Deterministic Leader Election in Multi-Hop Beeping Networks

Klaus-Tycho Förster, Jochen Seidel, Roger Wattenhofer

ETH Zurich – Distributed Computing – www.disco.ethz.ch

What Algorithm to take?

Deterministic

Randomization

Heuristic

Leader Election

LeaderElection

Why deterministic leader election?

Why deterministic leader election?

Leader Election – Wireless Radio Networks

Single-Hop

- from $\Theta(\log \log n)$ [Willard, 1986] to $\Theta(n \log n)$ [Clementi et al., 2003] ...
 - (depending on the model)

Multi-Hop

- with collision detection
 - (deterministic): $\Theta(n)$ [Kowalski & Pelc, 2009]
- without collision detection
 - (randomized): $O(n \log n)$ [Czumaj & Rytter, 2006], $\Theta(n)$ [Chlebus et al., 2012]
 - (deterministic): $O(n \log^{3/2} n \sqrt{\log \log n})$ [Chlebus et al., 2012]
 - $\Omega(n \log n)$ [Kowalski & Pelc, 2009]
 - $O(n \log^2 n \log \log n)$ [Vaya, 2011]

- Each round: **beep** or **listen**
- Listen: **silence** or **beep** (at least one neighbor beeps)

- Each round: **beep** or **listen**
- Listen: **silence** or **beep** (at least one neighbor beeps)

- Each round: **beep** or **listen**
- Listen: **silence** or **beep** (at least one neighbor beeps)

- Each round: **beep** or **listen**
- Listen: **silence** or **beep** (at least one neighbor beeps)

- Each round: **beep** or **listen**
- Listen: **silence** or **beep** (at least one neighbor beeps)

Leader Election – in the Beeping Model

- Randomized: [Ghaffari & Haeupler, 2013]
 - $O((D + \log n \log \log n) * min(\log \log n, \log n/D))$

• Deterministic & Uniform: $O(D \log n)$ [this paper]

But what about Uniformity?

I know nothing (I'm Jon Snow)

1. Iteration done

1. Iteration done

1. Iteration done

1. Iteration done

Quiescence?

- Repeat the campaigning process *D* times -> $O(D \log n)$
- But how big is D?
- How do we stop?

Quiescence?

Solution: Overlay Onion Network

Conclusion

- Multi-Hop Leader Election in the Beeping Model
 - $O(D \log n)$ rounds
 - Deterministic
 - Uniform
 - Quiescent

- Combines
 - a local campaigning algorithm
 - a technique to sequentially execute algorithms
 - an overlay onion network

Deterministic Leader Election in Multi-Hop Beeping Networks

Klaus-Tycho Förster, Jochen Seidel, Roger Wattenhofer

ETH Zurich – Distributed Computing – www.disco.ethz.ch