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Abstract. This work examines the resilience properties of the Snowball
and Avalanche protocols that underlie the popular Avalanche blockchain.
We experimentally quantify the resilience of Snowball using a simulation
implemented in Rust, where the adversary strategically rebalances the
network to delay termination.
We show that in a network of n nodes of equal stake, the adversary is
able to break liveness when controlling Ω(

√
n) nodes. Specifically, for n =

2000, a simple adversary controlling 5.2% of stake can successfully attack
liveness. When the adversary is given additional information about the
state of the network (without any communication or other advantages),
the stake needed for a successful attack is as little as 2.8%.
We show that the adversary can break safety in time exponentially de-
pendent on their stake, and inversely linearly related to the size of the
network, e.g. in 265 rounds in expectation when the adversary controls
25% of a network of 3000.
We conclude that Snowball and Avalanche are akin to Byzantine reliable
broadcast protocols as opposed to consensus.

1 Introduction

The Avalanche protocol [13] advertises exceptional performance in terms of trans-
action throughput and latency. The Avalanche blockchain based on the protocol
has certainly gained significant attention and support within the cryptocurrency
community, as evidenced by the remarkable market capitalization of its native
token amounting to $10B3. The media prominence and monetary value firmly
place Avalanche among the most popular and successful blockchain systems.

The protocol is built on a simple mechanism that operates by repeatedly
sampling random nodes of the network in order to gauge the system’s support of
a given decision and confirm transactions. Conceptually, the underlying Snowball
protocol can be compared to a voting process for a binary choice concerning a
transaction. The protocol description promises to swiftly converge to a final
3 https://coinmarketcap.com (Accessed: June 19 2024)

https://coinmarketcap.com
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decision from a network state initially divided equally between two alternatives.
With the aid of a directed acyclic graph (DAG), Avalanche forms a partial order
of transactions instead of the total order that is established by usual blockchain
protocols, like Bitcoin [12] or Ethereum [6]. Thus when transactions on Avalanche
are accepted, validators are able to execute them in different orders based on
their current view of the DAG, as long as those transactions are not causally
dependent on each other. In theory, such structure can allow for a higher degree
of parallelism in the transaction confirmation process, which can lead to a higher
throughput than traditional blockchain protocols.

The ideas that form Avalanche stand in contrast to other Proof-of-Stake and
BFT-based consensus protocols such as Ethereum 2.0. While the whitepaper [13]
claims excellent resilience, it only proves the protocol’s liveness in presence of up
to O(

√
n) malicious parties, where n represents the total number of validators

(or stake supply). However, usually Proof-of-Stake protocols ensure the upper
bound resilience of n

3 in partial synchrony.

Another detail that stands out in the description of Avalanche, is how it de-
fines its guarantees with respect to “virtuous” transactions, i.e. assuming there’s
no conflicting alternative in the system. Remarkably, broadcast-based payment
systems [9,4] are inherently reliant on such an assumption, and as such are fun-
damentally weaker than consensus protocols.

The lack of clarity about the Avalanche family of protocols begs the question:
how resilient Snowball and Avalanche really are? Does the unusual consideration
of “virtuous” transactions indicate a fundamental limitation?

Our Contribution We examine the resilience properties of the Snowball and
Avalanche protocols.

We experimentally exhibit the resilience of Snowball against attacks from
adversarial nodes. Our simulation showcases that in a system of n nodes (or
stake supply), the adversary can indefinitely halt the Snowball protocol when
controlling a stake of Ω(

√
n), or less than 2% in some experimental scenarios.

Furthermore, we examine a strategy for an adversary to violate safety by getting
a single validator to finalize an output distinct from the rest of the network.
The expected duration of the safety attack depends exponentially on the stake
controlled by the adversary, and is inversely linear to the size of the network. For
example, at 25% adversarial stake in a network of 3000, safety can be violated
after 265 rounds in expectation.

We discuss how these considerations translate to the Avalanche protocol
based on Snowball.

