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Variational Quantum Circuit Model for Knowledge Graph
Embedding

Yunpu Ma,* Volker Tresp, Liming Zhao, and Yuyi Wang

In this work, the first quantum Ansätze for the statistical relational learning on
knowledge graphs using parametric quantum circuits are proposed. Two
types of variational quantum circuits for knowledge graph embedding are
introduced. Inspired by the classical representation learning, latent features
for entities are first considered as coefficients of quantum states, while
predicates are characterized by parametric gates acting on the quantum
states. For the first model, the quantum advantages disappear when it comes
to the optimization of this model. Therefore, a second quantum circuit model
is introduced where embeddings of entities are generated from parameterized
quantum gates acting on the pure quantum state. The benefit of the second
method is that the quantum embeddings can be trained efficiently meanwhile
preserving the quantum advantages. It is shown that the proposed methods
can achieve comparable results to the state-of-the-art classical models, for
example, RESCAL, DistMult. Furthermore, after optimizing the models, the
complexity of inductive inference on the knowledge graphs might be reduced
with respect to the number of entities.

1. Introduction

Over the last few years, some large-scale triple-oriented knowl-
edge databases have been generated. These databases are prin-
cipled approaches to knowledge representation and reasoning.
They are widely used in large-scale artificial intelligence systems,
such as question answering engines, human-computer interac-
tion platforms, and decision-making support systems. One well-
known example is the IBM’s cognitive computing platform, the
IBM Watson, where knowledge graphs are at the core of it. The
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other example is the largest universally ac-
cessible knowledge graph (KG) maintained
by Google.

Nowadays, knowledge graphs prolifer-
ate with increasing numbers of semantic
triples and distinct entities. The reason is
that knowledge graphs collect andmerge in-
formation from various unstructured data,
such as publications and internet. The in-
creasing number of semantic triples and
distinct entities leads to a slow training of
knowledge graphs, as well as a sluggish re-
sponse to the inductive inference tasks on
knowledge graphs after training. Therefore,
in order to accelerate the learning and in-
ference on knowledge graphs, we propose
statistical relational learning using quan-
tum Ansätze.

In this work, we propose the first quan-
tum Ansätze for modeling and learning
large-scale relational databases using para-
metric quantum circuits. We simulate our

quantum learning algorithms on graphics processing units
(GPUs) and demonstrate the model performance on multiple
state-of-the-art relational databases. We will also discuss how
these quantum Ansätze could speed up the inference.

2. Representation Learnings on Knowledge Graphs

Various statistical relational models for large-scale KGs have
been proposed in the literature, such as the bilinear model
(RESCAL[1]), the bilinear diagonal model (DistMult[2]), the com-
plex embedding model (ComplEx[3]). In this section, we first in-
troduce knowledge graphs, and provide a succinct introduction
to representation learning in KGs. We adapt the notation of ref.
[4] for convenience.

2.1. Knowledge Graphs

Knowledge graphs are triple-oriented knowledge representa-
tions. The core components of KGs are semantic triples (sub-
ject, predicate, object) where subject and object are entities rep-
resented as nodes in the graph and where predicate indicates the
labeled link from the subject to the object. One example of a se-
mantic triple in Figure 1 could be (Angela_Merkel, Chancellor_of,
Germany). Observed semantic triples (marked as solid lines in
Figure 1) are elements of the training dataset, while unobserved
triples (marked as dashed lines) will be inferred during the test.
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Figure 1. A knowledge graph fragment: observed semantic triples are
marked with solid arrows, while unobserved semantic triples are marked
with dashed arrows.

2.2. Representation Learning

Let E denote the set of entities, and P the set of predicates. Let
Ne be the number of entities in E , and Np the number of pred-
icates in P . Given a predicate p ∈ P , the indicator function φp :
E × E → {1, 0} indicates whether a triple (·, p, ·) is true or false.
Furthermore,Rp indicates the set of all subject–object pairs, such
that φp = 1. The entire KG can be written as χ = {(i, j, k)}, with
i = 1, . . . , Ne , j = 1, . . . , Np , and k = 1, . . . , Ne . A knowledge
graph can be equivalently treated as a Ne × Np × Ne -dimensional
three-order tensor, and an entry indicates whether a semantic
triple is true, false or unobserved.

We assume that each entity and predicate has a unique latent
representation. Let aei , i = 1, . . . , Ne , be the representations of
entities, and api , i = 1, . . . , Np , be the representations of predi-
cates. Note that aei and api could be real- or complex-valued vec-
tors/matrices. Moreover, when we consider a concrete example,
say (s, p, o), we use as, ap, and ao to represent the latent represen-
tation of the subject s, the predicate p, and the object o, respec-
tively.

A probabilistic model for the knowledge graph χ is defined
as Pr(φp(s , o) = 1|A) = σ (ηs po ) for all (s , p, o)-triples in χ , where
A = {aei }Nei=1 ∪ {api }Np

i=1 denotes the collection of all embeddings;
σ (·) denotes the sigmoid function; ηs po is the value function of
latent representations as , ap , and ao . Given a labeled dataset con-
taining both false and true triples D = {(xi , yi )}mi=1, with xi ∈ χ ,
and yi ∈ {−1, 1}, latent representations can be learned from a
loss function. Commonly, oneminimizes the regularized logistic
loss function

min
A

m∑
i=1

log(1 + exp(−yiηxi )) + λ||A||22 (1)

wherem is the number of training samples, ηxi is the value func-
tion for the semantic triple xi , and λ is the regularization hyperpa-
rameter. Another commonly used loss function is the regularized
mean squared error (MSE) loss

1
m

m∑
i=1

(yi − ηxi )
2 + λ||A||22 (2)

Note that the value function ηs po can be defined differently in
different models. For instance, for the RESCAL[1] model, enti-
ties are represented as unique R-dimensional real-valued vectors,
aei ∈ R

R, with i = 1, . . . , Ne , and predicates are represented as

R × R matrices, api ∈ R
R×R, with i = 1, . . . , Np . Moreover, the

value function is defined as

ηs po = aᵀ
s apao (3)

For DistMult,[2] aei , ap j ∈ R
R, with i = 1, . . . , Ne ,

j = 1, . . . , Np . The value function is defined as

ηs po = 〈as , ap, ao〉 (4)

where 〈·, ·, ·〉 denotes the tri-linear dot product.
For ComplEx,[3] entities and predicates are complex-valued

vectors aei , ap j ∈ C
R, with i = 1, . . . , Ne , j = 1, . . . , Np . The

value function for the ComplEx model reads

ηs po = �(〈as , ap, āo〉) (5)

where the bar denotes complex conjugate, and� denotes the real
part of a complex number.

