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Abstract. We present a distributed 2-approximation algorithm for the
minimum vertex cover problem. The algorithm is deterministic, and it
runs in (∆+ 1)2 synchronous communication rounds, where ∆ is the
maximum degree of the graph. For ∆ = 3, we give a 2-approximation
algorithm also for the weighted version of the problem.

1 Introduction

The minimum vertex cover is one of the best-known NP-hard graph problems.
The decision version was one of Karp’s [1] original NP-complete problems, and
it is the first problem in Garey and Johnson’s [2] list.

In a centralised setting, the polynomial-time approximability of the vertex
cover is a long-standing open question. Finding a factor 2 approximation is easy,
and there is some evidence that the problem may be hard to approximate within
factor 2− ε for any constant ε > 0 [3].

In this work, we study the approximability of the vertex cover problem in a
distributed setting. We present a deterministic distributed algorithm that finds a
2-approximation of a minimum vertex cover in (∆+ 1)2 communication rounds,
where ∆ is an upper bound on the maximum degree of the graph. To our knowl-
edge, this is the first deterministic distributed 2-approximation algorithm for
the vertex cover problem whose running time depends only on ∆ and not on the
number of nodes in the graph.

Prior Work. Several distributed 2-approximation algorithms are known for the
vertex cover problem (see, e.g., Grandoni et al. [4]). In particular, any distributed
algorithm that finds a maximal matching also provides a 2-approximation algo-
rithm for the vertex cover problem; for example, Hańćkowiak et al. [5] present a
distributed algorithm that finds a maximal matching in O(log4 n) rounds, and
Panconesi and Rizzi’s [6] algorithm finds a maximal matching on O(log∗ n+∆)
rounds. However, the running time of any such algorithm depends on n, the
number of nodes: Linial’s [7] seminal result shows that even if we have unique
node identifiers, and even if the network topology is an n-cycle, it is not possible
to find a maximal matching in o(log∗ n) synchronous communication rounds.



In this work, we focus on local algorithms [8, 9], in the strict meaning of
the term: a local algorithm is a distributed algorithm whose running time is
independent of the number of nodes. It is known that finding a constant-factor
approximation to the minimum vertex cover requires Ω(log∆/ log log∆) com-
munication rounds [10], and hence the best that one can hope for is a local
approximation algorithm in bounded-degree graphs.

Several such algorithms are known. Kuhn et al. [11] present a local ap-
proximation scheme for covering LPs; this scheme, together with determinis-
tic rounding [12], provides a factor 2 + ε approximation in O(log∆/ε4) rounds
for any ε > 0. Moscibroda [13] gives a (4 + ε)-approximation algorithm that
uses the primal–dual schema. There is also a simple purely combinatorial 3-
approximation algorithm with running time O(∆) [14].

On the negative side, the recent work by Czygrinow et al. [15] and Lenzen and
Wattenhofer [16] has settled that there is no local algorithm for the minimum
vertex cover problem with the approximation factor 2− ε for any ε > 0, and this
holds even in the case ∆ = 2.

Hence for each ε > 0, it is known that there is a local (2 + ε)-approximation
algorithm for vertex cover in bounded-degree graphs, and there is no local
(2− ε)-approximation algorithm. However, the existence of a local 2-approxima-
tion algorithm for the problem has been open.

Contributions. Our work settles the question of the approximability of the
vertex cover problem with distributed constant-time algorithms. We show that
there is a local 2-approximation algorithm for the minimum vertex cover problem
in bounded-degree graphs; together with the negative result [15, 16] for factor
2− ε, this provides a complete characterisation of the constant-time approxima-
bility of vertex cover.

Our algorithm does not require unique node identifiers. The only piece of
symmetry-breaking information that we use is a port numbering, i.e., each node
imposes an ordering on the incident edges. Our algorithm is deterministic, it
runs in (∆+ 1)2 communication rounds, and the size of each message is 2 bits.

