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Abstract. This article reports on the results of our measurement stddige Kad network. Al-
though several fully decentralized peer-to-peer systemwe been proposed in the literature, most
existing systems still employ a centralized architecturee Kad network is a notable exception.
Since the demise of the Overnet network, the Kad network basrhe the most popular peer-to-
peer system based on a distributed hash table. It is likalyith user base will continue to grow in
numbers over the next few years due to the system’s scajadnild reliability.

The contribution of the article is twofold. First, we comedhe two networks accessed by eMule:
the centralized paradigm of the eDonkey network and thetstred, distributed approach pursued by
the Kad network. We re-engineer the eDonkey server softaadeintegrate two modified servers
into the eDonkey network in order to monitor traffic. Additaly, we implement a Kad client

exploiting a design weakness to spy on the traffic at arlyitcaations in the 1D space. The collected
data provides insights into the spacial and temporal digions of the peers’ activity. Moreover, it

allows us to study the searched content. The article alsusies problems related to the collection
of such data sets and investigates techniques to verifyefiresentativeness of the measured data.

Second, this article shows that today’s Kad network can tazletd in several ways. Our simple
attacks could be used either to hamper the correct funaotiaofithe network itself, to censor content,
or to harm other entities in the Internet not participatinghie Kad network, such as ordinary web
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servers. While there are heuristics to improve the robgstioé Kad, we believe that the attacks
cannot be thwarted easily in a fully decentralized pegpder system, i.e., without some kind of a
centralized certification and verification authority. Thésult may be relevant in the context of the
current debate on the design of a clean-slate network aathie for the Internet which is based on
concepts known from the peer-to-peer paradigm.

Keywords: Peer-to-Peer, Robustness, Measurements, DistributedrSyseMule, Kademlia, Fu-
ture Internet Architecture

1. Introduction

Today’s peer-to-peer (p2p) networks come in different ftavdn the one hand, there are completely
decentralized systems such as el network which is based ondistributed hash tabl¢DHT) where
both the task of indexing the content and the content itselfstributed among the peér©ther systems
still rely on centralized entities, e.g., a cluster of sesv@kes care of the data indexing in #@onkey
network, or so-called trackers organize the peerBitiorrent swarms. A server-based solution has
the advantage that it is easier to implement and that it wogkably as long as the servers function
correctly. Clearly, the downside of this approach is that $brvers can only sustain a certain number
of peers, implying that the scalability is limited and that@verload of concurrent requests can cause a
system failure. Purely decentralized systems do not deperttie availability of any particular entity;
however, such systems often demand larger contributiams &l participants.

This article examines popular representatives of the tviwwark types: the server-basaionkey
and the decentralizeldad network eDonkey is one of the largest p2p networks in use todayjans|
of users around the planet use it to share various types dfmadia contents. While there are other
clients to gain access to the eDonkey network, by far the paostilar client issMule? Additionally,
eMule allows its users to connect to tad network This network, which is based dtademlia[16],
is currently the most popular distributed hash table (afpam theMainline DHT and theAzureus DHT
which are used by BitTorrent as trackers for peer discovery)

In order to investigate various properties of eDonkey and,Kee collected large amounts of data
from both networks (mostly in 2007). For this purpose, weersg-engineered the eDonkey server
software and published two own servers which successftiiipcied a considerable amount of traffic
despite the fact that our servers never returned any re#émonFor our Kad tests, we implemented a
client that is capable of spying on the traffic at any desiresitfpn in the ID space. Secti®ddescribes
the setup of our measurement infrastructure.

Section4 reports on our measurement results. We are particulargyasted in the user behavior
in both networks. In this article, in contrast to other ke, we monitor the actual user requests and
ignore automated requests which occur without any usenviedion. Our measurements show that the
temporal request distributions of the two networks are gamjlar, exhibiting a high activity in the early
evening with high loads at the eDonkey servers or at the gemstng popular files in Kad. We also
found that both networks are predominantly used in Europeantries, but there are also many active
users from Israel, China, Brazil, and the United Statesti@ed also investigates the content shared in

tUnstructured decentralized systems suclsastellaare not considered in this study.
2See http://www.emule-project.net/.
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the two systems. For example, we find that popular contehieieDonkey world is often also popular in
Kad, and that eDonkey follows the popularity trends of tred veorld. In general, our results indicate that
peer activity results in eDonkey directly carry over to thedkhetwork and vice versa. This observation
is not self-evident, given that we analyze only user-gdedravents. In Sectiof, we raise the question
of the representativeness of the collected data. In the Khdank, accurate data on the activity of a
specific file can be obtained, but due to the distributed eabfithe DHT, it is inherently difficult to
compute global aggregates such as the most active file irethark. On the other hand, in the eDonkey
network, a server receives queries for virtually all keysigrbut it has to compete against other servers
for the requests. If only a minor fraction of the traffic aedlat our servers or if the servers to be queried
were selected with respect to specific properties such esdgtthe data could become biased. We will
provide evidence that there is no critical bias in our meam@nts.

Subsequently, in Sectiohiwe question whether the p2p approach is mature enough tmstsidle
of its “comfort zone” of file sharing and related applicasonin particular, not much is known about
the ability of DHTs to meet critical security requiremeras (hose required nowadays, e.g., for domain
name servers) and its ability to withstand attacks. To thi as a case study, we evaluate the feasibility
of various attacks in the Kad network. Our study reveals Wiadte the Kad network functions reliably
under normal operation, today’s Kad network has severttarivulnerabilities, despite ongoing efforts
on the developers’ part to prevent fraudulant and desueicise. This article describes several protocol
exploits which prevent peers from accessing particulas fitethe system. In order to obstruct access
to specific files, file requests can be hijacked, and subséguarbitrary information can be returned
instead of the actual data. Alternatively, we show that ighbilg peers can be overwhelmed with bogus
information such that pointers to the original files can nugler be accessed. Moreover, itis even possible
to eclipsecertain peers, i.e., to fill up their routing tables with imfmtion about malicious peers, which
can subsequently intercept all messages. Additionallybrefly discuss how our network poisoning
attacks can also be used to harm machines outside the Kadrke®vg. web servers, by tricking the
peers into performing a Kad-steered distributed denia¢nfise (DDoS) attack. It is virtually impossible
to determine the true culprit in this scenario, as the itiitgapeer does not take part in the attack.

