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Abstract. Answering queries on large graphs is an essential part of data
processing. In this paper, we focus on determining reachability between
vertices. We propose a labeling scheme which is inherently distributed
and can be processed in parallel. We study what properties make it
difficult to find a good reachability labeling scheme for directed graphs.
We focus on the genus of a graph. For graphs of bounded genus g, we
design a labeling scheme of length O(g logn+log2n). We also prove that
no labeling schemes with labels shorter than Ω(

√
g) exist for this graph

class.
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1 Introduction

Databases and web services employ some variant of precomputation in order to
answer queries reasonably quickly. Several applications, such as XML parsing,
logical reasoning on semantic web RDF/OWL data, querying protein-protein
interaction networks, lineage tracking for scientific workflows or routing work di-
rectly on graph data [28, 10, 30, 18]. Determining the relationship between nodes
in such graphs is a fundamental operation to efficiently answer queries. In this pa-
per, we study the classical problem of determining reachability in graphs: Given
a directed graph G, we want to answer whether a node u can reach a node v,
for arbitrary u, v. Furthermore, it might be to inefficient to answer such reach-
ability queries by running a naive linear time algorithm. If the graph is large,
we can also not store all possible answers. Instead, we propose to construct a
reachability oracle in the form of a labeling scheme: We store some additional
information (a label) with each node. When we want to answer a reachability
query for nodes u, v, we simply look up the labels of nodes u and v, and deduce
the reachability just from these labels. Such an approach can also deal with
graphs that are stored in a distributed fashion, since the labels of u and v do
not need to be stored on the same machine. Furthermore, the labeling scheme is
highly parallelizable as we only require read access to the labels of both nodes.

In the literature, such a distributed oracle is known as an informative labeling
scheme [23]. A labeling scheme consists of an encoder l and a decoder d. The
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encoder l assigns a label (a bitstring) l(u) to each vertex u of the graph. The
decoder d takes the labels l(u) and l(v) as input and then directly decides if u
can reach v in G, without using any other information.

The main objective when constructing a labeling scheme is to minimize the
maximum label length assigned to any vertex. But how difficult is this task? For
which graphs do we get a reasonable label length? Or more precisely, can we
leverage the intrinsic properties of the given data to model graphs for which we
can create short labeling schemes?

A straightforward idea is to use the sparsity and locality in the given data.
The graph representation often only contains a small fraction of all possible
connections. A first attempt is to consider that each element in the data is
only directly related to a few other elements. Such an assumption translates
naturally to the graph domain as they can be modeled with bounded degree
graphs. However, such a local restriction is not strong enough. We show that
even for sparse graphs that have a bounded outdegree ∆ it is not possible to
construct short schemes. We prove a lower bound of Ω(

√
n∆), so already graphs

with outdegree 2 require labels of length at least Ω(
√
n).

In search for a more suitable characterization of the graphs, we consider
a more global parameter, the genus. Graphs of bounded genus are a natural
generalization of planar graphs, since planar graphs can be characterized as
graphs of genus 0. For planar graphs, in a seminal paper, Thorup [27] constructed
a labeling scheme of length O(log2 n). In the same paper, he posed as an open
question whether this approach could be extended to graph classes excluding
minors and bounded genus. Building upon Thorup’s work, as well as on the
work of Gilbert et al. [17] on separator sets in bounded genus graphs and the
work of Kawarabayashi et al. [21] on labeling schemes for distances, we construct
a new labeling scheme of length O(g log n+ log2 n). Furthermore, we provide a
lower bound that applies to any labeling scheme designed for the class of bounded
genus graphs of Ω(

√
g), even if the genus is subquadratic in the size of the graph.

This means that the genus of a graph is a possible indicator on the complexity
of devising short labelings.

2 Related Work

Labeling schemes have been around for more than 50 years, making an appear-
ance in the context of information theory by Breuer [9]. Ever since, labeling
schemes have been studied for several different types of queries. These include,
but are not limited to, labeling schemes for adjacency [20, 2, 6, 8], lowest com-
mon ancestor [5, 23] and distance [1, 27, 16, 21]. All known to us online maps use
distance labeling to compute shortest paths.