The algorithm is presented in Sect. 3. In Sect. 5, we give a different algorithm
for the weighted vertex cover in graphs of maximum degree 3; the need for a
different algorithm is justified by a lower bound construction in Sect. 4.

2 Preliminaries

Model of Distributed Computing. Let G = (V,E) be a simple, undirected
graph. Throughout this work, G is the communication graph of a distributed
system: each node v ∈ V is a computational entity, and if {u, v} ∈ E then the
nodes u and v can exchange messages on each communication round. Let ∆ be
an upper bound on the maximum node degree in G.

We assume that G is an anonymous network with a port numbering, i.e., a
node v ∈ V can refer to its neighbours by numbers 1, 2, . . . , d(v), where d(v) is the
degree of v. No other symmetry-breaking information is assumed; in particular,



we do not need unique node identifiers. We assume that each node v ∈ V knows
d(v) and ∆.

Every node runs the same deterministic synchronous distributed algorithm.
In one synchronous communication round, the following steps are performed,
in this order: (i) each node performs local computation, (ii) each node sends
a message to each of its neighbours, and (iii) each node receives a message
from each of its neighbours. Finally, after T communication rounds, each node
performs local computation and announces an output – in our case, the node
announces whether it is part of the vertex cover or not. The number of rounds
T is the running time of the algorithm.

We emphasise that the model that we use – deterministic distributed algo-
rithms in anonymous port-numbered networks – is a very weak model of dis-
tributed computing. In particular, in this model it is not possible to break the
symmetry in a symmetric network. For example, finding a maximal matching
in an n-cycle is impossible, regardless of the running time T . The model that
we use is strictly weaker than, for example, Linial’s [7] model; if we had unique
identifiers, we could easily find a port numbering, but the converse is not true.
Constant-time distributed algorithms in this model provide efficient algorithms
in virtually any conceivable model of distributed computing; to give one exam-
ple, standard reductions [17] can be used to construct an efficient self-stabilising
algorithm that stabilises in constant time.

Vertex Covers. A set of nodes C ⊆ V is a vertex cover if each edge e ∈ E is
incident to at least one node in C. A fractional vertex cover is a non-negative
function x : V → [0, 1] such that x(u) + x(v) ≥ 1 for each edge {u, v} ∈ E. A
minimum fractional vertex cover minimises

∑
v x(v). This is an LP relaxation

of the vertex cover problem; a set of nodes C ⊆ V is a vertex cover if and only
if the characteristic function 1C : V → {0, 1} is a fractional vertex cover.

Edge Packings and Matchings. Throughout this work, we consider non-
negative functions y : E → [0,+∞) that assign a weight to each edge. For a
node v ∈ V , let us write s(y, v) =

∑
e∈E:v∈e y(e) for the total weight assigned to

the edges adjacent to v. The function y is an edge packing if s(y, v) ≤ 1 for each
node v ∈ V . A maximum edge packing maximises

∑
e y(e).

A node v ∈ V is saturated in an edge packing y if s(y, v) = 1. An edge
{u, v} is saturated if u or v is saturated. An edge packing y is maximal if each
edge is saturated; put otherwise, we cannot increase y(e) for any e ∈ E without
violating a constraint. We write S(y) = {v ∈ V : s(y, v) = 1} for the set of
saturated nodes.

Edge packings can be interpreted as fractional matchings: a set of edges
M ⊆ E is a matching if the characteristic function 1M is an edge packing, and
M is a maximal matching if 1M is a maximal edge packing. We use the shorthand
notation s(X, v) = s(1X , v) for a set of edges X ⊆ E, and we write G[X] for
the subgraph induced by X. In other words, s(X, v) is the degree of v in the
graph G[X].



LP Duality. From the perspective of linear programming, the maximum edge
packing problem is the dual of the minimum fractional vertex cover problem.
From LP duality, one can obtain the following well-known lemma that forms the
basis of our distributed algorithm.

Lemma 1. If y is a maximal edge packing, then S(y) is a 2-approximation of a
minimum vertex cover.