All our attacks have been tested on the real Kad network wsimgdified G-+ eMule client. Al-
ready with three attackers, virtually no peer in the systeas @able to find content associated with any
given keyword for several hours, which demonstrates thidt mmbderate computational resources, access
to any targeted content can be undermined easily.

2. Redated Work

Measurement studies are an important means to gain deegpghts into the working of distributed
systems. While theoretic models allow researchers to nefmsmally about a system’s behavior and to
prove its properties, such models are often simplificatiang may not reflect reality well. For more
complex systemsn silico experiments are conducted, desirably for as many pointedérparameter
space as possible. However, although such simulations-alaodexperiments on PlanetLabl]—can
provide additional confidence in a system’s performances iitot until the real deployment when the
system properties become clear.

There exist many measurement results for various p2p sg<statay. Saroiu et allp] have analyzed
several characteristics such as the bottleneck bandwaidithe peers participating in Gnutella and Nap-
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ster. Adar et al.]] have investigated the contributions of the Gnutella usArsimportant algorithmic
challenge in p2p computing is understanding churn, andénraces of membership changes in the sys-
tems deployed today2B] have been collected. There is also a community aiming &rsevengineering
closed-source projects such as Skype by studying the tpaftterns 10].

We have decided to study the eDonkey and the Kad networksegsatte two of the largest p2p
networks in use today, and as there is not much literaturd@setnetworks. Interesting results on the
Kad networkhave been obtained by Biersack, Steiner, and othe B¥| 25, 26]. For instance, in25],
possible misuses of the protocol are discussed. Stutzliadh[28] describe implementation details of
Kad in eMule, and27] presents crawling results on the behavior of Kad peers.rmo& related work to
our study of the Kad network is due to Steiner, Biersack and\gjjary [23]. The authors have crawled
the Kad network during several weeks and found, e.qg., tlifgrent classes of participating peers exist
inside the network. In contrast to their work which has stddihe churn induced by the peers’ joins
and leaves, our focus is on the peetivity while the peers are online, which we measure by monitoring
the lookups. As stated ir2B], peer IDs can change frequently, even as often as once parlaad
session while other IDs remain in the network for severalksed®ue to these conditions and the fact
that several peers might share the same IP address, it ischdrav any conclusions about peer behavior
when monitoring the peer IDs and the IP addresses in the rietv@nce keyword lookups are hardly
automated, observing lookups is the best and presumabbynilgevay to get insights into the activities
of users in such networks. To the best of our knowledge, thike first peer activity study by means
of monitoring lookup requests in distributed networksslalso the first study to take both server-based
and decentralized systems into account.

The immense computational resources of p2p networks avea#ilmctive to attackers, and there is
already a large body of literature on the subj@;80].2 Reasons to attack a p2p system can be manifold:
For example, a peer may seek to perform a more or less pasati@al attack” L8] to be able to benefit
from the system without contributing any resources itsglfLB]. While such selfishness can threaten a
peer-to-peer system, which essentially relies on thegyaaint’'s contributions, there are more malicious
attacks seeking to harm the system directly. An attacker, foagxample, strive to partition the system
or to eclipse individual nodes. Theelipse attack21], as also described in this work, can be used by a set
of malicious peers to position themselves around a givenipgbe network such that the peer’s contact
list consists only of the colluding peers. InSybil attack[9], a single entity creates multiple entities
of itself in order to gain control over a certain fraction betsystem. Such an attack can undermine
redundancy mechanisms and is hard to counter in a compla@éelgntralized environment. Attackers
may also exploit a peer-to-peer system to efficiently speeadrm[31]. Furthermore, the resources of
a p2p system may also be used to attank machine connected to the Internet regardless of whether
it is part of the peer-to-peer network or not. denial of service attackan be launched in various p2p
systems, e.g., Gnutell2]] Overnet [L7], and BitTorrent 8]. During this attack, information about the
victim, i.e., the targeted machine in the attack, is spradke system. The victim is falsely declared as an
owner of popular content, causing other peers searchintifocontent to contact the victim repeatedly.
In BitTorrent, tracker information can be faked which lep@®rs to believe that the victim is a tracker
for the desired conteng]. In the Kad network, DoS attacks can be launched by meansesfigection
attack where a queried peer, the attacker, will return eoresgpcontaining the address of the vict@9)][

As mentioned before, the attacks presented in this work Isanb& used to launch a DoS attack.

3See also http://www.prolexic.com/news/20070514-gib.
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The work closest in spirit to our work on attacks in p2p netwois the study ofndex poisoning
attacksin FastTrack and Overnel2]. The index poisoning attack irLP] is akin to our publish attack
where bogus information is pushed aggressively to the nedp®nsible for the desired keywords. How-
ever, while this attack is also quite successful, it is naftective in the Kad network as it is in FastTrack
and Overnet. We show that a different, even simpler poigpattack is feasible and even more effective.
Moreover, our study of attacks in the Kad network is not ledito content poisoning and index poison-
ing, but also considers the eclipse attack to prevent peems dccessing a specific file. It is also worth
pointing out that, in comparison to Kad, it is generally ea$d perform attacks on Overnet, as it, e.g.,
does not check whether the sender of a publish message @datédown IP address as the owner of the
file, and no cryptography is used for authentication.