For the Tucker[5] tensor decomposition model, entities and
predicates are real-valued vectors, aei ∈ R

R, with i = 1, . . . , Ne ,
and ap j ∈ R

R, with j = 1, . . . , Np . Additionally, a global core ten-
sorW ∈ R

R×R×R is introduced. The value function for the Tucker
model reads

ηs po = W ×1 as ×2 ap ×3 ao (6)

Tensor models and compositional models are principled ap-
proaches for modeling large-scale relational data. The global re-
lational patterns are encoded in the latent features of entities
and predicates after optimizing the models. Thus, it is beneficial
to analyze how the dimensionality of latent features influences
the expressiveness and the generalization ability of the models.
These questions have been studied in ref. [6]. In order to interpret
the results in ref. [6], we first introduce the following notations.

Definition 1. Let X ∈ R
∏m

i=1 ni be an m-order tensor with di-
mensions n = (n1, . . . , nm). Suppose that it can be written as a
(Tucker) tensor product X = W ×1 U(1) ×2 · · · ×m U(m) with n-rank
R = (R1, . . . , Rm), whereW ∈ R

∏m
i=1 Ri is the core tensor, and U(i ) ∈

R
ni×Ri are the latent factor matrices. Each entry of the tensor X can

be written as a polynomial

xi1,...,im =
R1∑
j1=1

· · ·
Rm∑
jm=1

w j1,..., jm

m∏
k=1

u(k)
ik , jk

The set of different sign patterns which can be expressed by the tensor
X is defined as

Sn,R := {sgn(X) ∈ {−1, 0, +1}
∏
n|n-rank(X) ≤ R} (7)

Note the cardinality |Sn,R| indicates how expressive and flexi-
ble the Tucker tensor decomposition could be. For the KGs mod-
eling with tensor decomposition, we focus on the case of three-
order tensors. The upper bound of |Sn,R| is given in the following
Lemma.

Lemma 1 (Upper Bound for Sign Patterns[6]). Consider a three-
order tensor X ∈ R

n1×n2×n3 which can be written as a tensor product
X = W ×1 U(1) ×2 U(2) ×3 U(3) with rank R = (R1, R2, R3). The
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number of different sign patterns of the tensor X is upper bounded by
the following number

|Sn,R| ≤
(
16e n1n2n3
var(X)

)var(X)

(8)

where var(X) is defined as var(X) := ∏3
i=1 Ri + ∑3

i=1 ni Ri .

Given observed entries of a KG, the above Lemma indicates
that the ranks should be large enough to fit the observed entries
via the tensor decomposition. Therefore, in order to model an
ever-increasing KG with increasingly complex relational struc-
tures, the dimension of latent features also needs to grow with
the KG. As a reminder, the complexity of value functions grows at
least linearly with the dimension of the latent features for entities.
For example, the computational complexity of the value function
for the DistMult model is O(R) (see Equation (4)), while for the
Tucker model it becomes O(R3) (see Equation (6)). One goal of
this work is to learn a probabilistic model for relational databases
by making a quantum Ansatz for the value function. We will dis-
cuss how the evaluation of value functions can be accelerated via
low-depth quantum circuits.

3. Quantum Circuit Models

In this section, we focus on variational unitary circuits. Algo-
rithms of quantum classifiers using variational unitary circuits
with parameterized and trainable gates have been proposed in
ref. [7]. A quantum circuit U composed of L unitary operations
can be decomposed into a product of unitary matrices

U = UL · · ·Ul · · ·U1

where each Ul indicates either a unitary operation on one qubit
or a controlled gate acting on two qubits. Since a single qubit
gate is a 2 × 2 unitary matrix in SU(2), we apply the following
parameterization

G(α, β, γ ) =
(

eiβ cosα eiγ sinα

−e−iγ sinα e−iβ cosα

)
(9)

where {α, β, γ } are the tunable parameters of the single qubit
gate. Note that a global phase factor is neglected.

In the following, we introduce the parameterization of con-
trolled gates. The controlled gate Ci (G j ) which acts on the j -th
qubit conditioned on the state of the i -th qubit can be defined as

Ci (G j ) |x〉i ⊗ |y〉 j = |x〉i ⊗ Gx
j |y〉 j

where |x〉i , |y〉 j denotes the state of the i -th and the j -th qubit, re-
spectively.

Using the parametric gates G and C(G), we are capable to de-
scribe the quantum circuit model Uθ with parameterization θ in
more details. Let us consider a quantum state with n entangled
qubits. Suppose that the l -th unitary operationUl is a single qubit
gate acting on the k-th qubit, then it can be written as

Ul = 11 ⊗ · · · ⊗ Gk ⊗ · · · ⊗ 1n

If the l -th unitary operation acts on the j -th qubit and conditioned
on the state of the i -th qubit, Ul will have the following matrix
representation

Ul = 11 ⊗ · · · ⊗ P0︸︷︷︸
i -th

⊗ · · · ⊗ 1 j︸︷︷︸
j -th

⊗ · · · ⊗ 1n

+ 11 ⊗ · · · ⊗ P1︸︷︷︸
i -th

⊗ · · · ⊗ G j︸︷︷︸
j -th

⊗ · · · ⊗ 1n,

where P0 =
(
1 0
0 0

)
and P1 =

(
0 0
0 1

)
.

4. Circuit Models for Knowledge Graphs

In this section, we introduce two quantum Ansätze for the value
function and compare their computational complexities.

