
Brief Announcement: Towards Reduced
Instruction Sets for Synchronization∗

Rati Gelashvili1, Idit Keidar2, Alexander Spiegelman2, and
Roger Wattenhofer4

1 MIT, Cambridge, MA, USA
2 Technion, Haifa, Israel
3 Technion, Haifa, Israel
4 ETH, Zürich, Switzerland

Abstract
Contrary to common belief, a recent work by Ellen, Gelashvili, Shavit, and Zhu has shown
that computability does not require multicore architectures to support “strong” synchronization
instructions like compare-and-swap, as opposed to combinations of “weaker” instructions like
decrement and multiply. However, this is the status quo, and in turn, most efficient concurrent
data-structures heavily rely on compare-and-swap (e.g. for swinging pointers).

We show that this need not be the case, by designing and implementing a concurrent lineariz-
able Log data-structure (also known as a History object), supporting two operations: append(item),
which appends the item to the log, and get-log(), which returns the appended items so far, in order.
Readers are wait-free and writers are lock-free, hence this data-structure can be used in a lock-free
universal construction to implement any concurrent object with a given sequential specification.
Our implementation uses atomic read, xor , decrement, and fetch-and-increment instructions sup-
ported on X86 architectures, and provides similar performance to a compare-and-swap-based
solution on today’s hardware. This raises a fundamental question about minimal set of synchron-
ization instructions that the architectures have to support.

1998 ACM Subject Classification C.1.2 Multiple Data Stream Architectures (Multiprocessors),
D.1.3 Concurrent Programming

Keywords and phrases Consensus hierarchy, universal construction, synchronization instruction

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.53

1 Introduction

In order to develop efficient concurrent algorithms and data-structures in multiprocessor
systems, processes that take steps asynchronously need to coordinate their actions. In shared
memory systems, this is accomplished by applying hardware-supported low-level atomic
instructions to memory locations. An atomic instruction takes effect as a single indivisible
step. The most natural and universally supported instructions are read and write, as these
are useful even in uniprocessors to store and load data from memory.

A concurrent implementation is wait-free, if any process that takes infinitely many
steps completes infinitely many operation invocations. An implementation is lock-free if
in any infinite execution infinitely many operations are completed. Binary consensus is a
synchronization task where processes start with input bits, and must agree on an output bit

∗ A full version of the paper is available at http://arxiv.org/abs/1705.02808.

© Rati Gelashvili, Idit Keidar, Alexander Spiegelman, and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa W. Richa; Article No. 53; pp. 53:1–53:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.53
http://arxiv.org/abs/1705.02808
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


53:2 Brief Announcement: Towards Reduced Instruction Sets for Synchronization

that was an input to one of the processes. For one-shot tasks like consensus, wait-freedom and
lock-freedom are equivalent. Herlihy’s Consensus Hierarchy [2] assigns a consensus number to
each object, namely, the number of processes for which there is a wait-free binary consensus
algorithm using only instances of this object and read-write registers. An object with a higher
consensus number is hence a more powerful tool for synchronization. Moreover, Herlihy
showed that consensus is a fundamental synchronization task, by developing a universal
construction which allows n processes to wait-free implement any object with a sequential
specification, provided that they can solve consensus among themselves.

Herlihy’s hierarchy provides an explanation as to why, for instance, the compare-and-swap
instuction can be viewed “stronger” than fetch-and-increment, as the consensus number of a
Compare-and-Swap object is n, while the consensus number of Fetch-and-Increment is 2.

However, key to this hierarchy is treating synchronization instructions as distinct objects,
an approach that is far from the real-world, where multiprocessors do let processes apply
supported atomic instructions to arbitrary memory locations. In fact, a recent work by Ellen
et al. [1] has shown that a combination of instructions like decrement and multiply-by-n,
whose corresponding objects have consensus number 1 in Herlihy’s hierarchy, when applied
to the same memory location, allows solving wait-free consensus for n processes. Thus, in
terms of computability, a combination of instructions traditionally viewed as “weak” can be
as powerful as a compare-and-swap instruction, for instance.

The practical question is whether we can really replace a compare-and-swap instruction
in concurrent algorithms and data-structures with a combination of weaker instructions.
compare-and-swap is ubiquitous in practice and used heavily for various tasks like swinging a
pointer. Also, the protocol given by Ellen et al. solves only binary n-process consensus. It is
not clear how to use it for implementing complex concurrent objects, as utilizing Herlihy’s uni-
versal construction is not a practical solution. On the optimistic side, there exists a concurrent
queue implementation based on fetch-and-add that outperforms compare-and-swap-based
alternatives [3]. Both a Queue and a Fetch-and-Add object have consensus number 2, and
this construction does not “circumvent” Herlihy’s hierarchy by applying different non-trivial
synchronization instructions to the same location. Indeed, we are not aware of any practical
construction that relies on applying different instructions to the same location.

