
Randomized 3D Geographic Routing
Roland Flury

Computer Engineering and Networks Laboratory
ETH Zurich, Switzerland

rflury@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland
wattenhofer@tik.ee.ethz.ch

Abstract—We reconsider the problem of geographic routing in
wireless ad hoc networks. We are interested in local, memoryless
routing algorithms, i.e. each network node bases its routing
decision solely on its local view of the network, nodes do not
store any message state, and the message itself can only carry
information about O(1) nodes. In geographic routing schemes,
each network node is assumed to know the coordinates of itself
and all adjacent nodes, and each message carries the coordinates
of its target. Whereas many of the aspects of geographic routing
have already been solved for 2D networks, little is known about
higher-dimensional networks. It has been shown only recently
that there is in fact no local memoryless routing algorithm for
3D networks that delivers messages deterministically.

In this paper, we show that a cubic routing stretch constitutes
a lower bound for any local memoryless routing algorithm,
and propose and analyze several randomized geographic routing
algorithms which work well for 3D network topologies. For unit
ball graphs, we present a technique to locally capture the surface
of holes in the network, which leads to 3D routing algorithms
similar to the greedy-face-greedy approach for 2D networks.

I. INTRODUCTION
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Sensor networks and wireless mesh networks in general
have received a lot of attention lately, last but not least because
of their countless applications. In this paper, we consider one
of the most fundamental building blocks of such networks: the
exchange of information between network nodes. In general,
the action of sending a message from a sender node to a
target node is driven by a routing algorithm which guides
the message through the network. Being such an integral
part of any network, there already exists a large diversity of
routing algorithms, including the IP routing of today’s Internet,
communication protocols that connect robots exploring our
solar system, and algorithms that ensure message delivery
in ad hoc networks. The different needs and characteristics
of the various networks impose nearly countless challenges,
requiring appropriate routing techniques. This work examines
routing algorithms for large ad hoc networks (such as sensor
and mobile ad hoc networks). In particular, we are interested
in routing algorithms for three-dimensional networks.

In contrast to the IP based Internet routing, which is based
on large forwarding tables, a routing algorithm for an ad hoc
network faces not only the problem of an unstable network,
but also rather limited network participants. The instability of
the network may be caused due to mobility of the network
nodes, or just by fluctuations of the wireless communication
medium, which is far more vulnerable than a wired network.
The limitations on the network nodes are various, including

hardware constraints such as small memory and low process-
ing power, as well as the limited power supply if the device
runs on battery.

Exploiting the geometry of the network to perform routing
is a prominent approach to overcome the challenges posed by
such limited ad hoc networks. Geographic routing protocols
forward the packet to a neighbor geographically closer to
the target, until the message reaches its destination. Thus, a
requirement for geographic routing is that each node knows
its own, as well as its neighbors’ Euclidean coordinates. A
node can learn its position through hardware support such
as GPS. Alternatively, the position can be obtained through
localization algorithms, of which a variety has been proposed
in recent years, e.g. [9], [20], [26]. Furthermore, the position
of the target node needs to be known, as each routing step
is based on this information. Because learning the position
of the target node may come at a certain cost, the sender
node includes this information in the message for reuse in
further routing decisions. The request for the position of a
given network node is handled by a location service, which
has been broadly studied for static ad hoc networks [1], [11],
and mobile networks [17], [19].

We define a geographic routing algorithm to base its deci-
sion solely on the position of the current node, the neighbors,
and the destination, and we require the network nodes to be
memoryless, i.e. not store any state for messages they see. This
not only binds the routing state uniquely to the messages, but
also removes an additional storage overhead from the nodes,
which could limit the number of messages forwarded by a
node if its memory is too small. As a matter of fact, the size
of the memory is not the largest challenge. The problem of
storing message state is that this data arrives dynamically, and
it is hard to predict how much of this data needs to be stored at
any given time. Dynamic memory allocation would solve the
problem, but introduces an overhead that many devices cannot
afford. For instance TinyOS, an operating system running
on many types of sensor nodes, does not provide dynamic
memory allocation. Consequently, the number of messages for
which a node may store the state needs to be determined at
compile time, jeopardizing routing success if more messages
than anticipated need to be handled.

Another important property of geographic routing algo-
rithms is that their decisions are only based on local informa-
tion, which can easily be refreshed upon changes in the net-
work. This stands in sharp contrast to routing algorithms that
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rely in some way on a global view of the network. Whereas
these global routing schemes provide excellent routing paths,
the construction of their routing information is rather expen-
sive, and any change of the network may require a complete,
network wide reconfiguration of the routing information. As
a result, these routing algorithms are an excellent choice for
static networks, but not for (wireless) ad hoc networks, where
a continuous change of the network topology is unavoidable.

