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Abstract
Contrary to common belief, a recent work by Ellen, Gelashvili, Shavit, and Zhu has shown
that computability does not require multicore architectures to support “strong” synchronization
instructions like compare-and-swap, as opposed to combinations of “weaker” instructions like
decrement and multiply. However, this is the status quo, and in turn, most efficient concurrent
data-structures heavily rely on compare-and-swap (e.g. for swinging pointers).

We show that this need not be the case, by designing and implementing a concurrent lineariz-
able Log data-structure (also known as a History object), supporting two operations: append(item),
which appends the item to the log, and get-log(), which returns the appended items so far, in order.
Readers are wait-free and writers are lock-free, hence this data-structure can be used in a lock-free
universal construction to implement any concurrent object with a given sequential specification.
Our implementation uses atomic read, xor , decrement, and fetch-and-increment instructions sup-
ported on X86 architectures, and provides similar performance to a compare-and-swap-based
solution on today’s hardware. This raises a fundamental question about minimal set of synchron-
ization instructions that the architectures have to support.
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1 Introduction

In order to develop efficient concurrent algorithms and data-structures in multiprocessor
systems, processes that take steps asynchronously need to coordinate their actions. In shared
memory systems, this is accomplished by applying hardware-supported low-level atomic
instructions to memory locations. An atomic instruction takes effect as a single indivisible
step. The most natural and universally supported instructions are read and write, as these
are useful even in uniprocessors to store and load data from memory.

A concurrent implementation is wait-free, if any process that takes infinitely many
steps completes infinitely many operation invocations. An implementation is lock-free if
in any infinite execution infinitely many operations are completed. Binary consensus is a
synchronization task where processes start with input bits, and must agree on an output bit
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that was an input to one of the processes. For one-shot tasks like consensus, wait-freedom and
lock-freedom are equivalent. Herlihy’s Consensus Hierarchy [2] assigns a consensus number to
each object, namely, the number of processes for which there is a wait-free binary consensus
algorithm using only instances of this object and read-write registers. An object with a higher
consensus number is hence a more powerful tool for synchronization. Moreover, Herlihy
showed that consensus is a fundamental synchronization task, by developing a universal
construction which allows n processes to wait-free implement any object with a sequential
specification, provided that they can solve consensus among themselves.

Herlihy’s hierarchy provides an explanation as to why, for instance, the compare-and-swap
instuction can be viewed “stronger” than fetch-and-increment, as the consensus number of a
Compare-and-Swap object is n, while the consensus number of Fetch-and-Increment is 2.

However, key to this hierarchy is treating synchronization instructions as distinct objects,
an approach that is far from the real-world, where multiprocessors do let processes apply
supported atomic instructions to arbitrary memory locations. In fact, a recent work by Ellen
et al. [1] has shown that a combination of instructions like decrement and multiply-by-n,
whose corresponding objects have consensus number 1 in Herlihy’s hierarchy, when applied
to the same memory location, allows solving wait-free consensus for n processes. Thus, in
terms of computability, a combination of instructions traditionally viewed as “weak” can be
as powerful as a compare-and-swap instruction, for instance.

The practical question is whether we can really replace a compare-and-swap instruction
in concurrent algorithms and data-structures with a combination of weaker instructions.
compare-and-swap is ubiquitous in practice and used heavily for various tasks like swinging a
pointer. Also, the protocol given by Ellen et al. solves only binary n-process consensus. It is
not clear how to use it for implementing complex concurrent objects, as utilizing Herlihy’s uni-
versal construction is not a practical solution. On the optimistic side, there exists a concurrent
queue implementation based on fetch-and-add that outperforms compare-and-swap-based
alternatives [3]. Both a Queue and a Fetch-and-Add object have consensus number 2, and
this construction does not “circumvent” Herlihy’s hierarchy by applying different non-trivial
synchronization instructions to the same location. Indeed, we are not aware of any practical
construction that relies on applying different instructions to the same location.

