a o u
2 2 = g v g xz - S x > = = > a O 2 g & -]

Figure 31: Layer 6: Similar behavior as in the previous layer with minor evolution.
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Figure 32: Layer 7: Minor changes with respect to Layer 6.
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Figure 33: Layer 8: At this point there is clearly a different behavior between the tokens with most
contribution which present more intra-class variability, and those with less contribution, which are
more uniform.
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Figure 34: Layer 9: SEP changes increasing the contribution, while the rest stays similar.
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Figure 35: Layer 10: The contribution evolves with the same pattern as in previous layers.
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Figure 36: Layer 11:The contribution evolves with the same pattern as in previous layers.
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Figure 37: Layer 12: Finally, nouns, verbs, adjectives, adverbs, receive more contribution from their
corresponding input than determiners, prepositions, pronouns, ’to” words and symbols.
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D GENERALIZATION TO OTHER DATASETS

In this appendix we reproduce several experiments from the main text using the development sets
of two additional datasets from the GLUE benchmark: The Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al 2018), and the matched Multi-Genre Natural Language Inference corpus
(MNLI-matched) (Williams et al., [2018). CoLA is a dataset about grammatical acceptability of
sentences and MNLI consists of pairs of sentences where the second sentence entails, contradicts
or is neutral about the first one. These datasets differ significantly from MRPC. The development
set of CoLa has 1043 examples with sequence length dg between 5 and 35 tokens, and 11 tokens
on average. The development set of MNLI-m consits of 9815 examples although we restrict the
experiments to the first 4000 examples without loss of generality. These contain a total of 155964
tokens, with a sequence length comprised between 6 and 128 tokens and an average of 39 tokens
per example.

The results presented in this appendix are qualitatively similar to those presented in the main text,
which shows that our empirical conclusions about BERT are general across data domains.

D.1 TOKEN IDENTIFIABILITY

Here we reproduce the main token identifiability results of Section ] on two additional datsets:
CoLA and MNLI. Qualitatively, the results are in line with those for MRPC. Note that a random
classifier would achieve an accuracy of 1/ds, where d, denotes the average sentence length. Thus,
the random guessing baselines for MRPC, CoLLA and MNLI are 1.7%, 9% and 2.6% respectively.

D.1.1 CoLA

Figure [38|shows the token identifiability results for CoLA.
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Figure 38: Identifiability of contextual word embeddings at different layers on CoLA.
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D.1.2 MNLI

Figure [39|shows the token identifiability results for the first 500 sentences (19,839 tokens) of MNLI-
matched.

1 I e e T ‘“‘"“"“"—'—-—-—-—.__________‘____“7
Q ~-§§§ .............................
S S
& 0.8 S N — _ |
> SIao e
~— o~ .
= <N
Z 0.6 NSNS L
< SO Tl
= N N
‘= __ AMLP ... ~lin ~ol N
8 04 - gcos,l gcos,l ~] \\\ [
o _ _ _ asmnaive ~MLP ~ o SN L7
= gcos,l gL2,l ~ o S e
T Alin - _ _ _ ~naive Seooo > . |
0.2 9gr2, gr2 SN
I T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Figure 39: Identifiability of contextual word embeddings at different layers on a the first 500 sen-
tences of MNLI-matched (19,839 tokens).
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D.2 ATTRIBUTION ANALYSIS
D.2.1 CoLA EXPERIMENTS

Figure[D.2.1] shows the token mixing analysis for the CoLA dataset. The behavior is very similar to
MRPC with the only difference that both, the contribution of the original token and the percentage
of tokens that are not maximum contributors to their embeddings are slightly larger across layers.

However, this increase is explained by CoL A consisting of much shorter sequences on average than
MRPC.
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Figure 40: (a) Contribution of the input token to the embedding at the same position. (b) Percentage

of tokens P that are nor the main contributors to their corresponding contextual embedding at each
layer.

Figure [D.2.1] presents the context aggregation for the CoLA development set. We observe the same
general trend as for MRPC, with the context being aggregated mostly locally and long range depen-
dencies increasing in the later layers. The fact that examples in CoLA have an average sequence
length of 11 tokens explains the smaller relative contribution of tokens beyond the 10th neighbour.
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Figure 41: (a) Relative contribution per layer of neighbours at different positions. (b) Total contri-
bution per neighbour for the first, middle and last layers.
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D.2.2 MNLI EXPERIMENTS

As shown by Figures [D.2.2]and [D.2.2] the results with the MNLI matched dataset are very similar
to the ones presented in the main text. No meaningful discrepancy exists in this case.
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Figure 42: (a) Contribution of the input token to the embedding at the same position. (b) Percentage

of tokens P that are nor the main contributors to their corresponding contextual embedding at each
layer.
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Figure 43: (a) Relative contribution per layer of neighbours at different positions. (b) Total contri-
bution per neighbour for the first, middle and last layers.
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