Lemma 1 is a simplified version of a classical result that dates back to Bar-
Yehuda and Even [18]. From a modern perspective, this result can be seen as
an application of the primal–dual schema to obtain an approximation algorithm
for the minimum vertex cover problem [19, 20].

In addition to the algorithm by Bar-Yehuda and Even [18], many other ap-
proximation algorithms can be interpreted as applications of Lemma 1 and its
various generalisations and special cases. Hochbaum [12] applies Lemma 1 in the
case where y is a maximum edge packing. The algorithm generally attributed
to Fanica Gavril and Mihalis Yannakakis applies Lemma 1 in the case where y
is the characteristic function of a maximal matching; then S(y) consists of the
endpoints of the edges in the matching – see, for example, Papadimitriou and
Steiglitz [21]. Gonzalez [22] presents a simple algorithm that uses Lemma 1 di-
rectly. Khuller et al. [23] present a distributed algorithm that applies a relaxation
of Lemma 1.

3 Algorithm

In this section, we present a distributed algorithm that finds a maximal edge
packing. The algorithm is purely combinatorial; we do not need to refer to linear
programming and duality in the description and analysis of the algorithm. Once
we have found a maximal edge packing, we can apply Lemma 1 to find a 2-
approximation of a minimum vertex cover.

Our algorithm heavily relies on half-integral edge packings. An edge packing
y is half-integral if y(e) ∈ {0, 1/2, 1} for each e ∈ E. In a half-integral edge
packing we also have s(y, v) ∈ {0, 1/2, 1} for each v ∈ V .

The following definition is central to our work.

Definition 1. A half-integral edge packing y is almost saturating if the following
conditions hold: If s(y, v) = 0 then s(y, u) = 1 for all neighbours u of v. If
s(y, v) = 1/2 then s(y, u) = 1 for at least one neighbour u of v.

If an edge e = {u, v} ∈ E is not saturated by an almost saturating edge packing
y, then s(y, u) = s(y, v) = 1/2; we say that e is half-saturated in y. Furthermore,
both u and v are adjacent to saturated nodes; therefore u and v are incident to
saturated edges. See Fig. 1 for an illustration.

Algorithm Overview. Our algorithm begins with the original graph G0 = G.
In each iteration i = 0, 1, . . . ,∆− 1, we find an almost saturating edge packing
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Fig. 1. A graph and two different almost saturating edge packings (see Definition 1).
Double lines are edges with weight 1, single lines are edges with weight 1/2, and dashed
lines are edges with weight 0. Black circles are saturated nodes, grey circles are nodes
with total weight 1/2, and white circles are nodes with total weight 0. Edges a, b and
c are half-saturated.
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C:

G0, y0:

G1, y1:

G2, y2:

(a)

(c)

(b)

Fig. 2. Overview of the vertex cover algorithm. (a) An input graph G. (b) The edge
packings y0, y1, and y2 found by the algorithm; see Fig. 1 for the notation. (c) The
resulting vertex cover C.



yi in the graph Gi. Then we form the subgraph Gi+1 of Gi that is induced by the
edges that are half-saturated in yi. See Fig. 2 for an illustration.

Both endpoints of a half-saturated edge are incident to a saturated edge;
therefore the maximum degree of Gi+1 is strictly smaller than the maximum
degree of Gi. Since the maximum degree of G0 is ∆, we conclude that the graph
G∆ is empty.

Extend the domain of yi to E by setting yi(e) = 0 whenever e ∈ E is not an
edge of Gi; now each yi is an edge packing in G. To find a maximal edge packing
in G, construct the function

y =
∆−1∑
i=0

2−iyi. (1)

Lemma 2. The function y in (1) is a maximal edge packing in the graph G.

Proof. Let us first show that y is an edge packing. Consider a node v ∈ V .
Let k be the largest integer such that v is a node in Gk. Then for each i < k,
the node v is incident to an edge that is half-saturated in yi, and therefore
s(yi, v) = 1/2. Furthermore, s(yk, v) ≤ 1 and s(yi, v) = 0 for i > k. We conclude
that s(y, v) ≤ 1.