Labeling schemes relating to reachability in directed graphs, sometimes also
referred to as ancestry queries, have been studied extensively on trees as they
can be used for improving the performance of XML search engines [15, 7]. The
problem was first introduced by Kannan et al. [20], who presented a O(log n)
labeling scheme for reachability on trees. Schemes were improved [7, 13, 15] to
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match the lower bound of log n+Ω(log log n) derived by Alstrup et al. [4]. There
have also been publications on constructing labeling schemes for reachability for
the class of planar graphs as they are very useful to answer routing queries in
online maps. Working on distance oracles for approximate distances, Thorup [27]
constructed a labeling scheme for reachability for directed planar graphs of length
O(log2 n). His work also applied to labeling schemes of approximate distances for
undirected planar graphs. Kawarabayashi et al. [21] then generalized the labeling
scheme of Thorup for approximate distances in undirected graphs to bounded
genus graphs. It uses a tree-cotree decomposition introduced by Eppstein [14]
to reduce the problem to the planar case. More recently, there has been work
on labeling schemes for other classes of directed graph, such as treewidth [19]
or compressing the transitive closure [8]. But the relevance of reachability goes
beyond trees and planar graphs. For instance, reachability labels are used for
efficient lineage tracking [18].

There is an extensive list of publications, which focus on building imple-
mented systems to answer reachability queries. Several approaches build on the
ideas of chain covers [25], tree covers [3], hop labeling [11] or a combination of
these techniques [28, 10]. On the other hand, some of these systems allow for
additional computation on the graph at querying time. These approaches are
usually based on interval labeling [30, 24], sampling linear extensions [12] or set
containment [29]. Whenever the information given by the precomputation is not
sufficient, they fall back to a linear search to answer the query. We refer to [29]
for an in-depth coverage of existing work.

This paper analyses what parameters and restrictions are required for graph
classes in order to construct short and efficient reachability schemes. These in-
sights are important to construct new schemes and can further be used to esti-
mate theoretical limitations of practical systems.

Labeling Schemes for Reachability
Graph Class Lower Bound Upper Bound
general graphs Ω(n) [8] O(n) [8]
trees Ω(logn) O(logn) [13, 15]
outdegree ∆ ≥ 2 Ω(

√
n∆) O(n) [8]

planar Ω(logn) O(log2 n) [27]
genus g Ω(

√
g) O(g logn+ log2n)

Table 1. An overview of the asymptotic length of reachability labeling schemes for
different graph classes. The bounds printed in bold are shown in this paper. (The
Ω(logn) lower bounds are straightforward, since a labeling scheme for paths requires
at least Ω(logn) bits.)

Table 1 shows known lower and upper bounds on the length of reachability
labeling schemes for a number of graph classes. The bounds we prove in this
paper are printed in bold.
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In this paper, we use the ideas introduced by Kawarabayashi et al. [21] to
construct a labeling scheme for reachability in directed graphs of bounded genus.
However, instead of relying on the decomposition of Eppstein [14], we adapt the
work of Gilbert et al. [17] on balanced vertex separators in bounded genus graphs.
Gavoille et al. [16] proved that labeling schemes for exact distances in undirected
graphs of bounded degree must be of length at least Ω(

√
n). In our work, we

show that this bound can be adapted to the case of reachability in directed
graphs of bounded degree.

3 Graphs of Bounded Degree

When processing data represented as graphs, the data usually follows a given
structure. Meaning that the number of edges is not quadratic, but roughly linear
in the number of vertices. Therefore, we deal with very sparse graphs. However, is
it enough to build a short labeling scheme by considering a sparsity constraint?
We study a natural way to enforce sparsity by locally enforcing a maximum
degree per vertex.

While restricting the degree of vertices of the graph seems like an appropriate
choice to limit a graph’s complexity, it turns out not to be the right parameter to
explain the difficulty of constructing short labeling schemes for reachability. In
the following, we prove a lower bound of Ω(

√
n∆) on the length of a reachability

labeling scheme for graphs with degree ∆ ≥ 2. In order to achieve this, we
introduce a transformation Ψ∆.