4.1. Quantum Circuit Embedding

We first introduce theQuantum Circuit Embedding (QCE) model,
which can be considered as a generalization of the classical
RESCAL model to the quantum regime. Similar to the RESCAL
model, in QCE entities are represented by R-dimensional latent
features. Without loss of generality, we assume that R = 2r . In
this way, an R-dimensional latent vector corresponds to a state of
an r -qubit system.

One significant barrier to quantum learning algorithms is an
efficient preparation of quantum states from classical data. In
this work, we only consider real-valued representations for enti-
ties stored in a classical data structure T . Then, a technique devel-
oped in ref. [8] can be utilized now, which can efficiently prepare
the quantum states corresponding to latent features by accessing
the classical data structure T . In this way, the complexity of quan-
tum state preparation can be reduced to the logarithm of R. De-
tails related to the classical data structure T and the preparation
of quantum states via T are relegated to the appendix. In sum-
mary, in the QCE model, entities are defined as aei ∈ R

R, with
normalized l2-norm ||aei ||2 = 1, for i = 1, . . . , Ne .

Furthermore, in QCE each predicate p is associated with
a specific quantum circuit composed of sequential implemen-
tations of variational gates. Therefore, each predicate has an
R × R unitary matrix representation Up(θp), where θp are the
predicate-specific trainable parameters stemming from the vari-
ational quantum gates. Moreover, we fix the circuit architecture
of implementing predicates such that each predicate is uniquely
determined by the circuit parameterizations θp .

Given a semantic triple (s, p, o), how the value function ηspo is
defined in the quantum model? As a reminder, in The RESCAL
model, the value function ηspo can be seen as the dot product of
two vectors asp and ao, where asp := aᵀ

s ap. The loss function en-
courages the two vectors asp and ao to point in the same direction
if the given semantic triple is genuine, otherwise in opposite di-
rections.

Inspired by the classical model ComplEx, we define the quan-
tity η

QCE
spo := �〈o|Up(θp) |s〉. This quantity is the real part of the
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Figure 2. Building blocks of the QCE model. a) The U1 module in the QCE model is displayed. U1 encodes the latent feature of the subject s as the
state |s〉. The quantum circuit associated to the predicate p maps the ket state |s〉 to another ket state Up(θp) |s〉. For all the following experiments, we
set the dimension of entity latent features as R = 64, which corresponds to a six-qubit system. In addition, the circuit architecture for all predicates is
fixed, and it can be decomposed in four blocks: single qubit gates, two-qubit controlled gates with control range 1, 2, and 3 (dashed blocks). b) The U2
module in the QCE model, which prepares the quantum state |o〉 is displayed. In both (a) and (b), the tree structure represents the quantum access to
the classical data structure T .

inner product of two quantum states |o〉 and |sp〉 := Up(θp) |s〉
generated by separate unitary circuits. The model parameters
can be optimized by maximizing the inner product given
genuine triples and minimizing the inner product given false
or unobserved semantic triples. A relation between η

QCE
spo and the

label of the triple (s, p, o) will be specified later.
We explain the circuit architecture in more details. Latent fea-

tures as for the subject and ao for the object are first encoded
in quantum states |s〉 and |o〉 through a quantum access to the
memory structure T . The dimension of features is set to R = 64
in the following experiments, which corresponds to a six-qubit
system. Next, a unitary circuit Up(θp) corresponding to the pred-
icate p evolves |s〉 to the stateUp(θp) |s〉. Note that both the latent
features of entities and the parametric circuits of predicates need
to be optimized during the training.

We develop the circuit for predicates out of four building
blocks, and each block consists of variational gates or controlled
gates operating on each of the six qubits. To be more specific,
the first block consists of single qubit rotations, and the rest
of the blocks consist of two-qubit controlled gates with control
range 1, 2, 3, respectively. So, the unitary circuit associated with
the predicates can be written as Upi (θpi ) = U4 U3 U2 U1, with
i = 1, . . . , Np , where

U1 = G6 G5 G4 G3 G2 G1

U2 = C6(G1) C1(G2) C2(G3) C3(G4) C4(G5) C5(G6)

U3 = C5(G1) C6(G2) C1(G3) C2(G4) C3(G5) C4(G6)

U4 = C4(G1) C5(G2) C6(G3) C1(G4) C2(G5) C3(G6) (10)

Note that the index for the predicate was neglected since we as-
sume that the circuit architecture is fixed for all the predicates.
Figure 2 illustrates the circuits for preparing the states |o〉 and

Figure 3. Quantum circuit for estimating the value � 〈o| Up(θp) |s〉. The
detailed architectures of unitary evolutions U1 and U2 can be found in
Figure 2 for the QCE model and Figure 4 for the fQCE model.

|sp〉. In the following, we show that the value η
QCE
spo can be mea-

sured physically. We adopt a similar idea to SWAP test for dis-
criminating two quantum states. The SWAP test was initially pro-
posed for quantumfingerprinting,[9] and it was further developed
within refs. [10,11] for discriminating quantum evolution opera-
tors.

The basic idea is illustrated in Figure 3. This architecture is
inspired by ref. [11] and Observation 3 in ref. [7]. Consider two
unitary operationsU1 andU2 which operate on a pure state |0〉 :=
|0 · · · 0〉 conditioned on the state of the ancilla qubit. Particularly,
the quantum state becomes U1 |0〉 if the ancilla qubit is |1〉A and
U2 |0〉 if it is in the state |0〉A. Before measuring the ancilla qubit,
the underlying quantum state of the entire system reads

1√
2
(|0〉AU2 |0〉 + |1〉AU1 |0〉)

The second Hadamard gate acting on the ancilla qubit brings the
state to

1
2
[|0〉A (U2 |0〉 +U1 |0〉) + |1〉A (U2 |0〉 −U1 |0〉)]

For the QCE model, the unitary modules U1 and U2 are
illustrated in Figure 2. Considering a concrete seman-
tic triplet (s, p, o), with an access to the quantum gates
parameters we can prepare the following quantum state
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according to the second Hadamard formula above:

1
2

[|0〉A (|o〉 + |sp〉) + |1〉A (|o〉 − |sp〉)]

Therefore, the probability of sampling the ancilla qubit in the
state |0〉A is

Pr(|0〉A) = 1
2

+ 1
2
� 〈o|sp〉 = 1

2
+ 1

2
ηspo (11)

while the probability of measuring it in the state |1〉A is

Pr(|1〉A) = 1
2

− 1
2
� 〈o|sp〉 = 1

2
− 1

2
ηspo (12)

In the upper equation, we temporarily neglect the superscript of
the value function. As we can see, the value ηspo is related to the
statistics of sampled quantum states of the ancillary qubit via

ηspo = 2 Pr(|0〉A) − 1 = 1 − 2 Pr(|1〉A) (13)

Similar to the classicalmodels, this quantity defines the loss func-
tion jointly with the labels of the triplets.