Let us then show that y is maximal. Consider an edge e ∈ E. Let k be the
largest integer such that e is an edge in Gk. Then for each i < k, the edge e was
half-saturated in Gi by yi, and finally it was saturated in Gk by yk. Let u be an
endpoint of e that was saturated in Gk by yk. Then s(yi, u) = 1/2 for i < k and
s(yk, u) = 1. Therefore s(y, u) = 1, and the edge e is saturated in y. ut

Thus we have found a maximal edge packing, and the saturated nodes form
a 2-approximation of a minimum vertex cover by Lemma 1.

Naturally, in an implementation of the algorithm, we do not need to explicitly
compute y. In each iteration i, the nodes with s(yi, v) = 0 are discarded, the
nodes with s(yi, v) = 1 join the vertex cover, and the nodes with s(yi, v) = 1/2
get a second chance on iteration i+ 1.

Finding an Almost Saturating Edge Packing. To complete the descrip-
tion of the algorithm, we have to show how to find an almost saturating edge
packing. Our algorithm is based on the idea of forming a maximal matching in
the bipartite double cover of Gi. The same idea has been used in prior work [14]
to find a 3-approximation of a minimum vertex cover.

To construct the bipartite double cover H = Gi×K2 of the graph Gi, replace
each node v ∈ V of Gi by two copies: a black copy v1 and a white copy v2.
Replace each edge {u, v} ∈ E by two edges: {u1, v2} and {u2, v1}. Now H is a
bipartite graph; more importantly, it is 2-coloured, and we can use the colours
to break the symmetry in a distributed algorithm. The nodes in the graph H
inherit the port numbering from the graph G.

Now it is easy to find a maximal matching M in H by a distributed algorithm
in 2∆ synchronous communication rounds [24]: For each j = 1, 2, . . . ,∆, in the
round 2j − 1, unmatched black nodes send proposals to their white neighbour
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Fig. 3. Using the bipartite double cover to find an almost saturating edge packing.
(a) The input graph Gi. (b) The bipartite double coverH of Gi. (c) A maximal matching
M in H. (d) An almost saturating edge packing yi.

number j, if any. In the round 2j, all white nodes process the proposals; each
white node accepts the first proposal it gets, breaking the ties with port numbers.
See Fig. 3 for an illustration.

Now we can construct an almost saturating edge packing yi in Gi by setting

yi({u, v}) =
1M
(
{u1, v2}

)
+ 1M

(
{u2, v1}

)
2

. (2)

Here 1M is the characteristic function of M .

Lemma 3. The function yi in (2) is an almost saturating edge packing in Gi.

Proof. For each node v ∈ V we have s(yi, v) = (s(M,v1) + s(M,v2))/2. Since
s(M,v1) ∈ {0, 1} and s(M, v2) ∈ {0, 1}, we have s(yi, v) ≤ 1, and yi is an edge
packing. Since 1M is integral, yi is half-integral.

To show that yi is almost saturating, first consider a node v ∈ V with
s(yi, v) = 0. Then s(M,v1) = s(M,v2) = 0. Now let u be a neighbour of v.
Since M is maximal, v1 is not matched, and u2 is adjacent to v1 in H, we must
have s(M,u1) = 1; similarly, s(M,u2) = 1. Therefore s(yi, u) = 1.

Second, consider a node v ∈ V with s(yi, v) = 1/2. Assume that s(M,v1) = 0
and s(M, v2) = 1; the other case is symmetric. Then there is a neighbour u of v
in Gi such that {v2, u1} ∈M . Furthermore, u2 is adjacent to v1 inH and v1 is not
matched; therefore u2 must be matched in M . We have s(M,u1) = s(M,u2) = 1
and s(yi, u) = 1. ut

Running Time and Message Complexity. Finding an almost saturating
edge packing yi in Gi takes 2(∆ − i) synchronous communication rounds [24].
Then, in 1 communication round, each node v ∈ V can inform its neighbours
about s(yi, v); after that, each node knows its neighbours in the graph Gi+1.
Therefore iteration i can be completed in 2(∆−i)+1 synchronous communication
rounds, and the total running time is bounded by (∆+ 1)2.