A key concept of geographic routing is greedy forwarding,
where each node along a routing path forwards the message
to the neighbor that is geographically closest to the target.
This constitutes a very simple, yet efficient way of routing
messages. Greedy routing, however, is not always successful
in delivering the packet. When a packet reaches a node, whose
neighbors are all further away from the target than the node
itself, greedy forwarding fails, and we say that the message has
reached a local minimum. Such local minima are especially
common in sparse networks and in networks with holes, i.e.
regions in the network where no network nodes are placed, and
around which a message needs to be led. For 2-dimensional
networks, face routing and several variants thereof are the most
prominent solutions to escape local minima. In the greedy-
face-greedy approach [8], [12], a message routes greedily until
it gets stuck in a local minimum. It then routes along the face
of the network hole until it finds a node closer to the target than
the local minimum, from where it continues greedily. A worst
case optimal, but still average case efficient routing algorithm
was obtained by constraining the range of the face routing
in [23], [24], and techniques to proactively avoid routing voids
are presented in [15]. In all of these protocols, the detection
of the face requires a planarized network graph, e.g. a Gabriel
Graph, which can be constructed locally in 2D.

We are interested in the question of whether we can
adapt this geographic routing approach to networks in 3D.
Clearly, we can still greedily forward messages towards their
destination, which is likely to work for dense networks. But
the recovery from local minima becomes more challenging,
as the faces surrounding the network hole now expand in
two dimensions, and are much harder to capture. We show in
Section VI-A that it is indeed possible to describe the surface
of network holes, using only local information. Our approach
is quite different from 2D, as there is no equivalent to the
planarization of a graph in 3D. Furthermore, we used the
right/left hand rule in 2D to route along the 1-dimensional
face, but there is no simple analogon in 3D to visit all
nodes delimiting the surface of a hole. In fact, Durocher et
al. have proven that there is no deterministic local routing
algorithm for 3D networks that guarantees the delivery of
messages [14]. As an immediate consequence, there is neither
a local memoryless algorithm to traverse all nodes on a given
surface in a deterministic manner.

The proof in [14] consists of two parts. First, the authors
show that the existence of a k-local1 geographic routing algo-

1A k-local routing algorithm can base its routing decision on a k-
neighborhood of the current node.

rithm for UBG implies the existence of a 1-local geographic
routing algorithm for any connected graph. In the second part,
they show that any deterministic 1-local routing algorithm can
be defeated. In fact, even very simple graph structures do not
allow for deterministic routing algorithms.

In this paper, we present the first memoryless and local
geographic routing protocols for three-dimensional networks
and compare them to other routing techniques. Unlike the de-
terministic greedy-face-greedy solutions in 2D, our approach
applies a randomized recovery to lead messages out of local
minima.

A. Related Work

Routing algorithms for ad hoc networks can be roughly
classified as proactive or reactive. Reactive routing schemes
determine the route only on demand using flooding [28] to
find a path to the destination. Whereas this approach does
not generate a static overhead due to changes in the network
topology, it introduces an excessive cost for route discoveries.

In proactive routing schemes, on the other hand, routes are
determined ahead of time and stored in routing tables on the
nodes. They are efficient only if the network is stable for a
long time, as topology changes may require a network-wide
reconfiguration. The probably most prominent members in this
class constitute the compact routing schemes, which guarantee
routes of nearly optimal length with moderate sized routing
tables of polylogarithmic size in the number of network
nodes [2], [31]. Compact routing schemes nearly always go
along with a node labeling, i.e. each node is assigned a
label. Just as with our geographic routing scheme, where the
sender needs to determine the position of the destination node,
compact routing requires the sender to learn the label of the
target node, which is an integral part of the routing algorithm.
In fact, any routing algorithm that does not label the nodes
and desires a routing stretch below 3 needs routing tables of
Ω(n) bits per node [18].

Whereas compact routing schemes try to minimize the size
of routing tables, geographic routing does not need them at all,
as messages are forwarded based only on local position infor-
mation. Kleinberg showed in [21] that it is possible to assign
to each network node a virtual coordinate in the hyperbolic
plane (the label), and perform greedy routing with respect
to these virtual coordinates, not needing any routing tables
at all. However, the construction of the virtual coordinates is
based on a (non-local) spanning tree, introducing a worst case
stretch of Ω(n). In addition, the virtual coordinates need to
be reevaluated upon any change in the network, which makes
the scheme impractical.

The non-existence of local, memoryless routing algorithms
that deliver messages deterministically [14] has many direct
and indirect consequences. Whereas it is possible to deter-
ministically traverse a planar subdivision and report all nodes
and faces [7], there is no corresponding algorithm in 3D.
However, it has been shown in [13] that for any undirected
graph, it is possible to assign each node a local ordering of its
edges such that a routing algorithm can visit all nodes in O(n)
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time (deterministically!) by leaving a node through the edge
succeeding the edge through which it entered. Unfortunately,
the construction of the local edge-orderings requires a global
view of the graph and has construction time cubic in the
number of nodes.

B. Random Walks

The greedy geographic routing we would like to apply to our
3D graphs is actually close to optimal - as long as the message
does not fall into a local minimum. But because there is no
deterministic local memoryless routing algorithm [14], there
is also no deterministic recovery algorithm that could lead our
messages out of local minima. In this section, we take a short
excursion to random walks, which we propose to use to escape
from such local minima.

Whereas a message moving around randomly in our network
may seem very inefficient and too simplistic, there is quite
some work in this area indicating that random walks need not
be as bad as it looks at a first glance. The two prominent
models to capture a random walk on a graph G = (V,E) are
(1) the Markov chain, and (2) the flow in an electrical network
obtained from G by replacing every edge by a resistance of
1Ω. See [25] for a survey of the topic. In the following, we
use n := |V | and m := |E|.