Note that if the outdegree is restricted to be 1, we can apply the label-
ing scheme for trees. Recall that for reachability, we always work with directed
graphs. For a vertex v we denote its outdegree with deg+(v) and its indegree
with deg−(v). Note that it does not matter wheter we restrict either the in- or
outdegree whenever we are interested in a labeling scheme for reachability. In
fact, they are interchangeable. We can reverse the directions of all edges of a
digraph G to swap in- and outdegree and obtain G′. We then have that u⇝G v
(u reaches v in G) if and only if v ⇝G′ u. Therefore, we usually only restrict the
outdegree of a graph.

3.1 Degree Graph Transformation

The idea behind the transformation is that any digraph can be transformed
into another digraph with smaller outdegree, while preserving the reachability
relation. We replace each original vertex of the digraph with multiple vertices
of smaller outdegree linked together by a chain. More formally, the transforma-
tion Ψ∆ takes an arbitrary digraph G and transforms it into a digraph G′ with
maximum outdegree ∆.

Note that Gavoille et al. [16] used a similar technique to derive a Ω(
√
n)

lower bound for determining exact distances using labeling schemes in undirected
bounded degree graphs. The lower bound technique and in particular the Ψ∆

transformation can be applied to directed graphs and were found independently.
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Recall that for general digraphs, there is a lower bound linear in the size of
the graph.

Theorem 1 (Digraph Lower Bound [8]). Let G be the class of digraphs on
n vertices. Every labeling scheme for reachability for the class G has length at
least L = n

4 = Ω(n).

Lemma 1. Let G be an arbitrary digraph on n vertices with maximum outdegree
ω. The transformation Ψ∆ constructs a digraph G′ = Ψ∆(G) with the following
properties.

1. (Bounded Degree) G′ has maximum outdegree ∆ ≥ 2.
2. (Additional Vertices) G′ has at most n⌈ ω

∆−1⌉ vertices.
3. (Reachability) V (G) ⊆ V (G′), furthermore for any u, v ∈ V (G): u can reach

v in G if and only if u can reach v in G′.

Proof. We only outline the construction of the transformation here and refer to
the full version of a paper for a more detailed construction and formal proof of
the properties.

The transformation applies to each vertex independently. More specifically,
in G′ each vertex v of G is replaced by a chain of new vertices. Among these
new vertices the outgoing edges are distributed in a way that ensures that all
vertices in G′ have outdegree at most ∆.

Fig. 1. The Ψ∆ transformation applied to a vertex v of outdegree d with ∆ = 3. On
the right side, v = v0 and its virtual vertices v1, ..., vk are displayed.

Note that the shape with which we replace each vertex with could be changed
to resemble a tree instead of a chain. However, it is more convenient to have it be
a simple path. Furthermore, we could also transform the indegree of the graph
using the same technique. Finally, we need to relate the Ψ∆ transformation to
the labeling scheme.

3.2 Bounded Degree Lower Bound

We can now use the transformation Ψ∆ to get a lower bound for bounded degree
graphs. The main idea behind the lower bound is that if there were a shorter la-
beling scheme, we could use it to construct a shorter scheme for general digraphs.
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Fig. 2. On the left side a graph G that contains nodes with degree larger than ∆. On
the right side the Ψ∆ transformed graph G′ with maximum outdegree ∆ = 2. The
reachability information of G is preserved in G′.

Theorem 2 (Bounded Degree Lower Bound). Let G∆ be the class of di-
graphs on n vertices with outdegree ∆ ≥ 2. Every labeling scheme for reachability
for the class G∆ has length at least L = Ω(

√
n∆).

Proof. Assume for the sake of contradiction that there exists a labeling scheme
for reachability for the class G∆ and which has length L = o(

√
n∆). We now

apply this scheme to G, the class of digraphs on n vertices. Now take any di-
graph G ∈ G and Ψ∆ transform G to the graph G′ ∈ G′. Note that due to
the reachability property of the transformation any labeling for G′ = Ψ∆(G)
is also a valid labeling for G. Furthermore, G′ now contains at most n · ⌈ n

∆−1⌉
vertices and every vertex has outdegree at most ∆ by the properties of the Ψ∆

transformation.
We now apply the labeling scheme of length o(

√
n∆) to G′, which also is a

labeling scheme for G. Note that due to ∆ ≥ 2 the term ⌈ n
∆−1⌉ is at most 2n

∆ .