Finally, we draw parallels between Avalanche and broadcast-based payment
systems, and conclude that Avalanche is fundamentally weaker than usual con-
sensus protocols.
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2 Background

Avalanche’s blockchain platform consists of three distinct built-in blockchains:
The Exchange Chain (X-Chain), the Contract Chain (C-Chain) and the Plat-
form Chain (P-Chain) [14].

The X-Chain is responsible for processing simple transactions on the network,
such as transfers of the native AVAX token. It is based on the Avalanche protocol
with the DAG that runs multiple instances of the Snowball algorithm and only
partially orders transactions.

The C-Chain is responsible for executing general smart contracts compatible
with the Ethereum Virtual Machine (EVM). In contrast to the X-Chain, C-
Chain uses the Snowman protocol which ensures a total order of all transactions.

The P-Chain processes various platform-level operations, such as creation of
new blockchains and sub-networks, validator (de-)registration, or staking oper-
ations. It also uses Snowman.

The Avalanche protocol introduced in the Ava Labs whitepaper, which is also
mainly marketed and presented in online materials, is used as the basis of X-
Chain. Interestingly, the Snowman protocol, which supports the C-Chain and
P-Chain, is almost absent from documentation and marketing, and remains out-
side the scope of this work.

2.1 Validators

Participants in the Avalanche protocol are called validators or nodes. Validators
following the protocol are called honest. As a blockchain protocol, Avalanche
aims to be resilient to validators deviating from the protocol, which are called
malicious, or collectively as the adversary.

Avalanche employs a Proof-of-Stake mechanism to control the ability of ma-
licious validators joining the system. Validators need to acquire AVAX tokens
(2,000 minimum) and deposit them using the Avalanche platform to actively par-
ticipate in the agreement process. Validators are associated with, and weighted
by, the amounts of deposited tokens, called their stake. Typically, Proof-of-Stake
blockchains aim to be resilient to the adversary that is able to acquire a stake
smaller than 1/3 of the total tokens (which is the theoretical maximum in harsh
network conditions).

2.2 UTXO Model

Avalanche uses the Unspent Transaction Output (UTXO) model, as initially
introduced in Bitcoin [12]. In the model, a transaction contains a set of inputs, a
set of outputs, and a digital signature. Each input of a transaction corresponds to
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a specific output from a previous transaction. Transactions are issued by users,
processed by the system, and as a result are accepted or rejected by the system.

Two transactions including the same input are conflicting, and only one trans-
action from such a pair can be accepted by the system.

The balance of a user is determined by the set of outputs transferred to that
user in previously accepted transactions and not yet used as inputs for newer
transactions. A valid transaction is also signed with keys corresponding to the
relevant inputs.

In contrast to most blockchains such as Bitcoin, Avalanche does not neces-
sitate a total order of all transactions. Instead, transactions in Avalanche form
a directed acyclic graph (DAG) resulting in a partial order. A transaction tx′
depends on tx if tx′ consumes an output of tx. In this case, every validator needs
to process tx before processing tx′. Validators can execute transactions that are
not dependent on each other in any order.

3 Snowball

The Snowball protocol serves as the foundational component of the Avalanche
blockchain. It is based on continuously querying random sets of k validators
regarding their current “approval” regarding a transaction, denoted as T .

When performing a query on k = 20 nodes within a Snowball instance,
the selection probability of a node is proportional to the stake of the node.
Intuitively, the influence of validators in validating transactions, quantified by
the probability of them being queried, is determined by their stake.

Validators maintain a confidence value for each binary choice: Blue if they
prefer to accept transaction T , Red if they reject transaction T . When a validator
queried k other nodes and saw at least α for either Red or Blue, we say that this
color received a chit, and the confidence value for that color is incremented by
one. When queried, a validator will either respond Blue if the confidence value
for Blue is higher, or Red if the confidence value for Red is higher. A color is
accepted by a node if for at least β consecutive rounds of querying it received a
chit. The logic of Snowball is illustrated in Figure 1.

3.1 Safety

Intuitively, safety properties can be understood as “bad” things not happening.
In our context, the main safety property is ensuring that two honest nodes can-
not perceive two conflicting transactions as accepted. The Avalanche whitepaper
outlines the definition of safety as follows:

P1. Safety: When decisions are made by any two honest nodes, they decide
on conflicting transactions with negligible probability (≤ ε).