For our purpose, the hitting time Huv , and the cover time
CG turn out to be most interesting. Huv is the expected
time until the random walk first visits vertex v when starting
its walk at u, and CG is the expected time needed to visit
all nodes of G at least once. For arbitrary graphs, we have
CG = O(n ·m) = O

(
n3

)
[5], which poses also an upper

bound on Huv . The complete graph has optimal cover time
Θ(n log n), and the worst cover time of Θ

(
n3

)
is obtained

from the lollipop graph [16]. The 2D mesh has a non-optimal
cover-time O

(
n log2 n

)
, whereas the 3D mesh has optimal

cover-time O(n log n) [10]. Using the electrical resistance
approach, the cover time of an arbitrary graph can be bounded
to CG ≤ 2mRspan [10], where Rspan is the minimum
resistance of a spanning tree in G. Since Rspan ≤ n − 1
for any graph, we obtain that CG ≤ 2m(n − 1). The hitting
time Huv seems to be intrinsically difficult to capture, but
the somewhat related commute time κuv , the expected time
to travel from u to v and back again, can be expressed by
Huv < κuv = 2mRuv , where Ruv is the effective resistance
between u and v [10].

A random geometric graph is obtained by placing n nodes
uniformly at random in the unit square and connect two points
if their distance is at most r. The minimal value of r such
as to obtain a connected graph is subject of the percolation
theory. It has been shown that if r ≥ rcon = Θ

(√
log n/n

)
,

the graph is connected w.h.p. [27]. Random geometric graphs
with r ≥

√
8rcon have optimal cover time of O(n log n) [3].

Whereas this model seems appealing for wireless networks at
the first moment, we need to keep in mind that the analysis
only holds for n → ∞. Furthermore, a connected random
geometric graph requires so many network nodes that the
graph tends to have no routing voids at all, causing no local

minima to the greedy routing algorithm. In addition, wireless
networks are obviously not random geometric graphs: There
tend to be many holes in the network, where no nodes are
deployed, which is ignored completely in this model.

II. NOTATION AND MODEL

This section summarizes the notation used throughout the
paper, and in the following section, we show a lower bound on
the routing stretch of any local routing algorithm in 3D. The
stretch of a routing algorithm A compares the length of routes
found by A to the corresponding optimal routes. It is defined
to be the maximal factor by which A’s routes are longer than
the corresponding optimal routes.

Whereas the lower bound of Section III applies for arbitrary
graphs, we restrict our attention to unit ball graphs in Sec-
tion V. Unit ball graphs (short UBG) are the 3D equivalent to
the unit disk graphs in 2D, and constitute a basic model for
wireless networks by assuming that any two network nodes are
connected if their distance is below a certain threshold rmax,
the maximal transmission radius2. W.l.o.g. we will assume that
rmax = 1 unit. As usual, we describe the network as a graph
G = (V,E), where V is the set of network nodes, and E the
set of connections between nodes. The number of nodes is
denoted by n := |V |, and the number of edges by m := |E|.
Furthermore, we use the notation Br(v) to denote the ball of
radius r around a given node v, and the set of neighbors of
node v is abbreviated by N (v).

In Section VI, we present and discuss the first geographic
routing algorithms for 3D. Geographic routing algorithms are
memoryless in the sense that nodes store no message state,
and they base their routing decision only on local knowledge.
In previous work, geographic routing has been given various
names, such as O(1)-memory routing algorithm in [6], local
routing algorithm in [22], or geometric ad hoc routing in [24].

III. LOWER BOUND

We start by deriving a lower bound for the performance
of geographic routing algorithms in three dimensions. The
following theorem states that any randomized geographic
routing algorithm has at least a cubic stretch. (This lower
bound would also hold for deterministic algorithms, which
we know to not exist at all.)

Theorem 3.1: Let d be the length of the optimal path
between a given source and destination in a 3-dimensional
network. There are networks for which the route found by any
randomized geographic routing algorithm has expected length
Ω

(
d3

)
.

Proof: The proof idea is similar to the lower bound for
2-dimensions presented in [24]. We consider the following
family of networks: For a positive integer r, construct a 3-
dimensional graph as shown in Figure 1: First place nodes
on the surface of a sphere with radius r such that the mutual
distance between any two nodes is at least 2. Obtain a first set

2We are aware that a UBG is a very simplistic model for wireless networks,
where the transmission range is far from circular. Our main routing techniques
presented in this paper, however, are valid for real wireless networks.



4

of surface-nodes from S1 := {(r · sin(2i · arcsin(1/r)), 0, r ·
cos(2i · arcsin(1/r))) | i ∈ [0, b0.5π/ arcsin(1/r)c]}. In
Figure 1, these nodes are drawn as solid squares on the left
boundary of the sphere. The remaining surface points, also
drawn as solid squares, are obtained from this initial set: For
each (x, y, z) ∈ S1, add {(x · sin(2i · arcsin(1/x)), x · cos(2i ·
arcsin(1/x)), z) | i ∈ [1, bπ/ arcsin(1/x)c]} to an initially
empty set S2. As a second step, add intermediate nodes on
the surface (drawn as small diamonds) that connect nearby
surface nodes. (The math is nearly the same as for the surface
nodes and is omitted.) Furthermore, append to each surface-
node a line of b(r−1)/2c nodes. The distance between nodes
on the line is 1, and the line is directed towards the center of
the sphere. These line-nodes are represented with round (red
colored) dots in Figure 1. Finally, select an arbitrary surface
node w, and append to its line further nodes until the center
of the sphere, node t, is reached.