The algorithm can be implemented by using 2-bit messages. To find an almost
saturating edge packing, the black copies of the nodes send 1-bit messages –
‘proposal’ or ‘no operation’ – and the white copies send 1-bit responses – ‘accept’
or ‘reject’, the latter of which doubles as a ‘no operation’ message. The value of
s(yi, v) can be encoded in 2 bits.

The main result of this section is summarised by the following theorem.

Theorem 1. A maximal edge packing can be found in (∆+ 1)2 communication
rounds, using 2-bit messages.

With Lemma 1, the following corollary is immediate.

Corollary 1. A 2-approximation of a minimum vertex cover can be found in
(∆+ 1)2 communication rounds, using 2-bit messages.

4 Weighted Edge Packing

A natural question is whether the results from the previous section can be gener-
alised to the case when each node v ∈ V has a non-negative weight wv. The defini-
tions from Sect. 2 have straightforward generalisations: A minimum vertex cover
C ⊆ V minimises

∑
v∈C wv, and a minimum fractional vertex cover x : V → [0, 1]

minimises
∑
v wvx(v). An edge packing is a function y : E → [0,+∞) that sat-

isfies s(y, v) ≤ wv for each v ∈ V , and v ∈ V is a saturated node if s(y, v) = wv.
Lemma 1 holds for the weighted graphs verbatim: if y is a maximal edge

packing in a weighted graph, then the set of saturated nodes is a 2-approximation
of a minimum vertex cover. Therefore the key question is whether there is a
weighted counterpart of Theorem 1.

At first sight, there seems to be some hope. In particular, it is possible to find
a maximal edge packing in a weighted 2-coloured graph in 2∆ rounds. However,
the trick of using the bipartite double cover can no longer be applied. Indeed, we
prove the following impossibility result. It shows that in the weighted case, the
running time of any distributed algorithm necessarily depends on the number
of nodes (or the range of the weights) and not only on the maximum degree.

Theorem 2. There is no local algorithm that finds a maximal edge packing in
weighted cycles.

Theorem 2 holds even in Linial’s [7] model: we can assume unique node iden-
tifiers, and we can allow unbounded local computation and arbitrarily large
messages.

Our proof uses ideas that are similar to Czygrinow et al.’s [15] proof of
the inapproximability of the maximum independent set problem. Let A be a
local algorithm that finds a feasible edge packing y in any weighted cycle: for
each edge e = {u, v}, both u and v know the value y(e) when the algorithm A
terminates. Let T be the number of synchronous communication rounds that A
takes; w.l.o.g., we assume that T is even.

Let n� T be a constant that we fix later; n only depends on the constant T .
Let N = {1, 2, . . . , n}. For any H ⊆ N , we define the n-cycle CH = (N,EH) as
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Fig. 4. Construction of CR and CS . In this illustration, T = 4. The figure also illustrates
the radius-T neighbourhood X of a node v ∈ S ∩ B (see the proof of Lemma 4). The
output of the node v in CS is identical to the output of the node v in CX .

follows. Let k = |H|. Let H = {h1, h2, . . . , hk} and let N \H = {j1, j2, . . . , jn−k}
with h1 < h2 < . . . < hk and ji < j2 < . . . < jn−k. Then the edges of the cy-
cle CH are EH =

{
{h1, h2}, {h2, h3}, . . . , {hk, j1}, {j1, j2}, . . . , {jn−k, h1}

}
. The

following figure illustrates CH in the case n = 100 and H = {2, 7, 10}.
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Finally, we assign the unique identifiers and node weights as follows: for each
node v ∈ N , the unique identifier of v is v, and the weight of v is also v.