Here ε represents the safety failure probability, with the specific value de-
pendent on the maximum number f of adversarial nodes, which is not explicitly
stated in the formal definition provided by the Avalanche whitepaper.
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k, α, β ← 20, 15, 20 ▷ Protocol parameters

function Snowball(V, vself , cinit)
cpref ← cinit
clast ← cinit
confidence← [0, 0]
counter ← 0

while counter < β do
Vquery ← SampleVal(V \ {vself}, k) ▷ Weighted by stake with replacement.
R← Query(Vquery) ▷ Query each with vself , cpref ; R is multiset of responses.
for i ∈ {0, 1} do

if |[r ∈ R | r = i]| ≥ α then
if clast ̸= i then

counter ← 0
confidence[i]← confidence[i] + 1
if confidence[i] > confidence[1− i] then

cpref ← i
clast ← i
counter ← counter + 1

return clast

function RespondToQuery(querier, cquerier)
if cpref = ⊥ then

cpref ← cquerier
return cpref

Fig. 1. Snowball algorithm.

3.2 Liveness

Liveness refers to the continued operation of the system. In our context, liveness
mainly refers to ensuring that all honest nodes eventually decide to accept or
reject a transaction within a reasonable time frame.

According to the whitepaper, Avalanche has the following liveness guarantees:

P2. Liveness (Upper Bound): Snow protocols terminate with a strictly pos-
itive probability within tmax rounds.

P3. Liveness (Strong Form): If f ∈ O(
√
n), then the snow protocol ter-

minates with high probability (≥ 1− ε) in O(log(n)) rounds.

However, it is specified later in the whitepaper that P2 holds only under the
assumption that initially, one proposal has at least α

k support in the network,
for which there is no guarantee.
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4 Simulation

To test resilience of Snowball, we perform a local simulation of the protocol
using a Rust implementation [3]. As the base implementation of Snowball (c.f.
Figure 1) we use the avalanche-consensus Rust library4, which is a translation
of the Snowball Go code that is part of the official Avalanche implementation5

and is maintained by the Ava Labs team.
The simulation involves a network of multiple honest nodes executing the

protocol correctly, aiming to achieve agreement on a binary decision. Malicious
nodes collude to perform the considered attacks. In our experimental scenarios,
the stake is equally divided among validators.

4.1 Network Assumptions

Distributed protocols might require various network reliability assumptions to
work correctly. Many blockchain protocols guarantee safety in harsh network
conditions, such as those of partially synchronous models, where messages can
be greatly delayed.

In our simulation we make the strongest network reliability assumptions pos-
sible, where every message arrives with the same, known latency. We deny the
adversary any communication advantage whatsoever, including advantages of-
ten practically achievable by an attacker in the real world, such as performing
queries faster, or performing more queries.

In synchronous rounds, nodes query other nodes, as described by the Snow-
ball protocol. Between rounds, the nodes update their preferred color with which
they respond to the queries.

4.2 Adversary Information

To perform the attacks, the adversary needs information about the other nodes’
preferred color. We call the adversary naive if the adversary simply queries
honest nodes in line with the protocol and updates his estimation of the colors
preferred by the honest nodes according to the query results.

We also consider an adversary that possesses accurate information about
the numbers of nodes preferring Red/Blue in the current round, and call that
adversary informed.

4.3 Liveness Attack

When attacking the liveness property, the adversary aims to delay the decision
of honest nodes by keeping the network split equally between Red and Blue. The
attack strategy we consider is straightforward. When the adversary is queried,
it responds with the color that is less preferred among all honest validators. By
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n, f ▷ Network parameters.
µestimate ▷ Current estimate of network-wide preference towards 1.

function RespondToQuery(vquery, cquerier)
if µestimate < 0.5 then

return 1
return 0

Fig. 2. Adversary strategy for liveness attack.

doing so, the adversary aims to bring the network split between the Red and
Blue decisions closer to the even 50-50 split. This is shown in Figure 2.

For a given experimental scenario, we consider the attack successful if in more
than 5 out of 10 simulation runs, no validator has terminated with a decision
after 100,000 rounds. We note that if a round of querying took about 1 second,
100,000 rounds would correspond to over a day.