Note that there is no edge between nodes on different lines,
as the lines are mounted on surface-points at least 2 units apart,
and the length of the lines is less than r/2. Furthermore, the
number of points per line is Θ(r). To determine the number
of surface nodes, we use (a) α/2 < arcsin(α) < 2α, and (b)
sin(α) > α/2 for α ∈ [0, 1]. For a surface-node in S1 with a
given x-coordinate, the number of surface-nodes added to S2

is bπ/ arcsin(1/x)c > x for x ≥ 1.4, using (a). Thus, we can
bound |S2| by summing up the values of the x-coordinates of
the nodes in S1 using (a) and (b):

|S2| ≥ 2 ·

1
2b π

2 arcsin(1/r)c∑
i=1

r · sin(2i ·arcsin
1
r
) ≥

r/2∑
i=1

i = Θ
(
r2

)
.

The total number of nodes in the graph is (|S1|+|S2|)·Θ(r) =
Θ

(
r3

)
.

We now route from an arbitrary node s on the surface
to node t in the center of the sphere. An optimal routing
algorithm routes along the surface until it hits w and then
follows the line until it reaches t. The path on the surface
consists of at most 2.5 surroundings of the sphere, requiring
O(r) hops. The line contains at most r nodes to traverse, which
results in a total cost of O(r) hops for the optimal algorithm.

A geographic routing algorithm, on the other hand, needs to
find the surface-node w on whose line-end the destination node
t is located. Since only local routing information is available,
this can only be achieved by exploring the lines by descending
from the surface-nodes until t is found. For any randomized
routing algorithms, the adversary can attach the line leading to
t to a random surface-node, requiring the algorithm to explore
Ω

(
r2

)
lines until it finds t, which requires Ω

(
r3

)
hops, which

shows that the expected routing stretch is at least cubic.

IV. TOWARDS 3D ROUTING ALGORITHMS

For our geographic routing algorithm, we use a greedy-
random-greedy approach, short GRG, where the message is
forwarded greedily until a local minimum is encountered.
To resolve local minima, a randomized recovery algorithm
kicks in. Unlike the deterministic face-routing in 2D, there

w

t

Fig. 1. Lower bound graph for geographic routing algorithms. Nodes
represented by solid squares lie on the surface of a sphere with mutual distance
at least 2. Nodes printed as diamonds lie also on the surface and connect these
points. The round (red colored) nodes lie on lines leading from the surface-
nodes towards the center. A single dedicated surface-node w has an extended
line leading to node t in the center of the sphere.

is no deterministic recovery algorithm for 3D networks [14].
Therefore, our recovery technique is bound to be randomized.

Of course, the recovery part also needs to be memoryless
and local, which immediately rules out flooding techniques3

which could quickly find a node closer to the destination than
the local minimum. We propose to use random walks (short
RW), which constitute a very simple, yet surprisingly efficient
recovery technique. We apply the following four techniques
to ensure the performance of random walks:
(1) Region Limited Random Walks: When applying a RW to
escape a local minimum at node u, the message is likely to
explore large parts of the entire network until hitting a node v
which is closer to the target than u, requiring O(n ·m) hops.
In most cases, however, such an extensive exploration is not
needed: Let v be the node closet to u such that v is closer to
the target than u, and let k be the length of the shortest path
connecting u and v. Then, exploring Bk(u) with a RW would
have been sufficient in order to find v. As the value of k is not
known, the recovery algorithm performs an exponential search
by limiting the RW in sequence to B2i(u) with i ∈ {2, 3, . . . }
until a node closer to the target is found. For each ball of
radius r, the recovery algorithm performs O

(
r6

)
RW hops,

which corresponds to the cover time for the sparse subgraph
contained in the ball, bounding the recovery cost to O

(
k6

)
hops (see Theorem 6.1).
(2) RW on the surface: Similar to the face routing in 2D
graphs, we can further restrict the RW to nodes delimiting
the hole which causes the local minimum and which needs
to be surrounded. Section VI-A describes how the nodes can
locally determine the surface in a UBG, using the dual graph
of Section V.

3Needless to say that we could implement a memoryless flooding algorithm
where each node rebroadcasts a message whenever its TTL permits to do so,
allowing multiple transmissions from the same node. However, such a scheme
comes with an impractical overhead growing exponentially with the TTL.
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(3) Sparse Subgraph: We have seen that for arbitrary graphs,
Huv = 2mRuv < 2mn, and CG ≤ 2mRspan < 2mn. Both
Huv and CG grow linearly in m and n, and we can improve
Huv and CG by removing nodes in dense regions, and any
edge that is not critical for the connectivity of the graph. We
can achieve both points relatively easy by performing the RW
on a connected dominating set, e.g. see [32], which implicitly
also reduces the number of edges. Similarly, topology control
algorithms build sparse subgraphs considering the network
characteristics, and tend to be more stable [29], [33]. A truly
sparse subgraph could be obtained by limiting the RW to an
arbitrary spanning tree, reducing CG and Huv to 2n2. But as
a spanning tree cannot be constructed locally, this approach
is rather impractical for unstable networks. The dual graph
presented in V is not only sparse, but also also fulfills the
property that any Br(u) contains at most O

(
r3

)
dual nodes,

limiting the cover time of a RW restricted to Br(u) to O
(
r6

)
.