L = o
(√

∆|V (G′)|
)
≤ o

(√
∆n ·

⌈
n

∆− 1

⌉)
≤ o

(√
∆n · 2n

∆

)
= o

(√
n2
)
= o(n)

(1)
However, we already know by Theorem 1 that any labeling scheme for G must
use at least Ω(n) bits, a contradiction. Therefore, any labeling scheme for reach-
ability for the class G∆ has length at least L = Ω(

√
n∆).

4 Graphs of Bounded Genus

After studying the maximum degree of a graph, we now turn to another param-
eter: the genus of a graph. A graph of genus g can be embedded in a surface
of genus g so that none of its edges are crossing. Graphs of bounded genus are
a natural extension of planar graphs, since the latter are exactly the graphs of
genus 0. We already know that low genus graphs, such as planar graphs, have
very short labeling schemes. On the other hand, general directed graphs with
many edges have a lot of crossings. In the following, we show that the genus of
a graph is a useful indicator of how difficult it is to construct a short labeling.
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Building upon the previous work of Thorup [27] on labeling schemes in planar
graphs, the work of Gilbert et al. [17] on separator sets in bounded genus graphs
and the work of Kawarabayashi et al. [21] on labeling schemes for distances, we
construct a new labeling scheme of length O(g log n+ log2 n). Furthermore, we
provide a lower bound on the length of any labeling scheme of Ω(

√
g) for the

class of bounded genus graphs. Moreover, the provided proof extends to graphs
whose genus is linear in the size of the graph.

First, we recall the layering technique introduced by Thorup, as our construc-
tion heavily relies on it. We proceed with a slight variation of the separator proof
of Gilbert et al. to reduce a given graph of bounded genus to a planar graph.
Then we combine the tools to construct a new labeling scheme for bounded
genus graphs. Before we begin, we briefly discuss a frequently used method (e.g.
in [27]) that allows us to remove directed paths from the graphs.

4.1 Preliminaries

In the following, we describe two methods that we use as building blocks in our
construction. The first method is used to handle a directed path p. It allows us
to reduce the construction of the labeling to the graph without p by storing an
additional O(log n) bits per vertex.

Lemma 2 (Path Labeling [27]). Let G be a digraph on n vertices, P a set
of t directed paths in G and a labeling l′ for the graph G \ V (P ). By storing
O(t log n) additional bits per vertex, we can extend the labeling l′ to a labeling l
for G.

We leave the rigorous proof itself for the full version. The idea is that each vertex
stores the first vertex it can reach on a path p and the last vertex on p that can
reach it. Given two vertices we can then decide if there is a path between the
two vertices that uses some vertex in p.

The second method, introduced by Thorup [27], reduces the problem of con-
structing a reachability scheme for the whole graph to a sequence of smaller
graphs that are more local. By more local, we mean that it is possible that in
the original graph, many parts of the graph will never interact with each other
as there are no directed paths between them.

Definition 1 (t-layered Spanning Tree [27]). A t-layered spanning tree T
in a digraph G is a disoriented rooted spanning tree such that any path in T
starting from the root is the concatenation of at most t directed paths in G.

Lemma 3 (Digraph Layering [27]). Given an arbitrary digraph G, there
exists a series of digraphs G0, ..., Gk−1 with k ≤ n so that

1. (Reachability) Each vertex v has an index τ(v), so that a vertex w is reachable
from v in G if and only if w is reachable from v in Gτ(v) or Gτ(v)−1.

2. (Spanning Tree) Each Gi = (Vi, Ei) is a digraph with a 2-layered spanning
tree Ti rooted at ri.
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3. (Minor closed) Gi is a minor of G. If G has genus at most g, then Gi also
has genus at most g.

4. (Linear Size) The total number of edges and vertices over all Gi is linear in
the number of edges and vertices in G. Furthermore, every vertex v appears
as a non-root vertex only in Gτ(v) and Gτ(v)−1 .