We develop a lock-free universal construction using only read, xor , decrement, and
fetch-and-increment instructions. The construction could be made wait-free by standard
helping techniques. In particular, we implement a Log object (also known as a History object),
which supports high-level operations get-log() and append(item), where get-log() returns all
previously appended items in order. This interface can be used to agree on a simulated object
state, and thus, provides the universal construction [2]. In practice, we require a get-log() for
each thread to return a suffix of items after the last get-log() by this thread. We design a
lock-free Log with wait-free readers, which performs as well as a compare-and-swap-based
solution on modern hardware. We could replace fetch-and-increment and decrement with
the atomic fetch-and-add instruction, reducing the instruction set size even further.

2 Algorithm

We work in the bounded concurrency model where at most n processes will ever access
the Log implementation. The object is implemented by a single fetch-and-increment-based
counter C, and an array A of b-bit integers on which the hardware supports atomic xor
and decrement instructions. We assume that A is unbounded. Otherwise, processes can
use A to agree on the next array A′ to continue the construction. C and the elements of
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Figure 1 Element of A.

A are initialized by 0. We call an array location invalid if it contains a negative value, i.e.,
if its most significant bit is 1, empty if it contains value 0, and valid otherwise. The least
significant m = dlog2 (n + 1)e bits are contention bits and have a special importance to the
algorithm. The remaining b−m− 1 bits are used to store items. See Figure 1 for illustration.

For every array location, at most one process will ever attempt to record a (b−m− 1)-bit
item, and at most n− 1 processes will attempt to invalidate this location. No process will try
to record to or invalidate the same location twice. In order to record item x, a process invokes
xor(x′), where x′ is x shifted by m bits to the left, plus 2m − 1 ≥ n, i.e., the contention bits
set to 1. To invalidate a location, a process calls a decrement. The following properties hold:
1. After a xor or decrement is performed on a location, no read on it ever returns 0.
2. If a xor is performed first, no later read returns an invalid value. Ignoring the most

significant bit, the next most significant b−m− 1 bits contain the item recorded by xor .
3. If a decrement is performed first, then all values returned by later reads are invalid.
A xor instruction fails to record an item if it is performed after a decrement. To implement
a get-log operation, process p starts at index i = 0, and keeps reading the values of A[i] and
incrementing i until it encounters an empty location A[i] = 0. By the above properties, from
every valid location A[j], it can extract the item xj recorded by a xor , and it returns an
ordered list of all such items (xi1 , xi2 , . . . , xik

). In practice, we require p to return only a
suffix of items appended after the last get-log() invocation by p. This can be accomplished by
keeping i in static memory instead of initializing it to 0 in every invocation. To make get-log
wait-free, p first performs l = C.read(). Then, if i becomes equal to l during the traversal,
it stops and returns the items extracted so far. To implement append(x), process p starts
by ` = C.fetch-and-increment(). Then it attempts to record item x in A[`] using an atomic
xor instruction. If it fails to record an item, the process does another fetch-and-increment
and attempts xor at that location, and so on, until it is able to successfully record x.
Suppose this location is A[`′]. Then p iterates from j = `′ − 1 down to j = 0, reading each
A[j], and if A[j] is empty, performing a decrement on it. Afterwards, process p can safely
return. The proofs of lock-freedom and linearizability can be found in the full version at
http://arxiv.org/abs/1705.02808.

We implemented the algorithm on X86 processor and with 32 threads. It gave the same
performance as an implementation that used compare-and-swap for recording items and
invalidating locations. It turns out that in today’s architectures, the cost of supporting
compare-and-swap is not significantly higher than that of supporting xor or decrement. This
may or may not be the case in future Processing-in-Memory architectures [4]. Finding a
compact set of synchronization instructions that, when supported, is equally powerful as the
set of instructions used today is an important question to establish in future research.
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