(4) Power of choice for RW: The cover time of a RW can be
improved by not returning to the previous node, if applicable.
I.e. when the message is sent from n to m, and if n is not
the only neighbor of m, then m forwards the message to a
random neighbor, but not n. This improvement derives from
the power of choice for RW [4].

V. DUAL GRAPH

We now describe the construction of a dual graph G̃ =
(Ṽ , Ẽ) of G = (V,E), on which our routing schemes are
based. The position of the dual vertices (short DV) is bound
to the intersection points of a regular cubic (imaginary) grid,
covering the entire space. The DV are only placed nearby
network nodes in order to populate the grid in regions where G
is present. Each DV is owned by exactly one nearby network
node, relating G̃ to G. The relation from G to G̃ is a bit more
involved, as the relation is not bijective. In order to switch
from a node v ∈ V to G̃, v chooses the DV d closest to v.
We will see that d is owned by either v or a neighbor of v.

Edges in G̃ are only present between direct neighbors in
the underlying grid. The dual graph is defined such that the
connectivity of G is preserved in G̃. I.e. a path between ũ, ṽ ∈
Ṽ in G̃ implies a path in the original graph between own(ũ)
and own(ṽ), where own(x) denotes the owner of x. Similarly,
a path between u, v ∈ V in G implies a path between the
corresponding DV in G̃. As a result, we can perform a virtual
routing on G̃, and execute the corresponding routing steps
on G. Finally, G̃ is sparse in the sense that each d ∈ Ṽ
has constant out-degree, and ‖Ṽ ‖ is linear in the volume of⋃

v∈V B1(v), the volume G occupies. In the remainder of this
section, we show the following theorem:

Theorem 5.1: G̃ is a sparse, connectivity preserving virtual
graph of G, which can be constructed locally.

The construction of G̃ consists of the following two steps.
First, each node determines the set of DV it owns. Then, the
edges Ẽ are added to G̃ such that two DV are connected iff
they are direct neighbors in the virtual grid: (x1, x2) ∈ Ẽ ⇔
‖x1x2‖ = η, where η denotes the cell-side-length of the grid,
whose value we determine in section V-B. This step basically

Algorithm 1: Construction of G̃ (Code for node v)
Ownership Selection1

foreach(DV d ∈ Bρ(v))2

if(@u ∈ N (v) s.t. u.ID < v.ID∧‖ud‖ ≤ ρ)3

v selects d as RDV4

foreach(u ∈ N (v))5

S := {DV d | dist(d, vu) ≤ h ∧ ‖vd‖ < ‖ud‖}6

remove from S all DV already known to be RDV7

TDV= TDV ∪ S8

send TDV to N (v)9

drop multi-owned DV if v.ID > ID of other owner10

Connect11

send(RDV ∪ TDV ) to 3-hop neighborhood of v12

Determine the edges adjacent to any owned DV13

requires each node to determine all neighboring DV owned by
other nodes. The construction of G̃ is completely local, and
each of the network nodes only knows a very limited local
view of G̃ at any time.

A. Ownership Selection

The DV are positioned only on specific positions in
space, defined by the intersection points of a regular cubic
grid. The set of possible positions for a DV is given by
(iη, jη, kη) | i, j, k ∈ N. Our algorithm will ensure (locally!)
that at most one DV is added to Ṽ for any of these positions.

The ownership selection algorithm executed by each node
v ∈ V determines for each node the set of DV v owns, see
Algorithm 1. It consists of two substeps. First, v determines its
regular dual vertices (short RDV), for which v can determine
statically whether it owns them (lines 2–4). Node v chooses
as RDV all DV which are most ρ away from v. In addition,
for every selected RDV d, v may not have a neighbor u with
a lower ID, whose distance to d is bounded by ρ. Formally,
the set of RDV of node v is {d | d is a DV ∈ Bρ(v) ∧ @u ∈
N (v)(u.ID < v.ID ∧d ∈ Bρ(u))}. The exclusion of some
nodes based on their ID is to ensure that each DV is owned by
exactly one network node. In Figure 2, the sphere with radius ρ
around v denotes the region where v selects its RDV. The value
of ρ at least as large as to ensure that Bρ(v) contains at least
one DV, further information about ρ is given in section V-B.
Please note that if a node v ∈ V does not own any RDV, then
the DV ∈ Bρ(v) are owned by (direct) neighbors of v.

The second substep of the ownership selection ensures
connectivity in the dual graph by adding additional DV to
G̃. In contrast to the first substep, there may be several nodes
v ∈ V that decide to own the same DV. The resolution of these
conflicts is straight forward, but requires communication with
the 1-hop neighborhood in G. Therefore, each node calls the
DV selected in this substep tentative dual vertices (short TDV).
To ensure connectivity, the TDV depend on the neighborhood
N (v) of node v. For each neighbor u, node v determines all
DV at most h =

√
3η/2 away from the line vu and closer to

v than to u4. Then, v selects as TDV only the DV which it

4In case of equal distance, the node with smaller ID may own the DV.
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v

u

h

ρ

Fig. 2. Dual vertices that are at most ρ away from a network node v ∈ V
are added to the dual graph G̃. The location of these DV is depicted by the
balls of radius ρ around u and v. To ensure connectivity, the dual graph also
contains all DV whose distance from any edge (u, v) ∈ E is bounded by
h =

√
3η/2, illustrated with the cylinder of radius h around the edge (u, v).

does not already own (as RDV or TDV), and are not already
known to be regularly owned by a direct neighbor (lines 5–8).
Figure 2 depicts the region where node v chooses its TDV with
a cylinder enclosing the line vu. For each RDV node v keeps,
it also remembers the reason, i.e. the node u due to which the
RDV was considered in the first place.