While we believe that there are methods to contain the patestdmage caused by such attacks to
a certain extent, it is known that some sort of logically calized entity is required to thwart attacks
such as the Sybil attacR]. There also exists literature on the robustness of Kadekample, Steiner et
al. [25] initiated the study of Sybil attacks in Kad, and proposeedte possibility of obtaining a Kad ID
to the possession of a cell phone number. Their solutioretbes requires a centralized entity as well.
There is also some interesting theoretical work on how tatifleand exclude large sets of colluding
peers fi]. However, the described techniques cannot be used to@oauat attacks as we only need a
very small number of attackers close to a given ID, which issudficient to raise suspicion. For a more
thorough discussion of possible countermeasures agdiaska in p2p networks, the reader is referred
to the corresponding literature (e.d))f

3. Background and Measurement Framework

The eMule clientprovides access to the classic, server-based eDonkey meind the decentralized
Kad network, an implementation of the distributed hashetdtddemlia 6]. The different nature of
the two networks requires different measurement techsiglrethe following, we will first present our
approach to collect data in the eDonkey network. Subselyyeve will report on the functionality of
our Kad client which allows us to monitor traffic at arbitragots in the ID space.

3.1. eDonkey Network

When a user issues a query using the eMule client, the keypaafrthe query are sent to a subset of
servers, which subsequently respond to the client withrin&tion about where to obtain the requested
file. We found that the peers typically iterate over the [fstervers contained in their server file, querying
one server after the other as long as less than 300 resuktbkawn returned. The order of servers in this
list reflects the history of when peers learned about theserse i.e., old servers are at the top of the list
while new servers are appended at the end of the list.

Today, there is a large number of eDonkey servers all ovewtiréd, most of which are based on
the lugdunumsoftware? This software is not open-source as the developers try teeptehe creation
of fake servers or any other undesirable modification thatdcendanger the correct functioning of the
lugdunum servers. In order to collect data in the eDonkeword, we reverse-engineered the server
software and set up two servers ourselves which operatellasgo Initially, our server imports all

4See http://lugdunum2k.free.fr/kiten.html.
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known eDonkey servers from a file and announces itself toyes@nver on that list, one after the other.
For each server on the list,sgrver list requests sent, followed by @erver status requesind aserver
description requestn return, our server receives a list of servers that ave adind the current status and
description of the corresponding server. As a side effetitede queries, our server is added to the other
server’s list. This is vital as peers keep their server lipt$o date by periodically asking the servers they
are connected to for their lists of currently known servees; once our server appears in these server
lists, all peers will quickly learn about the existence of servers. In order to remain a member of these
lists, our servers correctly answer the status requesthef servers. However, due to legal concerns, we
neither store nor return any real data. Moreover, we pref@nvihg a high number of users and shared
files, but we deny any login requests and reply with a mesgatjeating that our server is full.

Due to the iterative lookup procedure described before,sewers are contacted perpetually, re-
gardless of which servers the peers are connected to. Asilh ke can collect large amounts of data
about many different kinds of requests, making it possibledmpute global aggregates such as the
most popular keyword in the network, or the most active jgeiét’address. Naturally, this data is only
representative if we receive a substantial fraction ofeduests in the network. This issue is discussed
in more detail in Sectiod.

3.2. Kad Network

In the Kad network, both the files and the index is stored irs&ibuted manner by the peers themselves;
there are no indexing servers. Each peer in the Kad netwakahB28-bit identifier (ID) which is
normally created by a random generator. This ID is storeti@peer even after it has left the network
and is re-used once the peer returns. Routing in the netwg&rformed using these identifiers and the
XOR metric, which defines the distance between two idersiféer the bitwise exclusive or (XOR) of
these identifiers interpreted as an integer. Fof &l [0, 127], every peer stores the addresses of a few
other peers whose distance to its own ID is betw&eand2'+!, resulting in a connected network whose
diameter is logarithmically bounded in the number of peéist each of theseontactsin the routing
table, a Kad ID, an IP address, and a port is stored.

The publish and retrieval mechanisms work roughly as faloieach keyword, i.e., a word in a
file name, and the file itself, are hashed, and informatioruabtte keywords, its associated file, and
the address of the owner is published in the network, i.&s,itfiormation is stored at the peers in the
DHT whose identifers are closest to the respective hastesaMore specifically, in Kad, information is
replicated ten times in a zone where peers agree in the firigs 8vlth the published key. Usually, this
so-calledtolerance zoneontains several thousand peers. While most of the peeregrelose to the
key, this is not always the case, e.g., due to churn and atdefs that are very popular and published
by many different peers.

In order to find a file for a given keywork, a peer computes a hash functibfk) of £ and routes,
in a multi-hop manner, the request to the peer having thdayéD closest toh(k); this peer stores the
hash codes of all the files associated with this keyword. Tatling filenames and the corresponding
hash codes of these files are then returned. Given a hasth¢gief a file £, it is then possible to get
a list of all the peers possessing a copyfdiy again routing to the peer whose ID is closest(g) as
this peer is responsible for the sources of

We created our own Kad client in order to collect data on ther petivity in the Kad network. Our
client exploits the fact that Kad uses randomly chosen aydiDs, which enables us to place our peers
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at any desired place in the ID space. On the one hand, perfgrmeasurements in the Kad network is
simpler than in the eDonkey network. This is due to the faat hsmall set of peers close to the hash
of a file f will be contacted by all peers interested in obtaining tHes fi Thus, as there is a unique
location where peers obtain information abgutiata of good quality can be collected by occupying the
corresponding area around this ID and spying on the trafficth@ other hand, the distributed nature of
the Kad network renders it more difficult to measure globamiiies such as the most popular file in the
network. Answering such a query would require to occupy gelgnortion of the entire ID space. Hence,
we confine ourself to acquiring small samples of the entaffitrand try to juxtapose these samples and
the data acquired in the eDonkey network in a reasonable enann

4. Measurements

This section summarizes our main measurement results. J&stigated the distribution of the user base
across countries of both eDonkey and Kad as well as the tehgistribution of the users’ requests. In
addition, the content that users search in the system isiagdmOur measurements were conducted
mostly in 2007.