We develop a lock-free universal construction using only read, xor , decrement, and
fetch-and-increment instructions. The construction could be made wait-free by standard
helping techniques. In particular, we implement a Log object (also known as a History object),
which supports high-level operations get-log() and append(item), where get-log() returns all
previously appended items in order. This interface can be used to agree on a simulated object
state, and thus, provides the universal construction [2]. In practice, we require a get-log() for
each thread to return a suffix of items after the last get-log() by this thread. We design a
lock-free Log with wait-free readers, which performs as well as a compare-and-swap-based
solution on modern hardware. We could replace fetch-and-increment and decrement with
the atomic fetch-and-add instruction, reducing the instruction set size even further.

2 Algorithm

We work in the bounded concurrency model where at most n processes will ever access
the Log implementation. The object is implemented by a single fetch-and-increment-based
counter C, and an array A of b-bit integers on which the hardware supports atomic xor
and decrement instructions. We assume that A is unbounded. Otherwise, processes can
use A to agree on the next array A′ to continue the construction. C and the elements of



R. Gelashvili, I. Keidar, A. Spiegelman, and R. Wattenhofer 53:3

Figure 1 Element of A.

A are initialized by 0. We call an array location invalid if it contains a negative value, i.e.,
if its most significant bit is 1, empty if it contains value 0, and valid otherwise. The least
significant m = dlog2 (n + 1)e bits are contention bits and have a special importance to the
algorithm. The remaining b−m− 1 bits are used to store items. See Figure 1 for illustration.

For every array location, at most one process will ever attempt to record a (b−m− 1)-bit
item, and at most n− 1 processes will attempt to invalidate this location. No process will try
to record to or invalidate the same location twice. In order to record item x, a process invokes
xor(x′), where x′ is x shifted by m bits to the left, plus 2m − 1 ≥ n, i.e., the contention bits
set to 1. To invalidate a location, a process calls a decrement. The following properties hold:
1. After a xor or decrement is performed on a location, no read on it ever returns 0.
2. If a xor is performed first, no later read returns an invalid value. Ignoring the most

significant bit, the next most significant b−m− 1 bits contain the item recorded by xor .
3. If a decrement is performed first, then all values returned by later reads are invalid.
A xor instruction fails to record an item if it is performed after a decrement. To implement
a get-log operation, process p starts at index i = 0, and keeps reading the values of A[i] and
incrementing i until it encounters an empty location A[i] = 0. By the above properties, from
every valid location A[j], it can extract the item xj recorded by a xor , and it returns an
ordered list of all such items (xi1 , xi2 , . . . , xik

). In practice, we require p to return only a
suffix of items appended after the last get-log() invocation by p. This can be accomplished by
keeping i in static memory instead of initializing it to 0 in every invocation. To make get-log
wait-free, p first performs l = C.read(). Then, if i becomes equal to l during the traversal,
it stops and returns the items extracted so far. To implement append(x), process p starts
by ` = C.fetch-and-increment(). Then it attempts to record item x in A[`] using an atomic
xor instruction. If it fails to record an item, the process does another fetch-and-increment
and attempts xor at that location, and so on, until it is able to successfully record x.
Suppose this location is A[`′]. Then p iterates from j = `′ − 1 down to j = 0, reading each
A[j], and if A[j] is empty, performing a decrement on it. Afterwards, process p can safely
return. The proofs of lock-freedom and linearizability can be found in the full version at
http://arxiv.org/abs/1705.02808.

We implemented the algorithm on X86 processor and with 32 threads. It gave the same
performance as an implementation that used compare-and-swap for recording items and
invalidating locations. It turns out that in today’s architectures, the cost of supporting
compare-and-swap is not significantly higher than that of supporting xor or decrement. This
may or may not be the case in future Processing-in-Memory architectures [4]. Finding a
compact set of synchronization instructions that, when supported, is equally powerful as the
set of instructions used today is an important question to establish in future research.

References
1 Faith Ellen, Rati Gelashvili, Nir Shavit, and Leqi Zhu. A complexity-based hierarchy

for multiprocessor synchronization:[extended abstract]. In Proceedings of the 35th ACM
Symposium on Principles of Distributed Computing, 2016.

DISC 2017

http://arxiv.org/abs/1705.02808


53:4 Brief Announcement: Towards Reduced Instruction Sets for Synchronization

2 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 1991.

3 Adam Morrison and Yehuda Afek. Fast concurrent queues for x86 processors. In Pro-
ceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, volume 48 of PPoPP’13, pages 103–112, 2013.

4 David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton,
Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case for intelligent ram.
IEEE Micro, 17(2):34–44, 1997.


	Introduction
	Algorithm