4.2. Loss Function and Training

Details of the loss function and the optimization method are pro-
vided in this section. We focus on the QCE model. Given a train-
ing dataset D = {(xi , yi )}mi=1 with xi ∈ χ , the loss function of the
quantum circuit model is defined as the following mean error

L = 1
m

m∑
i=1

(
yi − ηQCE

xi

)2κ
(14)

where yi ∈ {−1, 1} are labels, and κ ∈ Z
+ is a hyperparameter.

The reason for this choice of the labels will be clarified later. One
can also notice that for the quantum model, the loss function is
not regularized by the normof parameters. Because of the unitary
constraint on the evolution of quantum circuits, hidden quantum
states are automatically normalized. Therefore, the l2 norm can-
not either effect the norms of embedding vectors or improve the
generalization ability of the quantum circuit model.

With the loss function, themodel is optimized by updating the
parameters via gradient descent. Parameters of the variational
gates can be efficiently estimated using a hybrid gradient de-
scent scheme introduced in ref. [7]. The partial derivative of Equa-
tion (14) with respect to the gate parameters reads

∂L
∂θ

= 2κ
m

m∑
i=1

(ηQCE
xi

− yi )2κ−1 ∂

∂θ
ηQCE
xi

(15)

where θ ∈ {αpi , βpi , γpi }, with i = 1, . . . , Np .
The techniques developed within refs. [7,12] allow the above

partial derivate to be estimated from the states’ statistics of the
ancilla qubit since the partial derivate can be written as a linear
combination of gates with shifted parameters. To be specific, we

have the following derivatives for a single qubit gate

∂

∂α
G(α, β, γ ) = G

(
α + π

2
, β, γ

)

∂

∂β
G(α, β, γ ) = 1

2
G

(
α, β + π

2
, 0

)
+ 1

2
G

(
α, β + π

2
, π

)

∂

∂γ
G(α, β, γ ) = 1

2
G

(
α, 0, γ + π

2

)
+ 1

2
G

(
α, π, γ + π

2

)

Moreover, partial derivatives of two-qubit gates can be written
as a combination of control gates with shifted gates’ parame-
ters. More details of the hybrid gradient descent approach can
be found in Section 4 of ref. [7].

However, this technique cannot be applied to the estimation
of the gradients with respect to the latent features of entities. An-
other problem is that even if we could efficiently estimate the gra-
dients with respect to the latent features, the entire classical data
structure T needs to be updated after each step of optimization
due to the normalization constraints. It leads to a computational
overhead of O(R2) for just one update of aei , with i = 1, . . . , Ne .

4.3. Fully Parameterized Quantum Circuit Embedding

To overcome the disadvantages of the QCE, at this place, we in-
troduce another fully parameterized Quantum Circuit Embedding
(fQCE) model. The idea behind fQCE is reasonably simple. In-
stead of storing and reading entity features as normalized R-
dimensional vectors, they are obtained by applying parameter-
ized quantum circuit to initial quantum states which can be easily
prepared. In this way, each entity is uniquely identified by the cir-
cuit architecture and the gates parameters similar to the circuits
definition of predicates in the QCE model.

Compared to the QCE model, the advantages of this approach
are twofolds. First, latent features do not need to be loaded
from the classical data structure T and encoded as the coeffi-
cients of quantum states. Alternatively, they are generated from
the quantum evolution of initial quantum states. Second, fQCE
can be optimized efficiently since the only trainable parameters
are in the variational quantum gates. Therefore, techniques ex-
plained in the last subsection can be applied to accelerate the
optimization.

The circuit architecture for generating quantum representa-
tions of entities is given in Figure 4 and overall we fix the circuit
architecture for all entities. The six-qubit quantum system is ini-
tialized as a pure quantum state |0〉. Hadamard gates act on each
qubit to create a superposition H6,...,1 |0〉 := H6H5 · · · H1 |0〉. Sub-
sequently, an entity-specific unitary circuit develops the quantum
representation from the superposition,

|ei 〉 = Uei H6,...,1 |0〉 , with i = 1, . . . , Ne (16)

where Uei have the same circuit architecture design as Upi in
Equation (10).

To harvest the quantum advantages, the circuit depth should
be low and in the order of log(R). In this way, we only need to
replicate the experimentsO(log2 R/ε2) times to update themodel
parameters given one training example, where ε is the accuracy

Adv. Quantum Technol. 2019, 1800078 C© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1800078 (5 of 13)
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Figure 4. In the fQCE model, the classical data structure T is replaced by variational unitary circuits. Therefore, the quantum states |s〉 or |o〉 can be
prepared by applying unitary circuits to the initial quantum states |00 · · · 0〉, instead of loading data from the classical data structure T . Note that the
circuit architecture is fixed for all entities (subjects and objects). The unitary circuit contains five blocks. The first block consists of Hadamard gates
which can develop superposition from the initial quantum state |0 · · · 0〉. The rest of the blocks consist of single qubit gates and two-qubit controlled
gates with control range 1, 2, and 3 (dashed blocks).

required. Moreover, the overall model architecture for estimating
the value function η

fQCE
spo using ancilla qubit remains the same as

in Figure 3.
Before simulating the proposed quantum Ansätze, we com-

pare computational complexities of them. We first consider the
time complexity of evaluating the value function. In the QCE
model, loading the entity features from the classical data struc-
ture T costs time O(log R). Since we use shallow circuits with
depth O(log R) to specify the predicates, the unitary evolution
of quantum states for entities requires O(log2 R) unitary oper-
ations. The value function is estimated from the Bernoulli distri-
bution of the ancilla qubit. Therefore, one has to perform O( 1

ε2
)

repetitions of the experiment in Figure 3 to resolve the statistics
of the ancilla qubit up to a predefined error ε. To summarize,
the entire procedure of evaluating η

QCE
s po can be completed in run-

timeO(poly(log R, 1
ε
)). Similarly, the evaluation of ηfQCE

s po requires
a runtime O(poly(log R, 1

ε
)).