4.1. Request Distributions

Within a few days after announcing our servers, they atchatuch traffic. Figurd shows the activity

of our servers during 4 days. We see that the request pataraims fairly stable across all days. On
average, during a measurement period of 2 weeks, our seegsised roughly 1,550 login requests, 448
keyword requests and 150,228 source requests per minuteavEinage bandwidth required to run each
server is approximately 300 KB/s. Note that a correct semguires substantially more bandwidth as it
has to reply to all keyword and source requests. Due to thiti@akl traffic caused by re-announcing
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Figure 1. Different server requests over time. The y-axigtie source requests is shown on the right, for the
login trials and the keyword requests it is shown on the left.
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our servers at other servers once per hour, our servers ereaded for a short time resulting in regular
drops of handled requests, which is most apparent in thee@frthe recorded source requests.

——Europe
--- America
Asia

Realtive Request Rate

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time of Day (GMT)

Figure 2. Temporal distribution of keyword search request&n average day on eDonkey, grouped by conti-
nents. The time on the-axis is based on the Greenwich Mean Time.

The keyword searches are particularly interesting to staslyhey are entered by users directly and
are hardly automated. Consequently, the amount of seagclests varies over the day. Figi@shows
this distribution for different continents. The figure ral@that in Europe and America the minimum
number of requests is reached in the early morning and tideucontinuously increases until midday,
where it stays on a more or less constant level during theendfdérnoon. Then it increases again after
the working hours until the maximum is reached at around gitn The curve for Asia looks slightly
different; the maximum is also reached at midnight, buteghignot such a sharp decline during the night,
and the number of requests even increases again reachingraldecal maximum in the early morning.
Note that the maximum number of requests is set to 100% fdr @aatinent in order to show this diurnal
pattern. The total number of requests per day in Europe, lmeAsia, and Africa plus Middle East
are 397,060, 156,322, 42,287, and 48,850, respectiveighwiecessitates this normalization and also
demonstrates the predominance of Europe in the eDonkeyorletw

As one might expect, the distribution of the search requadtse Kad network is similar. Figurg
depicts the temporal distribution of requests again fortlinee continents in the Kad network. Again,
the curve for Asia is quite different from the others. As opgm to the other continents, the maximum
number of requests in Asia is reached in the morning and netitathe evening. We occupied 14
randomly chosen IDs and logged all requests on these pegissad the average number of requests in
this figure.

We can look at the origins of the requests in more detail arsgtivie that European countries play
an important role in eDonkey, the only country among the fiasiactive countries outside of Europe
is Brazil. Figure4 depicts the percentage of all requests originating froni edche 20 most active
countries per month, both for the eDonkey and the Kad netwodescending order of activity in the
eDonkey network. A first observation that can be made is ti@spacial distribution is more concen-
trated in Kad than in eDonkey. Moreover, it can be seen tlesdme countries are the most active ones
in both networks. Note that, although eMule grants accelsttonetworks, users have to enteanually
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Figure 3. Temporal distribution of keyword search requestan average day on Kad, grouped by continents.
14 monitoring peers in Kad are used to compute these numbées.time on ther-axis is again based on the
Greenwich Mean Time.
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Figure 4. Origins of keyword search requests on our servetsrathe Kad network.

where they want to search and thus this result is not seifeewi Furthermore, the Kad network seems
to be significantly more used in Europe, especially in Itaig &rance, than elsewhere. The question
whether this is due to a more lenient legislation remainsope

It is difficult to assess the popularity of these networks tmyparing the absolute number of requests,
as there are countries with a much larger population or ashifytternet penetration rate. For this reason,
we have normalized the request rates received from eachrgdynthe number of Internet users in that
country® As can be seen in Figu the picture looks different in the normalized case. Theedlaree
quite active countries, Morocco, Algeria, and Israel, wtdll other countries have a comparably small

SData obtained from http://www.internetworldstats.com.
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number of requests per Internet user per month. The reasdnmigaxceedingly high number of request
originating from Morocco and Algeria might be simply due teetsmall number of Internet users in
these countries. Another possible reason is that relayeeare positioned in these countries in order
to obfuscate network traffic. The observation that a largelver of requests originate from a small
number of IP addresses supports this claim. As there are diffeyent IP addresses active in Israel
and given that it is generally one of the most active cousitrieseems that these networks are simply
highly popular in Israel, even more so than in Europe. As $athe other countries are concerned, the
graph shows that there is not a significant difference betlee popularity of eDonkey and Kad among
them. What is more, the distribution for both networks hasrayltail; as many as 21 countries exhibit
a normalized search activity of at least 20% of the seardhitycdf Spain, implying that both networks
are popular in many countries. We further found that bothvosts are indeed much more popular in
Europe than in the United States, the activity of the Unit&teS normalized by the number of Internet
users is about 30 times smaller than the activity of Spairkimgat the country with almost the smallest
activity overall. Clearly, this is partly due to the largenmer of Internet users in the United States.
Overall, only six countries contribute more keyword seascthan the United States, which indicates
that also in the United States both networks have a largehase. Finally, however, note that the data
in Figure5 could also be slightly biased, as the Internet penetratita ohight not be perfectly accurate.
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Figure 5. Keyword search requests normalized by the nunfiietesnet users of the 20 most active countries on
our servers and in the Kad network.

4.2. Search Contents

The main objective of both the eDonkey and the Kad systempsaeide users with a mechanism to find
and download files. Information about the searched contmtbe an interesting source for research,
for example, such data might give insights into the potdwptdifferent preferences of users in different
countries.