We perform binary search with respect to the adversary stake to find the
minimal fraction of total stake for which the adversary is successful. Figure 3
shows the minimum percentage of stake the adversary needs to attack the liveness
of the protocol. It can be seen to decrease significantly with increasing number
of total nodes in the network, showing the sub-linear security bound.
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Fig. 3. Minimum fraction of stake needed by the adversary to successfully attack live-
ness, plotted against the number of nodes in the network with equal stake.

4 https://crates.io/crates/avalanche-consensus
5 https://github.com/ava-labs/avalanchego
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n, f ▷ Network parameters.
Vtarget ▷ Validators targeted in the safety attack.
µestimate ▷ Current estimate of network-wide preference towards 1.
µtarget ▷ Target split to maintain before finalization.
fin ▷ Indicator if some targeted validator has finalized.

function RespondToQuery(vquery, cquerier)
if fin then

return 0
else if vquery ∈ Vtarget then

return 1

if µestimate < µtarget then ▷ Otherwise, continue with regular liveness attack.
return 1

return 0

Fig. 4. Adversary strategy for safety attack.

4.4 Safety Attack

In this scenario, the adversary aims to break the safety property of the protocol
by causing some honest nodes to accept conflicting transactions.

The adversarial strategy we consider starts with maintaining a modified live-
ness attack. While the honest nodes are divided between Red and Blue, denote
by µ the fraction of honest nodes that prefer Red. Then, the fraction of honest
nodes that prefer Blue is 1− µ. The adversary attempts to keep the numbers of
honest nodes preferring Red and Blue close to the µ : Red, 1 − µ : Blue split
by replying to queries with colors that sway the honest nodes towards this split.
Additionally, the adversary chooses a set of honest nodes to queries of which
the adversary responds exclusively with Red. By employing this approach, the
attacker can significantly increase the likelihood of the targeted nodes finalizing
with the color Red after some time, while at the same time keeping the rest of
the network from deciding in either direction. Once some targeted node accepts
Red, the adversary replies to all queries with the color Blue, such that the rest of
the network accepts Blue. As a result, the adversary produces a safety violation,
as the targeted node decides differently to the rest of the network.

Figure 4 describes the adversarial strategy for the considered safety attack.

4.5 Safety Attack Analysis

Consider the attack where a single node is targeted. Denote the number of ad-
versarial nodes by f and the number of nodes in total by n. Assuming that
the adversary can maintain the honest nodes split of µ : Red, 1 − µ : Blue,
in expectation we observe the following: when the targeted node queries, it re-
ceives a percentage of µ(1− f

n )+
f
n responses for Red, while other nodes receive

≥ µ(1− f
n ) fraction of responses for Red, depending on the adversary. For exam-

ple, with 30% adversary stake and a split of 69.4% Red and 30.6% Blue among
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honest nodes, the targeted node has a probability p = 0.694 · 0.7 + 0.3 = 0.7858
of receiving a Red response when querying. Consequently, the targeted node can
finalize Red with some probability, which eventually occurs.

Once this happens, the adversary replies to all queries with Blue. Since µ(1−
f
n ) = 0.694 ·0.7 = 0.4858 < 0.5, it is very likely that all honest nodes flip to Blue
and later accept Blue. In general, if µ(1 − f

n ) < 0.5, the adversary still has the
ability to sway the network towards accepting Blue.

We now compute the probability that the targeted node converges to Red,
given that it sees an average proportion of µ(1− f

n ) +
f
n of responses in favor of

Red when querying. Recall that when querying k = 20 other nodes, a validator
increments its successive success counter, denoted as “counter”, only if a color
receives at least α = 15 votes, and if this color is the same as the currently
preferred color. Otherwise, the success counter is reset to 0.