Let us now define a function f that assigns a label 0 or 1 to each subsetX ⊂ N
with |X| = 2T + 1. Let X = {x1, x2, . . . , x2T+1} with x1 < x2 < . . . < x2T+1.
Consider the execution of A in the cycle CX . If the node xT+1 is saturated in
the edge packing y produced by A, we set f(X) = 1, otherwise we set f(X) = 0.

By Ramsey’s theorem [25], we can choose the value of n so that the following
holds, no matter how we choose the values f(X): there exists a label ` ∈ {0, 1}
and a subset A ⊆ N with |A| = 4T + 4 such that f(X) = ` whenever X ⊂ A
and |X| = 2T + 1.

Now let A = {a1, a2, . . . , a4T+4} with a1 < a2 < . . . < a4T+4. Let R =
A \ {a2T+3} and S = A \ {a2T+2}; see Fig. 4. Theorem 2 follows from the
following lemma.

Lemma 4. Algorithm A cannot produce a maximal edge packing in both CR
and CS.

Proof. To reach a contradiction, assume thatA produces a maximal edge packing
in both CR and CS . Define B = {aT+1, aT+2, . . . , a3T+4}. Let K ∈ {R,S}, and
let yK be the edge packing computed by A in CK .

We first show that each node v ∈ K∩B is saturated in by yK . To see this, let
X consist of the nodes that are within distance T from v in CK . By construction,
X ⊆ A. We make the following observations. The algorithm A terminates after



T communication rounds, and in T rounds, information propagates only for T
hops in the cycle CK . Therefore the output of A at the node v only depends
on the identifiers and the weights in the subgraph induced by X. The subgraph
induced by X is identical in CK and CX . Therefore the node v produces the same
output in CK and CX . In particular, v is saturated in CK if and only if f(X) = 1.
By the choice of A, all nodes in K ∩ B are either saturated or non-saturated.
Since we assumed that A produces a maximal edge packing in CK , they must
all be saturated (that is, ` = 1).

Therefore the subset K ∩ B in CK forms a chain of saturated nodes with
strictly increasing weights. Let xK = a2T+2 if K = R and xK = a2T+3 if K = S.
With this notation, we have

yK({a3T+3, a3T+4}) = a3T+3 − yK({a3T+2, a3T+3})
= a3T+3 − a3T+2 + yK({a3T+1, a3T+2}) = . . .

= a3T+3 − a3T+2 + . . .

. . .+ a2T+5 − a2T+4 + xK − a2T+1 + . . .

. . .+ aT+2 − yK({aT+1, aT+2}).

(3)

Since the radius-T neighbourhoods of aT+1 and a3T+4 are identical in CR and
CS , we have

yR({aT+1, aT+2}) = yS({aT+1, aT+2}),
yR({a3T+3, a3T+4}) = yS({a3T+3, a3T+4}).

This is a contradiction with (3) and xR 6= xS . ut

Theorems 1 and 2 are one of the few pairs of results where the existence of
weights makes a significant difference from the perspective of local algorithms.
This is unlike problems such as max-min LPs [26], in which the existence of
weights is provably irrelevant as far as local approximability is concerned.

5 Weighted Vertex Cover

Theorem 2 shows that we cannot directly apply the weighted version of Lemma 1
to design a local 2-approximation algorithm for the minimum-weight vertex cover
problem in bounded-degree graphs. This setback suggests the possibility that
there is no local 2-approximation algorithm for the problem. However, we show
that the opposite is the case if ∆ ≤ 3.

Theorem 3. There is a local algorithm that finds a factor 2 approximation of
a minimum-weight vertex cover in graphs with maximum degree 3.

Let G = (V,E) be a node-weighted graph with maximum degree 3, see Fig. 5a.
Let wv ≥ 0 denote the weight of the node v ∈ V ; we call wv the w-weight of v. We
will now present an algorithm for finding a 2-approximation for weighted vertex
cover in G. The algorithm works in three stages. We will construct three sets,
CI, CII, and CIII, the union of which is the vertex cover C that our algorithm
outputs.