For this purpose, a record indicating the popularity of edata item in each country would be
required. Unfortunately, the compilation of such a recadjuite difficult—not only in Kad, but also
in the eDonkey network. One reason is that there is no autoroaé-to-one correspondence between



S. Schmid et al./eDonkey & eMule’s Kad: Measurements & Astac 393

keywords and files. There might be different spellings ofgsame keywords, files containing the same
content are typically available in different languagesq #me corresponding filenames often contain
typing errors. Moreover, the popularity of the files we monih Kad can change quickly, particularly
when versions of the same content, e.g., a video file, of asa@ quality appear. Figuéeplots different
versions found when quering for a specific exemplary keyvadoanihg a period of 50 days. Versian is
the worst qualityps is the same content in better quality, amdhas the best quality. As expected, the
number of occurrences of decreases over time, first at the expense,pfaind aftervs becomes more
and more popular, the number of occurrences.ddtart decreasing as well.

Relative Occumence in Filename

Figure 6. Different quality versions, distinguished by &fie keywords in the filename, in percentages of all
files.

In another experiment, we tried to evaluate to what extenptpularity of certain content in eDonkey
and Kad corresponds to the popularity of the same contemteimdal world. To this end, we observed
the popularity of newly released movies in eDonkey and Kace fiMd that there is indeed a strong
correlation, i.e., movies that are currently playing in neotheaters are popular both in eDonkey and
Kad. Figure7 shows this correlation for a specific movie (namely “Supdtpaln this figure, the total
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Figure 7. Comparison of the box office gross and the requestsioservers for a specific movie (“Superbad”).
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gros$ in the U.S. is depicted for each day and also the number obsgsjdor this movie on our servers.
The movie opened on October 5 2007, but it did not attract rmaoyie-goers until the next weekend.
Afterwards, the daily gross declined again with smallerkgeat the weekends as usual. In this graph,
we see that the popularity in eDonkey roughly follows thesads. Observe that the request pattern in
the network is delayed for about a week, reaching its maxirabout a week after the movie reached its
peak. Experiments using other content yielded more or lessame graph, also with a certain delay. In
order to take the Kad network into account, we further comgdmow often keywords are looked up in
eDonkey and in Kad and found that basically the same keywanel$ooked up more often than others
in both networks.

A thorough discussion of content popularity is beyond thepsecof this article. Our preliminary
findings indicate that there is not only a strong correlabeiween eDonkey and Kad, but also between
the two networks and the popularity of content in the reallevor

5. Representativeness

Conducting measurement studies of distributed systemdgliffieult endeavor. Even if large amounts
of data are collected, the statistical significance of theigoal results might be limited if the data is
biased. In order to obtain solid claims, it is important ttregt underlying data be either complete, or a
uniform and random subset thereof. In this section, we geevidence that our data can be considered
representative.

We consider the data collected by the servers first. As masdidefore, the servers receive requests
for all possible keywords. However, since a peer does nat ssuests to all the servers in its server list,
i.e., some servers might receive completely different estg) which could potentially bias the collected
data. As the eMule clients typically sesdurce requests both networks, in order to estimate what
fraction of all requests we receive, we compared the numbsowrce requests at our eDonkey server
with the number of source requests obtained in Kad. Our @xpats showed that for a given file, we
receive roughly 10 times more requests in Kad than at theseBince virtually all requests for a given
file are received in Kad, this indicates that our server ruggteives 10% of all keyword requests in the
network—a surprisingly large number. At the same time, tis&itdution of the origins of the requests
does not differ between the two networks. This suggestdtibsitare already contacted with a reasonably
large probability, although our servers are relatively nhemd also that they get a more or less random
subset of the entire traffic.

In the Kad network, it is easy to obtain unbiased requestfdaia given file, since all requests for a
particular file are routed to the same ID. However, makinggstants about the global distributions of the
requests requires to collect data at all locations in theg&rs, which is impossible. In this article, we
have taken a best-effort approach and aimed at getting atated moderately large set of peers whose
IDs are distributed uniformly at random. By averaging thesasurements, we get similar distributions
as those measured in eDonkey, which indicates that thenalota@iata is fairly representative. Although
we believe that the quality of our results is quite good, & ttabe taken into account that, similarly to our
client, other peers can also choose their overlay IDs at whiich could bias such a random sampling
approach. It is known that there are communities that séeit Kad IDs from a small subset of the
entire 1D spaceZ3].

SData obtained from http://www.boxofficemojo.com.
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6. Kad Attacks

We now turn our attention to the robustness of Kad, and repothree different attacks that limit the
peers’ access to a given fife In anode insertion attagkan attacking peer seeks to attract search requests
for f, which are answered with bogus information. Alternatiyelycess tg' can be denied by filling up

the index tables of other peers publishing information alfapublish attack. Finally, we describe how

an attacker carclipsean arbitrary peer: By controlling all the peer’s incominglautgoing traffic, the
attacker can prevent a peer from either publishing infoianatboutf or from accessing it.

6.1. Nodelnsertion Attack

By performing anode insertion attackt is possible to corrupt the network by spreading polluteédr-
mation, e.g., about the list of sources, keywords, or contsnewe have implemented the attacks for
keywordsthat is, a search for the attacked keyword will not give thieaxct results, but instead arbitrary
data chosen by the attacker is returned.

For this attack to work, we have to ensure that the searclests|for the specific keyword are routed
to the attacking peer rather than to the peers storing tlggnatiinformation. This can be achieved as
follows. In our modified eMule client, it is possible to sdlgle peer's Kad ID manually. Thus, an
attacker can choose its ID such that it matches the hash ofthe targeted keyword. Consequently, the
peer will become the node closest to this ID and will recei¢he corresponding search requests. The
nodes storing the correct files typically have a larger distato the keyword's ID than the attacker, as the
probability for a peer to have a random ID that perfectly rhatcthe 128-bit keyword ID is negligible.