Let the random variable X denote the number of participants who prefer
Red in a sample of size k = 20. We want to calculate the probability distribution
P (X ≥ α) = 1 − P (X < 15). We can model this using a binomial distribution
with parameters p = µ(1 − f

n ) +
f
n for the targeted node and p = µ(1 − f

n ) for
the other nodes. Thus, we have:

P (X ≥ α) = 1− P (X < α) = 1− F (α− 1, k, p) = 1−
α−1∑
i=0

(
k

i

)
pi(1− p)k−i

Here, F (α − 1, k, p) represents the cumulative distribution function (CDF)
of the binomial distribution. For our previous example, where µ = 0.694, for
honest nodes other than the attack target, we can calculate the probability
P (X ≥ α), which represents the chance of reaching the α majority threshold for
the color Red when querying. Plugging in the probability to receive a response
supporting Red in a single round p = 0.4858 from above, we get P (X ≥ α) =
1− F (14, 20, 0.4858) ≈ 0.015. On the other hand, the targeted node that has a
probability p = 0.7858 to get a Red response, and so pα = P (X ≥ α) = 1 −
F (14, 20, 0.7858) ≈ 0.756. This means that our targeted node has a pα ≈ 75.6%
chance of reaching the α majority for Red when querying k = 20 other nodes,
whereas other honest nodes only have a 1.5% chance of the same. Consider the
expected number of iterations needed to obtain β = 20 consecutive successes of
reaching the α = 15 majority for a color. Let Xβ represent the number of trials
required to achieve β consecutive successes, with the probability of one success
being pα. From [8], we can use the following formulas:

E[Xβ ] =
1− pβα

(1− pα)p
β
α

Var[Xβ ] =
1− (2β + 1)(1− pα)p

β
α − p2β+1

α

(1− pα)2p
2β
α

For the example where pα = 0.756 for the targeted node, we obtain:

E[X20] ≈ 1095
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σ =
√

Var[X20] ≈ 1078

On average, the targeted node needs to query 1,095 times with a standard
deviation of 1,078. We confirmed the expected results experimentally.

Adversary Honest Split pα E[X20] σ ≈ E[X1000
20 ]

30% 69.4% - 30.6% 0.756 1,095 1,078 20
25% 64.8% - 35.2% 0.560 245,562 245,544 265
20% 60.7% - 39.3% 0.364 9.4e+8 9.4e+8 940,000
10% 54.0% - 46.0% 0.101 8.4e+19 8.4e+19 8.4e+16
5% 51.2% - 48.8% 0.043 2.5e+27 2.5e+27 2.5e+24

Table 1. Summary of the expected safety attack results for different percentages of
adversarial stake and corresponding stable network splits. The second column shows
the maximally imbalanced but stable split of honest validators that the adversary is
able to maintain. E[X1000

20 ] is the expected length of the safety attack when 1000 nodes
are targeted.

The effectiveness of the attack can be greatly increased by targeting a large
number of nodes rather than just one. Let Xk

β be the number of trials required
for any target node among k targeted nodes to achieve β consecutive successes.
Assuming the β successes to be equally probable to conclude in every round after
19, and assuming the constant network split maintained by the adversary, the
expected number E[Xk

β ] is E[Xβ−19]
k +19. We have simulated some experimental

scenarios, such as targeting 1000 nodes with n = 3000 and the adversarial stake
of f = 750, where the results matched our expectation.

With increasing total number of nodes n, the adversary can target more
nodes. While in our experiments we successfully targeted over 0.3n of n = 3000
nodes, future work is needed to understand how big the share of targeted nodes
can be in an optimal strategy and with increasing n. In summary, the strength
of the attack corresponds exponentially to the share of the adversary stake. On
the other hand, the expected required duration of the attack is inversely linear
to the overall number of nodes n, as the number of targeted nodes can increase
roughly linearly with n. Table 1 summarizes the effectiveness of the safety attack
for adversaries of different strengths.

5 Avalanche Protocol

In this section, we explain how the Avalanche protocol builds on Snowball to
incorporate optimizations and additional features.

5.1 DAG

To enhance the throughput and enable parallel processing of transactions, the
Avalanche protocol builds a directed acyclic graph (DAG) for transactions, in-
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stead of a linear chain. Each transaction is represented as a node in the DAG.
Furthermore, transactions in the DAG are interconnected through parent-child
relationships: A transaction T refers to older transactions known as its parents
Parents(T ). We denote the parent relation T ′ ∈ Parents(T ) by T ′ ← T . If T ′′

is reachable by parent links from T , we say that T ′′ is an ancestor of T , or
T ′′ ∈ Ancestors(T ), and that T is a descendant of T ′′, or T ∈ Descendants(T ′′).