Stage I. Let EI = {{u, v} ∈ E : wu = wv} be the edges whose endpoints
have the same w-weight, see Fig. 5b. Use the algorithm from Sect. 3 to find a
maximal edge packing yI in G[EI]. Pick the nodes saturated by yI into the set
CI; see Fig. 5c.

Stage II. Let EII ⊆ E be the edges not saturated by yI. Since the endpoints
of every edge in EII have different w-weights, the edges in EII can be oriented
according to the w-weight; see Fig. 5d. Add a dummy degree-1 neighbour to
every node with even degree in G[EII], as illustrated in Fig. 5e. The new graph is
oriented and every node has an odd degree, so we can run the Naor–Stockmeyer
algorithm [8, 27] to find a weak 2-colouring of the nodes of the new graph; see
black and white nodes in Fig. 5f. Now forget about the dummy nodes and only
consider the original nodes of G[EII]; each node with an odd degree has a neigh-
bour of a different colour.

Consider the edges E′II ⊆ EII whose endpoints have different colours (heavy
lines in Fig. 5f); the subgraph G[E′II] is 2-coloured. The proposal–acceptance
procedure for finding a maximal matching in 2-coloured graphs [24] can be mod-
ified to find a maximal edge packing: every proposing node proposes its residual
weight along an edge, and every accepting node accepts its residual weight; at
every proposal–acceptance round each node either saturates at least one adja-
cent edge or learns that at least one adjacent edge is saturated, so the algorithm
completes in 2∆ rounds. Using this procedure, we can find a maximal edge pack-
ing yII in G[E′II] while giving each node v the weight rv = wv − s(yI, v). Pick the
nodes saturated (w.r.t. r-weights) by yII into the set CII; see Fig. 5g. In other
words, CI ∪ CII consists of the nodes saturated (w.r.t. w-weights) by yI + yII.

Stage III. Let EIII ⊆ E be the edges not saturated by yI + yII; see Fig. 5h.
For each degree-3 node of G, the edge packing yI + yII saturates at least one
adjacent edge. Thus, G[EIII] has maximum degree at most 2, i.e., it consists of
disjoint paths and cycles. Note that by Theorem 2 we cannot find a maximal
edge packing in G[EIII]. Instead, we will find a vertex cover in G[EIII] directly. To
prove that our vertex cover is not too heavy, we exhibit a maximal edge packing
with a comparable weight.

Define two new weights for the nodes of G[EIII]. The c-weight of v ∈ V is
cv = wv − s(yI + yII, v). The cw-weight of v is a pair (cv, wv); see Fig. 5h. Since
adjacent nodes always have different w-weights, the endpoints of each edge can
be ordered lexicographically according to the cw-weight. Hence we can partition
the nodes of G[EIII] in the five sets illustrated below.

T

increasing cw-weight
F

I
S

B

The set B (“bottom”) consists of degree-2 nodes that are a local minimum
w.r.t. cw-weights, T (“top”) consists of degree-2 nodes that are a local maximum
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Fig. 5. Overview of the algorithm from the proof of Theorem 3.



w.r.t. cw-weights, I (“internal”) consists of the other degree-2 nodes, S (“start”)
consists of degree-1 nodes that are a local minimum w.r.t. cw-weights, and F
(“finish”) consists of degree-1 nodes that are a local maximum w.r.t. cw-weights.
We use the terminology such as T -nodes to refer to the nodes in the set T , and
TI-edges to refer to the edges that join a T -node and an I-node, etc.

Now let v ∈ T . If both edges incident to v are TB-edges, we say that v is a
BTB-node. Otherwise v is incident to at least one TI-edge or TS-edge; the node
v chooses (arbitrarily, using the port numbers to break the symmetry) one such
edge and nominates it as a hinge edge. The following figure shows a BTB -node
(black) and hinge edges (heavy lines); note that each node is incident to at most
one hinge edge.