For the removal of multiple owners for the same TDV in-
troduced in this second step, each node v sends its TDV list
to its neighbors (line 9). Assume v selects TDV d due to its
neighbor u, and also another node n choose d. Again, we
resolve the conflict using the IDs, and let the lower ID win.
Assume w.l.o.g. that n.ID < v.ID. Then, v needs to learn that
it should drop its ownership of d. The value of η, and therefore
the value of h, is chosen such that in such a situation, either
(a) n ∈ N (v) or (b) n ∈ N (u), see Section V-B for more
details. In case (a), v receives the TDV list from n directly
and therefore learns about n’s ownership of d. In the second
case (b), u receives the TDV lists from both, v and n, and u
can detect the conflict. u then determines whether u was v’s
reason for the conflicting TDV d, and if n /∈ N (v). If (and
only if) both conditions hold, u sends a withdraw(d) message
to v, indicating that v should not own d.

After this second substep is completed, each DV (RDV and
TDV) is sure to have exactly one owner v ∈ V . When the
DV are connected as described in the introduction of this
section, we are ready to state a first connectivity property of
G̃: If there is a path between two nodes v1, v2 ∈ V , there also
exists a path between d1, d2 ∈ Ṽ , where di is the closest DV to
vi. This property follows directly from Lemma 5.2, which is
formulated for a single hop in G.

Lemma 5.2: Given two neighboring nodes (v1, v2) ∈ E and
two dual vertices d1, d2 ∈ Ṽ s.t. di is the closest DV to vi,
we can ensure that d1 and d2 are connected in G̃ by adding to
Ṽ all DV at most h =

√
3η/2 away from the line ` = v1v2.

Proof: Because the side length of the grid is η, we know
that the di themselves are at most h away from vi. This forms
the base-case of our inductive proof. As for the induction step,
we consider a point P that moves along ` from v1 to v2, and
a DV x which is at most h away from `. Let Q be the position

of P when P leaves Bh(x). We show that when P moves out
of Bh(x), there is a DV x′ whose distance to Q is strictly
smaller than h, and that x′ is connected to x in G̃.

Let C be the cube of the virtual grid (which has side length
η and x as one of its corners) that surrounds Q. If Q is exactly
the center of C, all 8 corners of C have distance at most h
from `. Therefore, all of them are added to G̃, and there is a
path to each of them starting from x. Thus, when P moves
from Q to Q′, ε closer to v2, at least one of the 7 remaining
corners is in Bh(Q′), which we pick as x′. If Q is not the
center of C, there is a corner a of C neighboring x, whose
distance to Q is strictly smaller than h. Therefore, a is added
to G̃ and is suitable as x′.

B. Tuning the Dual Graph

Before we describe the construction of the edge set Ẽ,
which connects any two DV that are direct grid neighbors, we
make a short detour and give some insight in how to determine
the values of η and ρ. Remember that η is the side length of
the virtual grid and therefore the minimal distance between
any two DV, and ρ is the radius of the ball Bρ(v) in which a
node v ∈ V searches for RDV. We select these two parameters
such that for any edge (d1, d2) ∈ Ẽ, there is a short path of at
most 3 hops in G between v1 = own(d1) and v2 = own(d2),
the corresponding owners. This will be a crucial property for
routing algorithms simulated on G̃, as they need to perform
the actual routing hops on G.

We need to distinguish the following three cases: (i) d1 and
d2 are both RDV, (ii) d1 xor d2 is RDV, and the other is
TDV, and (iii) d1 and d2 are both TDV. From the ownership
selection algorithm, we deduce that the maximal distance of
a RDV from its owner is ρ.

In the first case (i), there should be an edge (d1, d2) ∈ Ẽ
only if (v1, v2) ∈ E, requiring (a) 2ρ + η < 1. Otherwise,
it could happen that the path between v1 and v2 is of length
O(|V |), which we wanted to avoid. For (ii), assume w.l.o.g.
that d1 is a TDV selected by v1 due to its connection with r1

(the reason for d1), and that d2 is a RDV. Then, the distance
from v2 to d1 is at most ρ+η, and the distance from v2 to v1r1

is bounded by ρ+η+h. By requiring (b) ρ+η+h ≤
√

3/2, we
ensure that v2 ∈ B1(v1)∪B1(r1), and that v2 is a neighbor of
either v1 or r1. As a result, we can route from v1 to v2 either
directly, or via r1. For (iii), where vi choose di as TDV due
to a node ri, there should be an edge (d1, d2) ∈ Ẽ only if
v1 or r1 is neighbor of at least one of v2 or r2: (N (v1) ∪
N (r1))∩ (v2∪ r2) 6= ∅. Otherwise, it could again happen that
the path between v1 and v2 requires O(|V |) hops. Assume the
situation where (N (v1) ∪ N (r1)) ∩ (v2 ∪ r2) = ∅. Then, d2

can be placed closest to v1r1 if ‖v1r1‖ = ‖v2r2‖ = 1 and if
v2 and r2 are placed on B1(v1) ∩ B1(r1). Then, the minimal
distance between the two lines v1r1 and v2r2 is 1/