5.2 Vertex

In order to limit the coordination overhead, a node in the Avalanche DAG is not
an individual transaction but rather a batch of transactions known as a vertex.
A vote for a vertex is considered a vote for all transactions contained within that
vertex. This allows Avalanche to facilitate efficient queries, while still maintaining
confidence levels and a conflict set for each individual transaction.

When a vertex is accepted, all transactions within it are accepted. When a
vertex is rejected, valid transactions in that vertex may be batched into a new
vertex, by removing the non-preferred transactions that resulted in the vertex
getting rejected. When a node creates a vertex V , it chooses parents for V that
are currently preferred.

When a user submits a payload transaction tx, a node creates a transac-
tion T ⟨tx,D⟩ for that payload. It includes the payload tx, along with the set
of UTXO IDs that will be consumed if the transaction is accepted, and the
list D of dependencies on which this transaction relies. Each dependency must
be accepted before this transaction can be accepted. The node then batches
this transaction T ⟨tx,D⟩ with other pending transactions into a vertex. The
node assigns one or more parents to this vertex, allowing it to be added to
the DAG. We define an Avalanche transaction T as preferred if it is the pre-
ferred transaction in its conflict set PT . In other words, if transaction T has the
highest confidence among other conflicting transactions. Each node u calculates
the confidence value for each transaction T denoted by du[T ]. This confidence
value is defined as the sum of the chits received by T and all its descendants
[13]: d[T ] =

∑
T ′∈Tu:T∈Descendants(T ′) cu,T ′ . Here, Tu represents all the transac-

tions currently known by node u in its view of the DAG, and cu,T ′ represents
the chit received by transaction T ′. cu,T can only take two values: 0 or 1. Node u
queries transaction T only once, as the votes on the descendants of T also serve
as queries and votes on T . Specifically:

cu,T =

{
1 transaction T received a chit when u queried for it
0 otherwise

As a reminder, receiving a chit for transaction T means that node u received
an approval rate of at least α = 15 when it queried k = 20 other nodes to
determine if T was their preferred transaction. The confidence value of T (and
thus its status as accepted or rejected) is then updated based on the queries
made on its descendants.
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We say that a transaction T is strongly preferred if T is preferred and all
its ancestors are also preferred in their respective conflict sets. An Avalanche
transaction T is considered virtuous if it conflicts with no other transactions or
if it is strongly preferred. Consequently, a virtuous vertex is a vertex where all
its transactions are virtuous. Similarly, a preferred or strongly preferred vertex
is one where all its transactions are preferred or strongly preferred, respectively.
The parents of a vertex are randomly chosen from the virtuous frontier set VF ,
which consists of the vertices at the frontier of the DAG that are considered
virtuous:

VF = { T ∈ T | virtuous(T ) ∧ ¬ virtuous(T ′) ∀T ′ ∈ T : T ← T ′}

The notation virtuous(T ) indicates that T is virtuous. In other words, VF is the
set of vertices that are virtuous, and have no virtuous children.

5.3 From Snowball to Avalanche

The Avalanche protocol runs a Snowball instance on the conflict set of each
transaction T once a node hears about a new transaction that gets appended
to the DAG. This means that when a new transaction T is received, a validator
will query k other random nodes to determine if T is their preferred transaction.
The queried nodes will respond positively only if transaction T and its ancestors
in the DAG are also their preferred transactions within their respective conflict
sets. Instead of querying a Snowball instance for each individual transaction,
Avalanche batches transactions into a vertex and instantiates a Snowball in-
stance for that vertex, checking if all the transactions within that vertex and its
ancestors are valid.