We now relate the digraph layering construction to labeling schemes. Recall
that each vertex v only appears in two digraphs Gτ(v)−1, Gτ(v). Furthermore,
every vertex w which is reachable from v is also reachable from v in one of the two
digraphs. The idea is to construct a labeling for each digraph separately. Then
to obtain the labeling for the original graph, we concatenate the sublabelings of
the two graphs Gτ(v)−1, Gτ(v). This way, the length of the labeling is at most
twice the length of the sublabelings. We refer to the full version of the paper for
the proof.

Lemma 4 (Digraph Layering Labeling [27]). Given an arbitrary digraph
G, its sequence of digraphs G0, ..., Gk−1 obtained by digraph layering and a la-
beling li for each digraph Gi. We can construct a labeling l for G. Furthermore,
l is of length at most 2 log n+ 2max |li|.

4.2 Planarizing Technique

In this section, we are given a bounded genus graph, and we want to reduce its
genus to make it planar. The idea is to relate the problem of finding a reachability
scheme for bounded genus graphs to the labeling scheme for planar graphs.

Given a digraph and a spanning tree, we construct a set of undirected paths
so that the removal of these paths makes the graph planar. Moreover, if the tree
is a 2-layered spanning tree, we can guarantee that the set of paths consists of
not too many directed paths.

Given an arbitrary digraph G of genus g with a spanning tree T , we want
to reduce the genus of G by removing certain paths of T . More formally, we are
given T and build a set P consisting of paths of T starting at the root. The goal
is that G \ V (P ) is a planar graph, not necessarily connected. Furthermore, if
the given spanning tree T is a k-layered spanning tree, the set P consists of at
most O(kg) directed paths.

Lemma 5 (Planarizing Tree). Given a digraph G of genus at most g and a
spanning tree T with root r, there exists a set of paths P so that

1. (Planarizing) Each connected component of G \ V (P ) is planar.
2. (Pathset) P consists of at most O(g) undirected paths in T starting at the

root vertex r.
3. (Layered Tree) If T is a k-layered spanning tree, then P consists of at most

O(kg) directed paths of T .

We only outline the construction of the set P and refer to [17] for a more
in-depth coverage. The main difference between the original proof of Gilbert et
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al. and our proof is the choice of the spanning tree T . In the original proof the
spanning tree had to be of small depth to bound the lengths (and number of
vertices) of the undirected paths of P . This leads to a small vertex separator set.
However, we only require that the set consists of a small number of paths which
might consist of many vertices. We can therefore take an arbitrary spanning tree
T as the origin of the construction instead of a low depth tree.

Instead of directly constructing the set P in the graph G, we remove parts
of the graph that do not belong to P . The part that remains after removing
certain edges and vertices is the desired set P . Everything that we remove in
this process, namely G \ V (P ), is planar.

First, the graph is embedded in a surface of genus g with a spanning tree T .
Then, non-tree edges are repeatedly removed to reduce the number of faces while
preserving the embedding. Afterwards, all vertices of degree one are repeatedly
removed until none are left. What remains is a graph G′ spanned by T ′ ⊆ T .
Due to Euler’s Theorem (v − e + f = 2 − 2g) the number of non-tree edges in
G′ and as a consequence also the number of leaves of T can be upper bounded
by O(g). Thus, P can be covered by O(g) undirected paths. In particular, if T
is a k-layered spanning tree P consists of O(kg) directed paths.

4.3 Bounded Genus Labeling Scheme

Now that we have introduced the necessary technical tools, we put them together
to construct the labeling scheme for bounded genus graphs.

We remark that the labeling scheme of Kawarabayashi et al. [21] for distances
in bounded genus graphs builds on the same idea. However, for reachability we
work with directed graphs. Therefore, the technique is not directly applicable.
Furthermore, instead of using the more complex tree-cotree decomposition of
Eppstein [14], we rely on the separator construction of Gilbert et al. [17] to
planarize the graph.

The idea of the construction is as follows. First, we construct a sequence of
digraphs according to the digraph layering. Due to the construction, the genus
does not increase for these layered digraphs. We then use the planarizing tech-
nique from the previous section to reduce them to planar graphs. Finally, we can
apply the scheme devised by Thorup [27] for the planar remainder of the graph.