√
2. As

the di may be placed h away from their corresponding line,
we need that (c) 1/

√
2 − 2h > η s.t. (d1, d2) /∈ Ẽ. Thus, if

(d1, d2) ∈ Ẽ, this constraint ensures that there is a route from
v1 to v2, either directly or via r1 and r2, requiring at most 3
hops.
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Our goal is to maximize η such that ‖Ẽ‖ is as small
as possible. Considering condition (c), we need to choose
h as small as possible. In Section V-A, we have seen that
h =

√
3η/2 satisfied our requirements. In fact, choosing h

any smaller could break the connectivity of G̃. Using (c), we
deduce that η < 1/(

√
2 +

√
6). As for ρ, we would like to

choose its value as large as possible to maximize the number
of statically determinable RDV. Constraint (a) yields ρ=0.37
for η=0.258, which also satisfies condition (b). We have just
shown the following lemma:

Lemma 5.3: Given two DV d1, d2 from the dual graph, and
vi = own(di), the corresponding owners of the di. Then, if
(d1, d2) ∈ Ẽ, i.e. the distance between d1 and d2 is η, there
is a path from v1 to v2 in G of at most 3 hops.

Proof: The lemma is satisfied by setting the values of η,
ρ and h as described above.

C. Connecting the Dual Graph

In the remainder of this section, we describe the construc-
tion of the edge set Ẽ. The dual edges connect any two
DV which are direct grid neighbors, which limits the outdegree
of any DV to 6. For our local construction, this means that the
owner own(d) = v of a DV d needs to determine which of
the 6 potential neighbors of d exist. For each existing neighbor
n, v determines the owner own(n), and the path over which
own(n) can be reached in G.

We know from Lemma 5.3 that the owner own(n) is at most
3 hops away from v. Therefore, it is sufficient if each node
broadcasts5 the set of DV it owns to its 3-hop neighborhood
(line 11 of Algorithm 1). Along the broadcasting path, every
node that forwards the message can add its own ID, such that
the receiver can easily determine the path (in G) to reach the
sender. Please note that any node owns only O(1) DV, and
therefore the storage overhead to remember the local view of
the dual graph does not exceed the desired size.

Finally, we have seen all the pieces to state the proof of
Theorem 5.1:

Proof of Theorem 5.1: From the ownership selection
algorithm we deduce that the maximal distance between any
DV and its owner is below 1. With other words, a network
node v ∈ V only owns DV that lie in B1(v). Thus, any u ∈ Ṽ
lies in Q =

⋃
v∈V B1(v). As the volume Q is composed of

balls of radius 1, there are no arbitrarily thin areas in Q, and
we can conclude that Q contains O(Q) DV. In combination
with the fact that the outdegree of any DV is at most 6, this
shows that G̃ is sparse.

The connectivity of the dual graph G̃ is an immediate
consequence of Lemma 5.3 and Lemma 5.2, and an algorithm
to construct G̃ locally has been presented in this section.

5Broadcasting from a node v to its 3-hop neighborhood can be implemented
quite efficiently without retransmissions in the following way: The message
contains a TTL counter initially set to 3 and a variable s storing the sender
v. Upon reception of a message m at node u, u first decrements the TTL.
Then, u rebroadcasts the message only if the following three conditions hold.
TTL > 0, m.s 6= u, and m.s /∈ N (u) if TTL = 1.

VI. ROUTING ON THE DUAL GRAPH

Our simplest routing scheme, called pureRW, performs
region limited random walks (see Section IV) until it finds the
target. The balls delimiting the regions to explore are centered
at the sender node, and the random walk applies the “power of
choice” technique. Note that pureRW does not perform any
greedy routing steps at all.

The RW selects its next hop based on the sparse dual graph
G̃, the selection algorithm is described in Algorithm 2. If
the sender node s does not own any DV itself, it first sends
the message to its neighbor which owns the DV closest to s.
(The existence of such a neighbor is given, see Section V-A.)
We use the following additional notation: For a node v, let
v.DV denote the set of DV owned by v, and Ñ (v) the set of
DV which are neighboring a DV in v.DV, excluding the ones
owned by v itself.

Algorithm 2: RW step (On node v, previous node p, Br(s))

if(target ∈ (v ∪N (v))) v or one of its neighbors is the target1

deliver the message and return2

if(number of hops for this ball-size has been performed)3

r = 2r Increase the ball delimiting the region of the RW4

N := set of owners of Ñ (v) s.t. ∀n ∈ N : ‖ns‖ ≤ r5

Only select the owners which are in Br(s)
if(N = {p}) RW can only return to p, no choice6

send message to p7

else Apply “power of choice”8

send message to random node in (N \ p)9

The number of random hops for a ball of radius r is O
(
r6

)
,

the cover time of the nodes contained in the ball. The routing
stretch of pureRW can be bounded as following:

Theorem 6.1: Let Sopt be the stretch of the optimal geo-
graphic routing algorithm for 3D graphs. The expected stretch
of pureRW is O

(
Sopt

2
)
.