When a node is queried about the preference of transaction T and its ances-
tors, it provides not just a binary vote as in Snowball, but rather responds with
its entire virtuous frontier VF based on its local view. This allows the respon-
dents to specify which ancestors are not preferred if T is not strongly preferred.
The querying node u collects the virtuous frontier of the k queried nodes. For
each virtuous frontier VF ′ sent by a node w as a vote, we add the transactions
T ′ from VF ′ and the ancestors of T ′ to a set G[T,w], which represents the posi-
tively reported transactions of w when asked to vote for T . We then count how
many times node w, when queried for T , has acknowledged a transaction T ′ as
virtuous, and store this in the counter ack[T, T ′]. We then run a Snowball in-
stance for every ack[T, T ′]: If ack[T, T ′] received more than α votes it indicates
that the α majority of the k queried validator agree that T ′ is preferred. We then
increase the consecutive counter for T ′ if it was also the preferred transaction
in the last vote. The above procedure of voting on a vertex containing a single
transaction can be generalized for vertices containing multiple transactions.

Finally, there are two ways in which a vertex V , and consequently all the
transactions it contains T ∈ V , can be accepted, provided that all the ancestors
of V have also been accepted. The first way is if none of its transactions T ∈ V
conflict with any other transactions, and the vertex V received β1 consecutive
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successes. In this case, the vertex and all its transactions are accepted by node
u. The second way is if some transactions T ∈ V have other transactions in their
conflict sets, and the vertex V receives β2 consecutive successes. In this case,
the node accepts the vertex V and all its transactions. The Avalanche protocol
denotes β1 as betaVirtuous and β2 as betaRogue, and naturally β1 < β2.

5.4 Liveness Attack

Suppose that two transactions (both with accepted virtuous ancestors) T batched
in vertex V and T ′ batched in vertex V ′ are conflicting. Recall that the Snowball
liveness attack consisted of a strategy where the adversary tried to ensure that
the split between Red and Blue was always close enough to 50% each. Here,
the approach is similar, except that we have to ensure that, on average, 50% of
the network has V in their virtuous frontier or as an ancestor of their virtuous
frontier, and the other 50% of the nodes have V ′ in their virtuous frontier or as
an ancestor of their virtuous frontier. The binary attack can be transposed to
one where the adversaries responds with the virtuous frontier VF , with V an
ancestor of the nodes in VF , or responds with the virtuous frontier VF ′, with
V ′ an ancestor of the nodes in VF ′. The intuition behind this attack is that half
of the nodes will adopt a virtuous frontier that contains vertex V as a virtuous
vertex, and the other half of the nodes will adopt a virtuous frontier that con-
tains V ′ as a virtuous node. At every iteration of the loop, the adversary needs
to maintain those two conflicting virtuous frontiers VF and VF ′, grow the DAG
such that some new valid vertices are appended to the conflicting VF and VF ′,
and respond accordingly with either one of the virtuous forests using the same
technique that was used for the Snowball liveness attack.

5.5 Safety Attack

The safety attack from Snowball to Avalanche can be transposed in the same way
as was explained above for the liveness attack. Similarly, we will try to maintain
a network split that does not converge: µ of nodes will prefer a virtuous frontier
VF that contains v as an ancestor, and ν of nodes will prefer a virtuous frontier
VF ′ that contains v′ as an ancestor. For one targeted node, the adversary will
respond exclusively with the virtuous frontier VF instead of trying to maintain
a split. This way, we can make the targeted node to accept vertex v while all the
other nodes are still undecided. Once this is done, the adversary can unanimously
respond with virtuous frontier VF ′ to make the rest of the nodes accept v′ in
order to break safety. Such an attack can be instantiated by any adversary that
creates conflicting (double spending) transactions T and T ′, batch them in nodes
v and v′ and conducts the attack to make some nodes accept T, and some other
nodes accept T ′ thus resulting in a successful double spending.
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6 Consensus or Broadcast

Consensus is a property that allows multiple parties to reach agreement on trans-
actions, either accepting or rejecting them. In the context of blockchain systems,
consensus can be defined by the following set of properties:

Definition 1. Each honest validator observes some transaction from a set of
conflicting transactions {t0, t1, . . . }. Consensus satisfies the following proper-
ties:

Totality: If some honest validator accepts a transaction, every honest validator
will eventually accept the same transaction.