Theorem 3 (Bounded Genus Labeling). Let G be the class of digraphs on
n vertices with genus at most g. There exists a labeling scheme for reachability
for the class G of length L = O(g log n+ log2 n).

Proof. Let G ∈ G be an arbitrary digraph on n vertices of genus at most g. First
we construct a sequence of layered digraphs G0, ..., Gk−1 according to Lemma 3.
Due to Lemma 4 it is sufficient for us to construct a labeling scheme of length
O(g log n+ log2 n) for each Gi separately.

Recall that each Gi has a 2-layered spanning tree Ti rooted at ri. Further-
more, Gi is a minor of G, therefore the genus of Gi is at most g.
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Let H be an arbitrary Gi of the layered digraph construction. We can apply
Lemma 5 on H using the 2-layered spanning tree. This gives us a set P of at
most 2 · 4g = O(g) directed paths whose removal yields a planar graph H ′.

Using Lemma 2, we can store O(g log n) bits for the paths in P and reduce the
problem to constructing a labeling scheme for H \V (P ) = H ′. As the remaining
graph H ′ is planar, we can apply the labeling scheme of Thorup [27] to construct
a labeling of length O(log2 n).

Therefore, we have constructed a labeling scheme for the graph G using a
total of O(g log n+ log2 n) bits.

4.4 Bounded Genus Lower Bound

In this section, we want to prove a lower bound for the length of any labeling
scheme for reachability in bounded genus graphs. We do this by relating the
class of bounded degree graphs to the class of bounded genus graphs. We first
need two technical lemmas to relate the genus to the number of edges in a graph
and to get a bound on the genus of the complete graph.

Lemma 6 (Genus Upper Bound). Let G be an arbitrary graph on v vertices,
e ≥ 1 edges and genus g. Then the genus is at most the number of edges: g ≤ e.

Proof. Let G be a graph of genus g with v vertices and e ≥ 1 edges. Let f be the
number of faces of an embedding of G in a surface of genus g. Then, according
to Euler’s formula

v − e+ f = 2− 2g. (2)

Rearranging the terms gives the desired bound on the genus. Note that v, e and
f are all nonnegative integers.

g =
2− v + e− f

2
≤ 1 +

e

2
≤ e (3)

Lemma 7 (Genus of complete graph [22]). The complete graph Kg has
genus Θ(g2) and as a consequence every graph with a Kg minor must have genus
at least ⌈ (g−4)(g−5)

12 ⌉ = Θ(g2).

Now we can to relate the lower bound of the bounded degree graphs to the
bounded genus graphs.

Theorem 4 (Bounded Genus Labeling Lower Bound). Let G be the class
of digraphs on n vertices of genus at most g. Every labeling scheme for reacha-
bility for the class G has length at least L = Ω(

√
g).

Proof. Assume for the sake of contradiction that there exists a labeling scheme
for reachability for the class G and has length L = o(

√
g). The idea is to take this

scheme and apply it to the class of bounded degree graphs G∆. More formally,
G∆ is the class of digraphs on n vertices with outdegree at most ∆. These graphs
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have at most n · ∆ edges. By Lemma 6, their genus is bounded by n · ∆. Now
we use the labeling scheme for bounded genus graphs of length o(

√
g) for G∆.

L = o(
√
g) ≤ o(

√
n∆) (4)

However, we already know by Theorem 2 that any labeling scheme for G∆ must
use at least Ω(

√
n∆) bits, a contradiction. Therefore, any labeling scheme for

reachability for the class G has length at least L = Ω(
√
g).

Note that the Ω(
√
g) bound can be derived by arguing that the genus is

always at most the number of vertices squared. However, the proof presented
here is stronger in the following sense. The simple proof only shows the result for
the class of all graphs, which includes the graphs of genus of order up to Θ(n2).
However, the proof can’t be applied if the class of graphs is more restricted, i.e.
graphs of genus Θ(n2) are not included. Whereas with our proof, the result also
follows for more general classes of graphs including the graphs of genus linear in
the size of the graph.

Note that we could have also derived the square root bound by arguing that
the genus is always at most the number of vertices squared. However, we show
a specific class of graphs with genus linear in the size of the graph to which the
square root bound applies, instead of only graphs with genus of order Θ(n2).