A notable complexity difference between two quantum circuit
models appears when it comes to the training. Let us first con-
sider the fQCE model. Given one training sample (s, p, o), it re-
quires O(log2 R/ε2) repetitions of the experiments to estimate
the gradients and update the parameters in Us, Up, and Uo. Let
D indicate the total number of semantic triples in the training
dataset, then the runtime of one epoch is O(D poly(log R, 1

ε
)).

However, for QCE, the runtime of one training epoch becomes
O(D poly(R, log R, 1

ε
)) since after each step of optimization, re-

normalizing the entity latent features and updating the classical
memory structure T require additional O(R) operations. As one
can see, the quantum advantages disappear when we optimize
the QCE model.

5. Experiments

5.1. Datasets and Evaluation

To evaluate proposed quantummodels for knowledge graph em-
bedding, we use four link prediction datasets of different sizes:
Kinship,[13] FB15k-237,[14] WN18RR,[15] and GDELT.[16]

Kinship contains relations between family members. An ex-
ample of the triple is (Max, husband_of, Mary)
FB15k-237 is a subset of Freebase with only 237 predicates.

Most of the semantic triples in the FB15k-237 are related to the
facts of cities, movies, sports, and musics, for example, (Califor-
nia, located_in, U.S.).

Table 1. Statistics of different knowledge graphs.

#D Ne Np Na

Kinship 10 790 104 26 ≈ 104

WN18RR 79 043 39 462 18 ≈ 2

FB15k-237 310 079 14 505 237 ≈ 21

GDELT 497 603 6785 230 ≈ 73

GDELT The Global Database of Events, Language and Tone
(GDELT) monitors evens between different countries and orga-
nizations. An example could be (ESA, collaborates with, NASA).
WN18RR This hierarchical knowledge base is a subset of

WordNet which consists of hyponym and hypernym relations
between words, for example, (pigeon, hyponym_of, bird).

The exact statistics of datasets are listed in Table 1, including
the total number of triplets in the dataset #D, the number of en-
tities Ne , the number of predicates Np , and the average number
of labeled links connecting to a node Na .

Since the above-mentioned datasets only consist of positive
(genuine) semantic triples, we generate negative (false) instances
according to the method of corrupting semantic triples proposed
in ref. [17]. Given a genuine semantic triple (s, p, o), negative
triples are drawn by corrupting the object o to a different entity o ′,
and similarly corrupting subject s to s ′. This corruption method
makes a local-closed world assumption, meaning that the knowl-
edge graph is assumed to be only locally connected. Therefore,
corrupted and unobserved semantic triples are treated as nega-
tive examples during the training.

The model performance is evaluated using the following met-
rics on the test dataset. Let us consider a semantic triple (s, p, o)
in the test dataset. To evaluate the retrieval of the object o, given
the subject s and the predicate p, we first replace the object o with
every object o ′ and compute the values of ηspo′ . Following that, we
sort these values in a decreasing order and locate the target ob-
ject o. This position is referred to as the rank of the target object.
We provide the filtered ranking scores as suggested in ref. [17] by
removing all semantic triples (s, p, o ′) with yspo′ = 1 and o ′ �= o.
Filtered ranking scores eliminate the ambiguity of retrieved infor-
mation and provide a clearer performance evaluation of different
models. In the same way, we also evaluated the retrieval of the
subject s by ranking ηs ′po for all possible subjects s ′.

To quantify the performance of the classical and quantum
models on missing links predication, we report three metrics:
filtered mean rank (MR), filtered Hits@3, and filtered Hits@10
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Table 2. Filtered recall scores evaluated on four different datasets. Four metrics are compared: filtered Mean Rank (MR), filtered Hits@3 (@3), and
filtered Hits@10 (@10).

Kinship WN18RR FB15k-237 GDELT

Methods MR @3 @10 MR @3 @10 MR @3 @10 MR @3 @10

RESCAL 3.2 88.8 95.5 12036 21.3 25.0 291.3 20.7 35.1 185.0 10.4 22.2

DistMult 4.5 61.0 87.7 10903 21.0 24.8 305.4 23.4 39.1 130.4 12.1 24.5

Tucker 2.9 89.8 95.0 11997 19.1 23.9 276.1 20.9 35.7 144.0 14.5 27.3

ComplEx 2.2 90.0 97.7 11895 24.6 26.1 242.7 25.2 39.7 137.6 12.9 26.4

Best Known – – – 4187[15] 44.0 52.0 244.0[15] 35.6 50.1 102.0[20] 31.5 47.1

QCE 3.6 73.8 93.8 3655 19.5 32.3 258.7 22.5 35.0 128.8 12.5 23.8

fQCE 3.6 73.1 94.0 2160 27.4 37.8 236.0 19.8 33.7 131.0 10.8 24.1

evaluated on the test dataset. Filtered mean rank is the average
filtered ranking scores, and filtered Hits@n indicates the prob-
ability of finding the correct retrieval within the top-n filtered
ranking.

The dimension of latent representations for all classical base-
lines is chosen as R = 64. For comparison, circuits algorithms
for knowledge graph embedding are evaluated via six-qubit
Ansätze. Overall, we fix the quantum circuit architecture depicted
in Figure 2 for QCE and Figure 4 for fQCE model. Experiments
show the recall scores on the test dataset are not sensitive to the
order of implementing different blocks. Thus, for a simple imple-
mentation, we only consider four different blocks without repe-
titions. Exploration of various quantum circuit architectures to
achieve better results could be an interesting research direction,
and we leave it for future work.