In order to guarantee that peers looking for a certain kegivooity receive faked results, the attacker
must provide enough result tuples, as the eMule client teaites the search after having gathered 300
tuples. The attacker further has to include the keywordsived from a peer in the filenames, otherwise
the replies are not accepted. In our attacks, we use filendraesontain a unique number, the message
“File removed from Kad!”, and the keywords. Unique file hashee needed such that the 300 tuples are
not displayed as one tuple in eMule’s search window.

We frequently observed that eMule sends search requestmiyoto the closest peer, even though
this peer provided enough answers. This can be explainetidogdlay caused when transmitting the
300 search results from the closest peer. eMule will sendhangequest to the second closest peer
before all of the results are received from the closest ohés df course may harm the effectiveness of
the attack, and hence it is beneficial to gain control oversond, third, etc. closest IDs as well by
means of additional attackers. These attackers behavéyettee same way: All requests are answered
by supplying 300 faked tuples.

Figure 8 depicts the traces obtained during two week-long node tioseattacks performed using
our modified eMule client on the keyword “Simpsons.” Notetttgs attack influences all queries in the
entire Kad network not only for the search term “Simpsonsit, diso all other queries starting with the
term “Simpsons” such as “Simpsons Movie” or “Simpsons Stwai” etc. are affected automatically.

In the first trace, only one attacker whose ID exactly matt¢hediash of the keyword infiltrated the
network. We used another client to search for the term “Sangsonce a minute and examined the
returned results. Since a single attacker is not sufficemtnentioned before, the attack is moderately
successful in that only approximately 40% of the returnesilis originated from the attacker. What is
more, every single query returned at least some resultathatot faked. Further experiments showed
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Figure 8. Percentage of successfully hijacked keywordeastuin a node insertion attack for 1 and 3 attackers
during a time period of one week.

that using two attackers instead of one does not increaseitivess rate substantially, but three attackers
is already enough to hijack virtually all requests. The sécmace shows the success rate of the node
insertion attack using three attackers. On average, maire 9% of all returned tuples were faked,
and every batch of tuples contained at least some bogus tted by the attackers. The plot shows
that there are sudden drops of the success rate once in a Whilexplanation for this behavior is that
peers join and leave the network at a high rate, resultingacdurate routing tables. Consequently, a
lookup request can be routed to a peer that still storestsefulthis request and does not know about
our attacking peers yet.

The attack was repeated at other times using different kedavdAll our other experiment resulted
in a similar picture and confirmed our findings made with theri{®sons” keyword. Our attacking peers
received roughly 8 requests per minute from other peersémtiwork during the experiments. As
expected, the peer having the closest ID received the mqsests at a rate of roughly 4 requests per
minute.

6.2. Publish Attack

In contrast to the node insertion attack, which forces tlaecterequests to be routed to the attacker, the
publish attack directly attacks the peers closest to theflbeattacked keyword, comment, or source
entry. The index tables stored by the peers in the Kad netlavk a limited length; for instance, the
keyword table can store up to 50,000 entries for a specifiavibreover, a peer will never return more
than 300 result tuples per request, giving priority to thedtadditions to the index table. This makes
it possible to replace the original information by filling thpe tables of the corresponding peers with
poisoned entries. Thus, an attacker seeks to publish adangeint of information on these peers. Once
the index tables of the attacked peers are full, they willawtept any publish requests by other peers
anymore. Therefore, the attacked peers will only return pmisoned entries instead of the original
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information. Since every entry has an expiration time (2drbdor keyword and comment entries, and
5 hours for source entries), the clients have to be re-athpkriodically in order to achieve a constant
fraction of poisoned entries. In addition, an attacker lmatake into consideration the newly joining
peers in the network; if they have an ID close to the one attctheir tables also have to be filled.

We have implemented the publish attack for keyword entrsesell, again by modifying the original
eMule application. An existing timer method is used to rue #ttack every 10 minutes. In the first
phase, the 12 peers closest to the targeted ID are locategl efgiule’s search mechanism. In each run,
only peers are selected that have not been attacked befavhich need to be re-attacked due to the
expiration of the poisoned entries. In the second phastheafieers found in the first phase are attacked,
beginning with the closest peer found. To guarantee a falhedist, 50,000 poisoned entries are sent
divided into 250 packets containing 200 entries each. lerom@ prevent overloading the attacked client,
the sending rate was limited to 5 packets per second. Evéry eonsists of a unique hash value and
filename as in the node insertion attack. Since these eouigs to match all search requests containing
the attacked keyword, it is necessary to include all adutioelevant keywords (e.g. song titles for an
interpreter, year and language for a film title) in the fileeauatherwise, all the lookups with additional
keywords would not receive the poisoned entries, becausalribe keywords are included. In the node
insertion attack, this problem does not occur as the additikeywords are obtained from every search
request and can directly be appended to the filename to ntactequest. The success of each run is
measured with the load value sent in every response to aspyticket. This value should increase with
every poisoned packet sent, from a starting level of about2ll¥%6 to 100% when the attack is finished.
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Figure 9. Percentage of faked replies received in a pubtisitiafor the keyword “Simpsons” during a time
period of 5 days. Sometimes, the success rate drops butdhewars again quickly.