Finally, we study that the lower bound for bounded genus graphs can be
transferred to the class of minor excluded graphs. We say that a graph G contains
a minor H if H can be obtained through a series of edge contractions, vertex
deletions, or edge deletions. The class of minor excluded graphs consists of the
graphs which exclude all graphs H of a family H as a minor. This is of interest
as many classes of graphs can be characterized through excluding minors. In
particular, the class of planar graphs can be defined as the graphs which exclude
K3,3 and K5, known as Kuratowski’s Theorem [26]. Note that for reachability,
we work with directed graphs. In the context of minor excluded graphs, we work
with the undirected graph underlying G whenever necessary.

Theorem 5 (Minor Excluded Lower Bound). Let GH be the class of di-
graphs on n vertices, which excludes the graph H on h vertices as a minor. Every
labeling scheme for reachability for the class GH has length at least L = Ω(h).

Proof. First, let us consider the class GKh
which excludes the complete graph

on h vertices as a minor. Note that GKh
is a subclass of GH as any graph that

excludes H as a minor can not have Kh as a minor. Therefore, any lower bound
we derive for GKh

must also apply to GH .
Assume for the sake of contradiction that there exists a labeling scheme for

the class GKh
of length L = o(h). We will now take this scheme and apply it

to the class of bounded genus graphs G of genus at most g. Recall that due to
Lemma 6, the genus does not increase for any minor. Furthermore, the complete
graph Kg′ where g′ = ⌈12(

√
g + 1+5)⌉ has genus at least g+1 due to Lemma 7.

As a consequence, any graph with a Kg′ minor has genus at least g+1. Therefore,
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G excludes Kg′ and we can apply the labeling scheme for excluded graph minors
of length o(h) on G.

L = o(h) = o(g′) ≤ o
(
⌈12(

√
g + 1 + 5)⌉

)
= o (

√
g) (5)

However, we already know by Theorem 4 that any labeling scheme for G must
use at least Ω(

√
g) bits, a contradiction. Therefore, any labeling scheme for

reachability for the class GKh
and GH has length at least L = Ω(h).

In this section we have strengthened existing results and showed how minor
excluded, bounded genus and bounded degree graphs are intertwined. We view
this as a first step to obtain tighter lower bounds, which might be harder to
obtain and require new insights.

Finally, a short remark on the tightness of our results. For undirected graphs
which exclude H as a minor there is a property called path separability studied
by Abraham et al. [1]. How path separability behaves for the directed case is
not yet as well understood. If such graphs were O(h) path separable, this would
further imply the existence of a labeling scheme of length O(h log2(n)) which
could also be applied to graphs of bounded genus and graphs of bounded degree.
In this case, the derived bounds would be tight up to log(n) factors.

5 Conclusion

Processing graph data is essential for many applications. Furthermore, deter-
mining the relationship between vertices quickly and efficiently is central to get
good performance. We study how to answer reachability queries using a labeling
scheme. A labeling scheme can be stored in a distributed fashion by design as
each node only needs to store his own label. Therefore, they are well suited to
be applied to large graphs. Furthermore, they allow for parallel processing as
only read operations on the labels are needed. However, a key challenge is how
to design short labeling schemes and determine whether it is even possible.

In order to determine an appropriate parameter to characterize the difficulty
of designing short labeling schemes for reachability we study the degree and
genus of a graph as a measure. We first study sparse graphs, where we enforce
local sparseness through limiting the maximum degree. It turns out, that even
for constant degree graphs there are no short schemes as we prove a Ω(

√
n∆)

lower bound for graphs of outdegree ∆. On the other hand, we present a novel
labeling scheme for graphs of bounded genus of length O(g log n+ log2 n).

Furthermore, any labeling scheme for graphs of bounded genus must use at
least Ω(

√
g) bits, even if the genus is subquadratic in the size of the graph.

This means that the genus of a graph is a possible indicator on the complexity
of devising short labelings. Moreover, the result can be generalized to minor
excluded graphs. However, it remains an open question whether there exists a
polylogarithmic labeling scheme. Similar results for undirected graphs [1] suggest
that this might be possible. However, adapting existing results to the directed
case has not been achieved so far and might need novel insights.
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