During the training, the datasets are randomly split into train-
ing, validation, and test datasets. Early stopping on the validation
set is used to avoid overfitting by monitoring the filtered His@3
entity recall scores every 20 epochs. Before training, all model pa-
rameters, including the entity embeddings and the gates parame-
ters, are randomly initialized. In particular, we found that for the
quantum Ansätze the model performance is relatively sensitive
to the initialization of the gates parameters. After hyperparame-
ter search, the gates parameters are initialized uniformly in the
interval [− π

10 ,
π

10 ].
Here, we give more details on how quantum Ansätze are

simulated. As discussed in Section 3, unitary evolution of a
quantum state is equivalent to the unitary matrix-vector product.
Therefore, we can simulate the quantum Ansätze on a single
Tesla K80 GPU without exploiting real quantum devices.[18] For
the QCE model, each entity embedding is randomly initialized
from a multivariate normal distribution and normalized after
initialization. Embeddings for entities are stored as NumPy
arrays instead of in the classical data structure T . All the
parameters, including entity embeddings and gate parameters,
are updated via stochastic gradient descent. Moreover, after
each step of the update, entity embeddings will be normalized
again. Differently, for the fQCE model, each entity is initialized
as 1

8 |00 · · · 0〉 ≡ 1
8 (0, 0, . . . , 0)

ᵀ since all the trainable param-
eters are in the variational circuit. The codes are based on
Tensorflow,[19] and they will be available online.
Table 2 reports the performance of classical models and quan-

tum Ansätze evaluated on different datasets. In addition, the

row best known in Table 2 shows the best results reported in the
literatures.[21] From the table, we can read that both quantum cir-
cuit models can achieve comparable results to the classical mod-
els using the dimension R = 64. In some cases, for example, the
filtered Mean Rank recall scores on the WN18RR, FB15k-237,
and GDELT datasets, the quantum models can outperform all
classical models.

Another interesting observation is that the Mean Rank score
on the WN18RR dataset returned by the fQCE model is even
better than the best-known models. We have to emphasize that
among the four datasets, WN18RR contains the largest number
of distinct entities (see Table 1). Therefore, fQCE is the desired
quantum Ansatz of relational learning which shows both quan-
tum advantages and superior performance on a vast database.
However, one has to note that WN18RR possesses the smallest
number of average links per node. Thus, questions are: Whether
the quantum circuit models are only practical for modeling large
and sparse datasets due to the intrinsic linearity of the circuit
models; and whether applying nonlinearity activation functions
on the circuit models[22,23] can further improve the performance
on other dense datasets? We leave these questions for future re-
search.

5.2. Regularizations

As mentioned before, the quantum circuit models cannot be
regularized using the l2-norm due to the unitarity constraints.
Hence, what regularization methods can be applied to improve
the generalization ability of the circuit models? We examine two
techniques that are widely used in classical learning: dropout
and Gaussian noise of model parameters. Generally speaking,
dropout reduces the overfitting on the training dataset and noise
encourages the model to land on flat minima of the loss surface.
These two methods can be efficiently applied without destroying
the unitarity restrictions.

We first apply the dropout technique. During the training,
each quantum gate has a nonzero probability to be switched off.
From the perspective of a classical neural network, this dropout
is equivalent to randomly removing some weight matrices and
replacing them with identity matrices. Similar regularization
methods have been used to train very deep neural networks
with vanishing gradients.[24] However, all the gates will be
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Figure 5. Comparison of the filtered Hits@3 recall scores on the Kinship dataset for a) QCE and b) fQCE. Blue line: without employing the dropout;
orange line: 2% probability of dropping out a quantum gate randomly.

Figure 6. Filtered Hits@3 scores on the Kinship dataset for a) QCE and b) fQCE. Blue line: without introducing random noise; orange line: adding 2%
noise to the model parameters both during the training and test.

implemented during the test phase. Because of the imperfec-
tions of quantum gates, quantum circuit models inherently
possess this regularization property.

Simulations are performed for both circuit models using the
Kinship dataset, and the dropout probability is chosen from
{0.02, 0.05, 0.1, 0.2}. However, we could not observe any im-
provement in the performance, even using the smallest dropout
probability. Recall scores for no dropout and 2% dropout proba-
bility are compared in Figure 5. Even though the dropout regu-
larization cannot augment the performance of both models, we
still learn that the fQCE model is more robust and resistant to
imperfect quantum circuits, making it a potential candidate for
the future test on real quantum devices.

Now we turn to study another regularization method which
adds Gaussian noise to the model parameters. System noises
are quite common in quantum computational devices, for exam-
ple, they can stem from the disentanglement, flips of the qubits,
or random phase rotations. However, in this work, we focus on
noises stemming from inaccuracies. For example, the inevitably
inaccurate loading of the classical data into quantum devices, the
inaccurate parametric gates, or the statistical uncertainty about
the state of ancilla qubit. To simulate quantum system impreci-

sion, we add Gaussian perturbations to the model parameters as
follows

θ ′ = θ + μN (0, |θ |) (17)

where θ could be a gate parameter or an element of an entity la-
tent feature defined in the QCEmodel, and μ indicates the noise
level. We further assume the amplitude of perturbation added
to a model parameter is proportional to this parameter’s abso-
lute value.

To bemore realistic, perturbations are introduced not only dur-
ing the training but also in the test phase. Figures 6 and 7 compare
the recall scores, the filtered Mean Rank and filtered Hits@3, on
the Kinship dataset. Performance improvement can be observed
in both quantum models which indicates that system impreci-
sion brings the models to flat minima of the loss functions. As
first pointed out in ref. [25], the flatness of the minimum on the
loss surface found by an optimization algorithm is a good indica-
tor of the generalization ability. Improved performance by adding
noise also suggests that the computational complexity can be re-
duced by controlling the accuracy ε.
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Figure 7. Filtered Mean Rank recall scores on the Kinship dataset for a) QCE and b) fQCE. Blue line: without introducing random noise; orange line:
adding 2% noise to the model parameters both during the training and test.