In comparison to the node insertion attack, itis clearlydieato maintain a high success rate using the
publish attack, due to the permanent arrivals of new peet$reneed to re-attack the peers periodically.
While the node insertion attack yields constantly highgaties is not true for the publish attack. Fig@re
plots the success rate of an attack on the keyword “Simpsores”a period of 5 days. While the attack
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works fairly well on average, at a success rate of roughly 80/ success rate periodically drops and
remains low for a certain time period before it recovers agai

Overall, the success rate is lower than in the case of a n@dgtion attack, although performing
a publish attack is more expensive. Again, repeating tlaelatht other times using different keywords
results in a similar pattern. The reason for this peculidralver is that the peers responsible for the
targeted IDs that are online during the phase where the ssicate is low refuse to accept our publish
messages. In fact, these peers do not even reply to publisbages, even though they can be contacted,
otherwise we could not receive any lookup results from th&mthis behavior is not in accord with the
protocol implemented in the real eMule client, we suspeat thodified versions of the original client
cause this effect. What clients are used is hard to deterasrtbey do not directly provide this infor-
mation. Thus, the use of modified clients appears to be anoghson why the node insertion attack is
superior to the publish attack. In order to improve the ssgcate, a more sophisticated implementation
could be used where the attack is split up into two concupemtesses. The first one would permanently
search for new peers with an ID close to the one attacked asxitpam to the second process which then
would attack these peers simultaneously. This would mizentiie time during which peers can respond
with original data. As this improvement would not solve tlielgem of uncooperative peers, it was not
implemented.

6.3. Eclipse Attack

Instead of poisoning the network to keep peers from obtgigirtain information, we can also attack
the requesting peers directly and keep them from sendingests| into the Kad network. In the eclipse
attack, the attacker takes over the targeted peer’s rotabig such that it is unable to communicate with
any other peer in the Kad network except the attacker. Asttheler simulates the whole Kad network
for that peer, it can manipulate the attacked peer in arpitrays, e.g., it can specify what results are
returned for any lookup, or modify comments for any file. Tleers requests can also be directed back
into the Kad network, but modified arbitrarily.

Typically, the contacts in the Kad routing table are not ammifly distributed over the whole ID
space. Rather, most of the contacts are located aroundéins [i2 to maintain short lookup paths when
searching for other peers in the Kad network (see dl6}).[ The attacker takes advantage of the fact that
there are relatively few contacts in most parts of the ID sp&oncretely, we inject faked peer entries
into these parts of the routing table to achieve a domingiogjtion. Subsequently, the faked peers are
selected for almost all requests. If we set the IP addresB tifase faked entries to the address of our
attacking peer, we receive most requests of the attackedapeecan process them as desired. We make
use of the fact that the standard eMule client accepts ntitipighbors of the same IP address.

Our measurements showed that a peer running eMule for andedeperiod of time has up to 900
contacts in its routing table. As the maximum number of cctstées 6,310, there is plenty of space in the
routing table for faked entries. In order to inject fakedrigsttheHello Requesinessage is used, which
is normally utilized during connection set up to check wiketknown peers are still alive. As a side
effect of this message, the sender of the message is addeel teceiver’s routing table. After enough
entries are injected, the attacking peer has to proceseduests from all those entries in order to keep
them in the routing table of the attacked node.

We implemented the eclipse attack in a stand-alone apiglicand ported all necessary parts from
the source code of eMule. The application maintains a lathblds all faked entries sent to the attacked
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peer. This is necessary, because every new entry in thengotable is validated by sending a hello
request. This request has to be answered with the same ID haweechosen when injecting the entry.
In order to differentiate between the entries, we assignvapuet to every faked entry and maintain a
data structure to store this information. The other partwfapplication processes the requests of the
attacked peer. If it asks for new peers close to a specific Exgply with new faked peers that match this
ID, or are very close to it, to guarantee the success of thelatif the peer asks for stored information
we deliver poisoned results, as in the two attacks discussfmte.

Table 1. Percentage of faked replies received during 10abitte eclipse attack. Each runwas measured 15
minutes with an interval of one minute.

Minute 71 79 73 T4 5 6 7 g 9 710 7

1. 0 0 0 0 0 0 0 0 0 0 0

2. 0 0 0 0 0 0 0 0 0 0 0

3. 0 0 0 0 0 0 0 0 0 0 0

4, 0 0 0 81 0 0 78 0 0 0 15.9

5. 72 100 100 65 23 100 81 81 100 65 78(7

6. 78 100 90 72 85 100 78 72 100 81 856

7. 81 82 100 81 78 81 100 78 100 100 881
8. 65 100 100 100 81 100 100 68 81 100 895
9. 58 100 100 95 100 100 100 89 100 100 942
10. 78 100 100 100 100 100 98 100 100 100 97.6
11. 100 100 100 100 100 100 100 100 100 100 100
12. 100 100 100 100 100 100 100 100 100 100 100
13. 100 100 100 100 100 100 100 100 100 100 100
14, 100 100 100 100 100 100 100 100 100 100 100
15. 100 100 100 100 100 100 100 100 100 100 100

Table 1 shows the results of 10 repeated eclipse attacks under iiee @anditions. To measure the
success rate of the attacks, we periodically ran searchéseattacked peer and counted the number of
poisoned results. As the success rate virtually alwayshe=sa@00% within minutes, we can conclude
that the attack works well, especially if the attack is fami®n a single keyword, but it is naturally

limited to merely a single attacked peer. The other two k#t@ce clearly preferable if an attacker aims
at hiding content fronall peers.

7. Discussion

The preceding section has presented three different atthekcan be used to keep peers from acquiring
the requested information. Naturally, these attacks cemlz@ combined in order to increase the chances
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of a successful attack. However, these poisoning attaaksotanly be used for this purpose. Rather,
they can serve an attacker as basic building blocks to puwaugletely different aims.

We will now briefly illustrate how they can be used for anothéiack. The resources of the Kad
network’s peers and our attacks can be used to drdisteabuted denial of service attadPDoS) against
any machine internal or external to the Kad network as fatow node insertion attack is performed
in order to occupy some popular keywords. Lebe the machine (e.g., a server) to be attacked. We
inform all requesters that contains the desired files. Consequently, all requests iegeted to the
attacked machine. Of course, the resulting load:as not larger than on the machine performing the
node insertion. However, the advantage of this attack istti@attacking machineemains hidden
moreover, it is generally harder to counter a distributedsdtack than a normal DoS attack as the
requests originate from different (and valid) IP addresgdso the Publish Attack can be used for the
DDosS attack if we advertise wrong IP bindings of keywordsisTias the additional advantage that the
attack induces more load on the attacked machine than ortdeker, as the different Kad peers are
directed to the attacked machine directly. Note that DDa&cks using a p2p system such as Kad are
particularly nasty as the peers store information aboutcgsufor a long period of time, implying that
such an attack could last several days with steadily chgnagers involuntarily performing the attack.

