
Solving Woeginger’s Hiking Problem
(Wonderful Partitions in Anonymous Hedonic Games)

Andrei Constantinescu, Pascal Lenzner, Rebecca
Reiffenhäuser, Daniel Schmand, Giovanna Varricchio

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt.

, scheduling, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling

, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs

,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity

, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory

, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory, ...

400+ papers

: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003)

,
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

Gerhard Woeginger
(1964—2022)

Theoretical Computer Scientist

Comb. opt., scheduling, graphs,
complexity, game theory, ...

400+ papers: ESA (18), TCS (16),
Algorithmica (13), SODA (10),
ICALP (8), STACS (6), TALG (3),
FOCS (2), STOC (2) ...

Program chair: ICALP (2003),
ESA (1997)

Liked Puzzles!

A Puzzle

Desired group sizes:

[1,2]
[2,4]

[2,3]
[3,4]

1 3

Partition hikers into subgroups such that everyone is satisfied with
their group size. Puzzle: Polynomial time?

A Puzzle

Desired group sizes:

[1,2]
[2,4]

[2,3]
[3,4]

1 3

Partition hikers into subgroups such that everyone is satisfied with
their group size. Puzzle: Polynomial time?

A Puzzle

Desired group sizes:

[1,2]
[2,4]

[2,3]
[3,4]

1 3

Partition hikers into subgroups such that everyone is satisfied with
their group size.

Puzzle: Polynomial time?

A Puzzle

Desired group sizes:

[1,2]
[2,4]

[2,3]
[3,4]

1 3

Partition hikers into subgroups such that everyone is satisfied with
their group size.

Puzzle: Polynomial time?

A Puzzle

Desired group sizes:

[1,2]
[2,4]

[2,3]
[3,4]

1 3

Partition hikers into subgroups such that everyone is satisfied with
their group size. Puzzle: Polynomial time?

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})

Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization

Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})
Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization

Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].

Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})
Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization

Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].

(i.e., Ai = {ℓi , . . . , ri})
Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization

Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].

(i.e., Ai = {ℓi , . . . , ri})
Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization

Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].

(i.e., Ai = {ℓi , . . . , ri})
Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.

Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].

(i.e., Ai = {ℓi , . . . , ri})
Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})

Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})

Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})

Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})

Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})

Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})

Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})
Complexity :

open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})
Complexity : open [Woeginger’13]

⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri].
(i.e., Ai = {ℓi , . . . , ri})
Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization
Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].

Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 31 6

Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 31 6

Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 31 6

Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 31 6

Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 3

1 6

Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 3

1 6

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known

— find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known

— find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)

But without advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, guess (in all
possible ways) the red count and use earliest-due-date;

2. = recursion with states (i ,A), where 1 ≤ i ≤ n and A is the
set of currently “active” intervals;

3. + memoization/dynamic programming (DP);

Problem: exponentially many states!

But without advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, guess (in all
possible ways) the red count and use earliest-due-date;

2. = recursion with states (i ,A), where 1 ≤ i ≤ n and A is the
set of currently “active” intervals;

3. + memoization/dynamic programming (DP);

Problem: exponentially many states!

But without advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm;

at each stage, guess (in all
possible ways) the red count and use earliest-due-date;

2. = recursion with states (i ,A), where 1 ≤ i ≤ n and A is the
set of currently “active” intervals;

3. + memoization/dynamic programming (DP);

Problem: exponentially many states!

But without advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, guess (in all
possible ways) the red count

and use earliest-due-date;

2. = recursion with states (i ,A), where 1 ≤ i ≤ n and A is the
set of currently “active” intervals;

3. + memoization/dynamic programming (DP);

Problem: exponentially many states!

But without advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, guess (in all
possible ways) the red count and use earliest-due-date;

2. = recursion with states (i ,A), where 1 ≤ i ≤ n and A is the
set of currently “active” intervals;

3. + memoization/dynamic programming (DP);

Problem: exponentially many states!

But without advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, guess (in all
possible ways) the red count and use earliest-due-date;

2. = recursion with states (i ,A), where 1 ≤ i ≤ n and A is the
set of currently “active” intervals;

3. + memoization/dynamic programming (DP);

Problem: exponentially many states!

But without advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, guess (in all
possible ways) the red count and use earliest-due-date;

2. = recursion with states (i ,A), where 1 ≤ i ≤ n and A is the
set of currently “active” intervals;

3. + memoization/dynamic programming (DP);

Problem: exponentially many states!

But without advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, guess (in all
possible ways) the red count and use earliest-due-date;

2. = recursion with states (i ,A), where 1 ≤ i ≤ n and A is the
set of currently “active” intervals;

3. + memoization/dynamic programming (DP);

Problem: exponentially many states!

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?

x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?

x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.

Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively. (don’t
forget !)

Solve for ∈ [4, 6]
recursively.

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)

▶ Consider only intervals j s.t.: (active set)
▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2]

and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement:

w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active.

Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point,

recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5)

(open: better?)

The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.

▶ Same DP, but make it return the minimum number of deleted
agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no.

Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.

▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP.

Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.

▶ Binary search for the number of unsatisfied agents k. Need to
find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k.

Need to
find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k

such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies.

This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);

▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;

▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results:

Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time.

And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

A Different Problem

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).

Open Problems

▶ Approximation algorithms/FPT for the NP-hard cases.

▶ Strategic aspects for the optimization variants.

Gerhard Woeginger (1964—2022) RIP

Open Problems

▶ Approximation algorithms/FPT for the NP-hard cases.

▶ Strategic aspects for the optimization variants.

Gerhard Woeginger (1964—2022) RIP

Open Problems

▶ Approximation algorithms/FPT for the NP-hard cases.

▶ Strategic aspects for the optimization variants.

Gerhard Woeginger (1964—2022) RIP