Agreement: No two honest validator accept conflicting transactions.
Validity: If every honest validator observes the same transaction (there are

no conflicting transactions), this transaction will be accepted by all honest
validators.

Termination: Some transaction from the set will eventually be accepted by
honest validators.

As implied by Agreement and Termination, a consensus protocol enables
nodes to reach an agreement on conflicting transactions, where multiple valid
transactions consuming the same input are involved. In such cases, all nodes
should unanimously accept one of the conflicting transactions.

As we have established, the Avalanche protocol features a relatively weak,
sublinear resilience to liveness attacks involving conflicting transactions. To ad-
dress this issue, Avalanche introduces the term of virtuous transactions, which
can enjoy better guarantees. In other words, even for a relatively small adver-
sary, Avalanche does not satisfy the Termination property, and only guarantees
termination if the Validity condition is also met: all honest validators observe
just one valid transaction and no conflicting ones.

The termination property becomes crucial in scenarios involving smart con-
tracts, where conflicting transactions may arise, such as two users attempting to
purchase the same product. To address this limitation, the Avalanche team in-
troduced a different solution for the C-Chain and P-Chain, specifically designed
to execute smart contracts required for such blockchain applications.

As described by [9], consensus is not necessary for payment systems, and
indeed there exist payment systems providing similar guarantees to Avalanche,
while also unable to support general applications such as smart contracts: broadcast-
based payment systems [4,7,5,15,11]. The provided guarantees of a Byzantine
reliable broadcast can be defined as follows:

Definition 2. Each honest validator observes some transaction from a set of
conflicting transactions {t0, t1, . . . }. Byzantine reliable broadcast satisfies
the properties of Consensus, without the Termination property.

Thus, referring to Avalanche as a consensus protocol can be misleading, as
it is more akin to broadcast-based payment systems. While the performance of
Avalanche is given prominence, a different solution has been used as required by
the C-Chain and P-Chain.
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7 Related Work

Amores-Sesar et al. [2] analyze the Avalanche protocol. They explain the protocol
with pseudocode and introduce a property of Avalanche that was omitted here:
No-op transactions which are stateless transactions are added into the DAG by
the nodes to make sure we always make progress on the finalization of older
transactions. The paper introduces a liveness attack (different from ours) that
could be possible if the naive way of voting for a transaction and its ancestors
with just a binary yes/no vote was implemented. However, this is not the case, as
emphasized at the end of the paper with the pseudocode involving the virtuous
frontier concept.

Ash Ketchum and Misty Williams [10] raise concerns similar to ours in their
recent write-up, that Avalanche is not a consensus protocol.

Most recently, a follow-up analysis by Amores-Sesar et al. [1] formalized
the need for at least Ω(log n+ β) rounds for consensus with the Snow family of
protocols. They then proposed a specific modification of Snowflake and Snowball
implementing this change.

8 Conclusion

In this paper, we have examined the resilience properties of Avalanche and its
underlying Snowball protocol. We have experimentally evaluated simple strate-
gies for a potential adversary. To quantify the efficacy of these attacks, we have
conducted simulations and evaluated the ratio of stake the adversary needs to
control to launch successful attacks on liveness and safety.

Our analysis revealed that an adversary with a small fraction of the stake can
indefinitely keep the network in a state where it cannot finalize a transaction.
With some probability depending on the stake and the size of the network, the
adversary can also convince some node to finalize a transaction that is then
rejected by other honest parties, which can result in a double spending attack.

Through our analysis, we have demonstrated that the Snowball protocol -
the foundation of Avalanche - is vulnerable, when conflicting transactions are
present. The weak resilience when conflicting transactions are present is a critical
limitation, as it makes the protocol unable to support general smart contracts.
This explains why Avalanche actually uses a different protocol, called Snowman,
which uses a linear blockchain (instead of a DAG) in order to totally order those
transactions, unlike what is done for payments [14].

Future Work The basis of our attacks relies on the presence of conflicting
transactions. Future work could analyze how Avalanche distinguishes unique
transactions, and determine the feasibility for an adversary to arbitrarily create
conflicting transaction from another transaction T broadcast by an honest node,
for example, by creating a copy with different parents in the DAG.
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