T T T T T T

B I I S S SB B SI B I

Finally, we partition the endpoints of the hinge edges into two sets. Let
{u, v} ∈ EIII be a hinge edge and let u be the node with the smaller w-weight;
then we say that u is a cheap hinge node and v is a costly hinge node.

We are now ready to construct the set CIII. It consists of all nodes of G[EIII],
except the following: (i) F -nodes, (ii) BTB -nodes, and (iii) costly hinge nodes.
In the example of Fig. 5i we have chosen one hinge edge. The resulting set CIII

is illustrated in Fig. 5j.
This completes the construction of our vertex cover. Fig. 5k illustrates the

solution C = CI ∪ CII ∪ CIII.

Correctness. By construction, all edges in E \ EIII are covered by CI ∪ CII.
Now consider an edge e ∈ EIII; we show that e is covered by CIII.

Clearly, BTB -nodes cannot be adjacent to other BTB -nodes, F -nodes, or
hinge nodes. Hence if one of the endpoints of e is a BTB -node, the other endpoint
must be in CIII. It remains to be shown that both endpoints of e = {u, v} cannot
be F -nodes or costly hinge nodes. The key observation is that there are no paths
of the form (F, F ), (F, T ), (F, I, T ), or (F, S, T ). Hence F -nodes are not adjacent
to other F -nodes or any kind of hinge nodes. Furthermore, there are no paths of
the form (T, T ), (T, I, T ), (T, S, T ), (T, I, I, T ), (T, S, I, T ), or (T, S, S, T ). Hence
if both u and v are hinge nodes, then e is a hinge edge and one of the nodes u, v
is a cheap hinge node in CIII.

Approximation Ratio. We now exhibit a maximal edge packing y of G. The
set S(y) of nodes saturated by y is then a 2-approximation of a minimum vertex
cover. To complete the proof of Theorem 3, it is enough to show that the total
w-weight of the vertex cover C constructed by our algorithm is not larger than
the total w-weight of S(y).

More specifically, we construct an edge packing yIII of G[EIII] which is max-
imal w.r.t. c-weights. Then y = yI + yII + yIII is a maximal edge packing of G



w.r.t. w-weights. We have v ∈ CI ∪ CII if and only if v is saturated by yI + yII;
hence it is sufficient to show that the set of nodes saturated (w.r.t. c-weights)
by yIII in G[EIII] is at least as heavy (w.r.t. w-weights) as CIII.

We construct yIII by “propagating” c-weights from S-nodes and B-nodes
up towards T -nodes and F -nodes. First we process all non-hinge nodes v, from
bottom to top in the order of increasing cw-weights:

– If v ∈ S, the incident edge gets the weight cv.
– If v ∈ B, both incident edges get the weight cv/2.
– If v ∈ I and we have already assigned the weight to one incident edge, we

choose the weight of the other edge so that v is saturated.

Eventually, we have chosen a weight yIII(e) for each non-hinge edge e ∈ EIII. We
do not exceed the capacity cv of any non-hinge node v: if v ∈ S ∪B ∪ I ∪F , this
follows from the fact that we proceed in the order of non-decreasing c; if v ∈ T ,
then v must be a BTB -node and both incident edges get weights at most cv/2.
Furthermore, the weights yIII saturate all non-hinge nodes in S ∪ B ∪ I (and
possibly some F -nodes and BTB -nodes). Hence the total weight of non-hinge
nodes in CIII is at most the total weight of non-hinge nodes saturated by yIII.

Finally, we augment yIII so that it saturates all hinge edges as well; now yIII
is maximal w.r.t. c-weights. Consider a hinge edge {u, v} with wu < wv. The
edge packing yIII saturates u or v or both, while the set CIII constructed by our
algorithm contains only u and not v. Hence the total weight of hinge nodes in
CIII is at most the total weight of hinge nodes saturated by yIII. This completes
the proof of Theorem 3.
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