Figure 8. T-SNE visualizations of entity representations learned by a) QCE and b) fQCE.

5.3. T-SNE

We perform a qualitative analysis to visualize and understand the
learned representations from the quantum Ansätze. Particularly,
we focus on the latent features of entities. It has been reported
that classical embeddings of entities show clustering effects. En-
tities with similar semantic meaning tend to group in the vector
space. Here, we use t-SNE to analyze whether entity representa-
tions in the quantum models render this property. T-SNE[26] is
a powerful method for visualizing high-dimensional data on a
2D plane.

In order to visualize the semantic clustering effect, we focus on
the FB15k-237 dataset, since it contains categorical information
about the entities.We extract the top-15most frequent categories,
for example, Movie, Administrative_Area, Organization, and dis-
play themusing different colors on the t-SNEplot.We still need to
clarify how the quantum features are defined. In QCE, entity rep-
resentations are normalized vectors aei ∈ R

R, with i = 1, . . . , Ne .
Besides, in the fQCE model, we define the hidden quantum
states |ei 〉 = Uei H6,...,1 |0〉, with i = 1, . . . , Ne (see Equation (16)),
as entity representations.

The t-SNE visualizations of learned quantum representations
are displayed in Figure 8. One can clearly recognize the cluster-
ing effect based on the categories of entities. It is intriguing to
point out that in Figure 8, the pink nodes representing the cate-
gory Educational_Organization overlap with the blue nodes which
represent the category College_Or_University.

Quantum circuit models reveal better semantic clustering
effects of the learned latent features than classical models.
Figure 9 displays the t-SNE visualization of entity latent rep-
resentations learned by DistMult. Particularly, one can notice
that the learned latent features of the semantic categories City,
Administrative_Area, and Place strongly overlap without reveal-
ing more detailed structures. The better semantic clustering
effect might explain why fQCE performs consistently well when
comparing with the Mean Rank metric.

6. Accelerated Inference

In previous sections, we have shown that the value functions
can be evaluated with reduced complexity using the quantum
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Figure 9. T-SNE visualization of entity representations learned by DistMult.

Ansätze. However, there is another quantum advantage we have
notmentioned yet, namely the acceleration on the inference task.
To be more specific, given an incomplete semantic triple (s, p, ·),
we attempt to find a quantum algorithmwhich can accelerate the
search for the best (or the most possible) candidates for the un-
known object.

What makes this task very challenging? As mentioned before,
we are dealing with ever-increasing knowledge graphs with the
consistently increasing number of distinct entities. Inference us-
ing classical models, for example, RESCAL and Tucker requires
many computation resources. The reason is we need to calculate
all the value functions ηspei , with i = 1, . . . , Ne . Then, the entity
ei that corresponds to the maximum ηspei will be located, and the
algorithm returns ei as the best candidate for the unknown ob-
ject. It could be extremely time and resource consuming since
the same algorithm has to be repeated at least Ne times and each
time of evaluation requires O(polyR) classical operations.

We are motivated to find a quantum algorithm showing quan-
tum acceleration on the inference task. Here, we describe an ide-
alistic and heuristic quantum algorithm for the inference. First,
we prepare the following quantum state

1√
2Ne

Ne∑
i=1

(|0〉A |i〉I |0〉L + |1〉A |i〉I |0〉L) (18)

The first qubit with the subscript A is an ancilla qubit. The sec-
ond index register with the subscript I consists of ne := �log2 Ne�
qubits, and the state |i〉I is the binary representation for the index
i of the entity ei . Furthermore, the third register with r = log2 R
qubits is prepared in the pure state |0〉R which will be used to
generate the quantum representations of the entities.

Afterward, we use unitary circuit evolutions to prepare the
states |sp〉 and |ei 〉. To be more specific, theU1 circuit brings |0〉L
to the state |sp〉 conditioned on the ancilla qubit being |1〉A. More-
over, an entity-dependent circuitU2(ei ) brings |0〉L into the quan-
tum state |ei 〉 conditioned on the ancilla being |0〉A and the index
register being |i〉I. Recall that the circuits U1 and U2 are defined
in Figures 2 and 4.

To summarize, the unitary circuits will generate the following
quantum state

1√
2Ne

Ne∑
i=1

(|0〉A |i〉IU2(ei ) |0〉L + |1〉A |i〉IU1 |0〉L
)

= 1√
2Ne

Ne∑
i=1

(|0〉A |i〉I |ei 〉L + |1〉A |i〉I |sp〉L
)

(19)

Performing the Hadamard gate on the ancilla qubit gives

1
2
√
Ne

Ne∑
i=1

(|0〉A |i〉I (|ei 〉L + |sp〉L) + |1〉A |i〉I (|ei 〉L − |sp〉L)
)

(20)

Note that the values ηspei are encoded in the probability am-
plitudes of the above quantum state Equation (20). For example,
the probability of measuring the ancilla qubit and index register
being in the quantum state |0〉A |i〉I is given by

Pr(|0〉A |i〉I) = 1
2Ne

(1 + � 〈ei |sp〉L) = 1
2Ne

(1 + ηspei ) (21)

Let us consider an idealistic case for the inference: The nega-
tive semantic triples have value functions −1, while the positive
triples have value functions +1. In this case, the probability in
Equation (21) takes value Pr(|0〉A |i〉I) = 0 if the entity ei is not a
correct return to the query (s, p, ?), while Pr(|0〉A |i〉I) = 1

Ne
if the

entity ei is correct.
Since the index register is sampled conditioned on the ancilla

qubit, we need to discuss the probability of post-selection on the
ancilla qubit. The marginalized probabilities of measuring the
ancilla qubit being |0〉A and |1〉A read

Pr(|0〉A) = 1
2

+ 1
2Ne

Ne∑
i=1

ηspei

Pr(|1〉A) = 1
2

− 1
2Ne

Ne∑
i=1

ηspei (22)
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Figure 10. Empirical distributions of the value functions a) ηQCEs po and b) ηfQCEs po evaluated on the test dataset of Kinship. The targets are set as yi ∈ {−1, 1}
during the training. Note that for each triple in the test dataset, say (s, p, o), the value functions ηspei and ηei sp, with i = 1, . . . , Ne are evaluated and
accumulated for the plotting.