As all the described attacks can be performed easily and &dagge impact, it is mandatory to
derive and implement counteractive measures. In orderdccome the node insertion attack it must be
guaranteed that choosing specific IDs is infeasible. Agtiteorward approach, which is often described
in literature (and which is used, e.g., by the Azureus Bitdor client), is to bind the ID directly to the
peers’ IP addresses, e.g., by hashing the IP address. Howexe are several reasons why real-world
p2p systems do not adhere to this simple rule. First, malfjglers may share the same IP address, for
example, peers in a local area network behind a NAT routetyareally addressed using the same public
IP address. These peers would all have the same peer idel8#ieond, IP addresses are often given out
dynamically and the assignment of addresses may changasénot an ID-IP binding, this implies that
peers have to rebuild their routing tables when reconngd¢tirthe network with a new IP. Additionally,
all the credits gathered by uploading data would be lostriesably because the peer ID changed and
hence the peer cannot be recognized by other peers anymeeznis that some of these problems can
be solved easily and the IP address can still be incorporatedhe ID, e.g., by hashing the IP address
and a randomly chosen bit string to solve the NAT problem yauding a different, randomly chosen 1D
for the credit system, together with a public and private iy to protect it against misugeHashing the
IP address and a user-generated bit string is preferabteltaling the port as this would require a static
assignment of ports, and switching ports would also leadrieva ID. However, a crucial point is that
creating such a binding is not sufficient to avert the attacgeneral, as long as the ID includes a user-
generated part. Assuming that a hash function such as SKAdeld, an attacker can try out millions of
bit strings in a short period of time in order to generate athi& is closest to the targeted keyword even
in a network containing more than a million peers. These mlsens indicate that some form of peer
authentication is required, which is hard to achieve withiba use of a centralized verification service.
As part of the strength of the network is its completely dé@dized structure, relying on servers does
not seem to be an acceptable solution.

A simple heuristic to render the Kad network more resilienpaiblish and eclipse attacks is to limit
the amount of information a peer accepts from the same IReaddr.e., a peer does not allow that its

"In fact, Kad already uses public and private keys to authatgipeers whenever a new session starts.
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entire contact list is filled by peers using the same IP addr€his is also a critical solution as several
peers behind a NAT may indeed have the same public IP addkésst is more, an attacker with several
IP addresses at its disposal can circumvent this securigsune.

An important observation is that many of the discussed valriities do not only pertain to the Kad
network, such attacks can be launched against any fullynledzed system that does not incorporate
strong verification mechanisms. We believe that in receatdiure, some interesting approaches have
been proposed that may be useful not only in the context oKt network, especially the work on
join-leave attacksZ0] by Scheideler who studies how to spread peers over a vitiiapace|0, 1)
in a robust way. In%], Awerbuch and Scheideler proposed a robust distributedn@-robin) random
number generator. Intriguingly, while constructing a #ngndom number is difficult, it turns out that
a set of random numbers can be generated by a group of peescatadle manner that is resilient to
a constant fraction of adversarial peers. Unlike the véildigecret sharing algorithm described & [
their solution cannot fail if the initiating peer does nohbhee correctly, and a peer cannot rerun the
protocol sufficiently many times until an ID is generatedt fladls into a desired range. This is certainly
a desirable property to overcome the node insertion att@eksribed in this article. However, important
guestions remain open, for instance, how to handle conuuregoin operations, or how to cope with
ongoing DoS attacks.

8. Conclusion

Understanding the behavior of peers in large p2p networkbles the development of new and more
efficient distributed algorithms or may even pave the wayfarel applications in distributed systems. In
this article, we have reported on our measurement insigitsampared the peer activity in the server-
based eDonkey network to the distributed hash table Kad,ofvibe largest peer-to-peer networks in
use today. We find that not only do most requests arrive rqudhiting the same time interval every

day in both networks, the searched content is also quitdasim¥oreover, by counting the number of

source requests we discovered that our server receivellyol@2o of all eDonkey requests. Using this

estimate, and given that we receive virtually all requestértain keywords in Kad, we conclude that
the eDonkey network is still more popular. In total, we estienthe total number of requests in eDonkey
to be somewhere between 1.3 and 2 times larger than in Kadl biennteresting to see how the situation

develops in the future.

Due to their properties, the use of DHTs or similar strualunetworks has been proposed as the
foundation of the “future Internet” in order to overcome theficiencies of today’s Internet. Therefore,
in the second part of this article, the robustness of Kad &rémed in more detail. In particular, we
provide evidence that the Kad network can be attacked withad &mount of computing resources such
that access to popular files is denied. It is clear that suelkat could significantly lower the throughput
of the entire system as the sought-after files are no longedicand that this imposed censorship would
frustrate the users. Moreover, the possibility of levangghe immense computational resources of the
entire system to attack arbitrary machines constitutegiausethreat. Finally, one may also speculate
that the increasing number of spam replies observed in eMdiy may be due to mechanisms that are
similar and inspired by the attacks described in this aticl

We argue that the presented attacks can basically be ladimclamy peer-to-peer system that does
not incorporate sound peer authentication mechanismsyanthave initiated a discussion of different
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approaches to overcome these vulnerabilities. From tlsisdiscussion we conclude that while there are
both practical and theoretical schemes that seem to impgheveobustness, more research is needed on
how to apply them optimally “in the wild”.
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