Assume that the cardinality of the solution set to the query (s, p, ?)
is H ∈ O(1). In the idealistic situation, we have the marginalized
probability Pr(|0〉A) = H

2Ne
, and Pr(|1〉A) = 1 − H

2Ne
. To read out

the indices that correspond to the entities in the solution set, we
can perform amplitude amplification[27] on the subspace |0〉A of
the ancilla qubit. The number of required iterations is approx-

imately � π

4

√
2Ne
H � = O(

√
Ne ). The resulting quantum state after

the amplitude amplification reads

1√
H

∑
i∈{i |φp(s,ei )=1}

|0〉A |i〉I (23)

It is unnecessary to perform quantum state tomography and
read out all the probability amplitudes. We can sample the states
of the index register conditioned on |0〉A and determine the most
frequent states that are related to the indices of the entities giv-
ing the highest scores. Since the cardinality of the solution set
is assumed to be H ∈ O(1), the same experiment needs to be
replicated at least O(H

√
Ne ) times. Hence, this heuristic quan-

tum algorithm realizes a quadratic acceleration with respect to
the number of entities Ne .

Our idealistic quantum algorithm provides a quadratic accel-
eration during the inductive inference on the database. Even
a quadratic speedup is desirable when the number of entities
Ne is large. Note that another well-known quantum algorithm,
Grover’s algorithm,[28] which was designed for searching in a
database, also provides a quadratic speedup. More specifically,
Grover’s algorithm can identify the input to an unknown func-
tion in O(

√
N) steps from a N-item database. At the same time

as Grover’s publication, it is proved in ref. [29] that Grover’s al-
gorithm is an almost optimal solution. Different from this quan-
tum algorithm for the database search, our algorithm is learning-
based, adaptive, and inference-oriented.

Note that the above described quantum algorithm is merely
idealistic and heuristic, since the scores of semantic triples in the
test dataset take values from the interval [−1, 1] instead of the
discrete set {−1, 1}. Figure 10 shows the empirical distribution
of value functions on the Kinship test dataset.[30]

As one can observe that the empirical value functions concen-
trate around −0.5 and 0.5. The quantum advantage on inference

might disappear in these cases since Pr(|0〉A |i〉I) ≈ Pr(|0〉A | j 〉I),
∀i ∈ {i |φp(s, ei ) = 1}, and j /∈ {i |φp(s, ei ) = 1}. In other words,
the probability of sampling correct solutions is approximately
equal to the probability of sampling incorrect solutions. Thus,
one promising future research direction is to study whether per-
forming nonlinear functions on quantum representations can
separate the positive and negative triples in an inference task.

7. Conclusion and Outlook

In this work, we study the quantum Ansätze for the statistical
relational learning on knowledge graphs as well as latent quan-
tum representations. Two different quantum models QCE and
fQCE are proposed and compared by their complexity and per-
formance. To be specific, QCE assumes that entity representa-
tions are stored in a classical data structure, while in the fQCE
model quantum entity representations are generated from pure
quantum states through unitary circuit evolution. The experi-
ments show that both quantum Ansätze can achieve comparable
results to the state-of-the-art classical models on several bench-
mark datasets.

This work can be further explored in several directions. The
quantum circuit architecture could be fine-tuned using rein-
forcement learning or evolutionary algorithms. It is necessary to
understand why quantum circuit models show superior perfor-
mance on the WN18RR dataset which contains the most entities
and the smallest average number of links. Whether this observa-
tion indicates that quantum circuit models are only suitable for
modeling large but simple relational dataset due to the inherent
linearity? Thus, a reasonable question is whether acting nonlin-
ear operations on the quantum representations can improve the
inductive inference on complex relational datasets and make the
idealistic and heuristic quantum algorithm for the accelerated in-
ference more realizable?

Appendix A: Preparation of Quantum States

Theorem A1.[31] Let x ∈ R
R be a real-valued vector. The quantum

state |x〉 = 1
||x||2

∑R
i=1 xi |i〉 can be prepared using �log2 R� qubits in

time O(log2 R).
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Figure A1. Classical memory structure with quantum access for creating
the quantum state |x 〉 = x1 |00〉 + x2 |01〉 + x3 |10〉 + x4 |11〉.

Theorem A1 claims that there exist a classical memory struc-
ture and a quantum algorithm which can load classical data into
a quantum state with exponential acceleration. Figure A1 illus-
trates a simple example. Given an R = 4D real-valued vector, the
quantum state |x〉 = x1 |00〉 + x2 |01〉 + x3 |10〉 + x4 |11〉 can be
prepared by querying the classical memory structure and apply-
ing three controlled rotations.

Let us assume that x is normalized, namely ||x||2 = 1. The
quantum state |x〉 is created from the initial state |0〉 |0〉 by query-
ing the memory structure from the root to the leaf. The first ro-
tation is applied on the first qubit, giving

(cos θ1 |0〉 + sin θ1 |1〉) |0〉 =
(√

x21 + x22 |0〉 +
√
x23 + x24 |1〉

)
|0〉

where θ1 := tan−1

√
x23+x24
x21+x22

. The second rotation is applied on the

second qubit conditioned on the state of qubit 1. It gives

√
x21 + x22 |0〉 1√

x21 + x22
(|x1| |0〉 + |x2| |1〉)+

√
x23 + x24 |1〉 1√

x23 + x24
(|x3| |0〉 + |x4| |1〉)

The last rotation loads the signs of coefficients conditioned on
qubits 1 and 2. In general, an R-dimensional real-valued vec-
tor needs to be stored in a classical memory structure with
�log2 R� + 1 layers. The data vector can be loaded into a quan-
tum state using O(log2 R) nontrivial controlled rotations.
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