Proof: For any source-target pair (s, t), let k be the length
of the optimal route between s and t, and j the smallest integer
s.t. 2j ≥ k. pureRW performs a RW limited to B2i(s) for
i ∈ {2, 3, . . . , j}. For any ball of radius r, it performs O

(
r6

)
random hops, which results in a total of O

(
k6

)
random hops.

As any optimal algorithm has cubic stretch requiring O
(
k3

)
hops in the worst case (Theorem 3.1), the stretch of pureRW
is O

(
Sopt

2
)
.

Clearly, pureRW is not a practical routing scheme as its
expected delivery time is just as bad as its stretch. Therefore,
we try to route much more optimistically using the GRG
approach, at the cost of that we are unable to analytically
express its performance.

The greedy routing step of the GRG routing scheme selects
the DV in Ñ (v) closest to the target and forwards the message
to its owner (line 3 of Algorithm 3). Initially, if the sender s
of the message does not own any DV, it sends the message to
its neighbor which owns the DV closest to s. The message is
greedily forwarded until the target is found (line 2), or a local
minimum is reached (line 5):
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Algorithm 3: Dual Greedy Step (On node v)
if(target ∈ (v ∪N (v))) v or one of its neighbors is the target1

deliver the message and return2

select d ∈ (Ñ (v) ∪ v.DV ) closest to the target3

if(d is owned by v) v is in a local minimum for the target4

start recovery5

else6

send message to own(d)7

The recovery algorithm chosen by the GRG is either the
region limited RW described in Algorithm 2, or a region
limited RW that is also bound to the surface of the hole which
needs to be surrounded.

A. Routing on the Surface

We describe the surface of a hole in the network with the aid
of the virtual 3D grid introduced in Section V. The surface S
is described by a list of grid-cubes which delimit the boundary
between the hole and the network. Each node has only its local
view of S, which it determines using the presence, respectively
absence of DV.

When the greedy routing described in Algorithm 3 reaches
a local minimum at node v (line 5), the DV d closest to the
target is owned by v itself. Therefore, at least one of the 6
grid-neighbors of d is not present, otherwise, d would not be
closest to the target. Let i be the non-present grid-neighbor
which is closest to the target, i.e. i is an intersection point of
the grid neighboring d, where no DV was placed. Then, the
four grid-cubes delimited by the cube-edge di are part of the
surface S. The remaining grid-cubes describing v’s view of S
are obtained iteratively: Until S does not change anymore, v
does the following for every grid-cube q ∈ S: For every corner
c of q for which v owns the corresponding DV, v determines
{c1, c2, c3}, the three corners adjacent to c on q. For each
ci, v adds to S the 4 grid-cubes delimited by the cube-edge
cci iff no DV was placed on ci. When the iteration stops, S
contains the grid-cubes delimiting the surface around the local
minimum, as seen by v.

Let SN (v) be the set of owners which own a DV lying on
the corner of a grid-cube q ∈ S, and exclude v from SN (v).
This set describes the neighbors of v which also lie on the
surface S, and from which the RW picks an arbitrary node
to forward the message to. If node v decides to forward the
message to u ∈ SN (v), it needs to describe the surface to u.
It does so by including each q ∈ S which has a corner owned
by u. Upon receiving the message, u sets its initial view S
of the surface to this subset and determines the remaining
grid-cubes describing u’s view of the surface by applying the
iterative algorithm described above.

Thus, the description of the surface changes constantly,
but remains strictly local. In fact, when v sends the surface
description to u, it is possible that u determines yet more grid-
cubes which touch DV of v as well. This can happen when the
surface S touches v in two or more independent places, such
that v cannot determine locally the relationship. In situations

where u is the only node that knows that the surface bends
back to v, we need to ensure that u sends its view of the
surface to v from time to time. But this requires that we drop
the ‘power of choice” optimization presented in Section IV.
Otherwise, we risk falling into an infinite loop, as the RW will
not explore the entire surface.

VII. SIMULATION

In order to validate our geographic routing algorithms
for 3D networks, we performed a series of simulations in
Sinalgo [30], a Java-based simulation framework for testing
and validating network algorithms. We chose a fairly large
simulation area of 20 × 20 × 10 units and deployed between
2000 and 40000 nodes to cover the range between very
sparse and dense networks. In order to obtain more realistic
networks, we first placed 100 randomly rotated and randomly
positioned cuboids of 2 × 2 × 1 units in the simulation area.
The cuboids were areas where no node could be placed, and
they enforced holes in the network, such that, especially for
dense networks, the messages could not be forwarded greedily
without surrounding any holes.

Sparse graphs tend to be heavily twisted, which challenges
our GRG routing algorithms with many local minima. To
account for this fact, we performed more simulations for sparse
networks, which can also be seen by the accumulation of
samples for small n in Figure 3. For each initial deployment
of n nodes, we first connected the nodes to a UBG, and kept
only the giant component, the largest connected part of the
network.

For each network, we selected 5000 random sender/target
node pairs (s, t) and sent a message from s to t using the
following five recovery algorithms when the message got stuck
in a local minimum: RW on the dual, RW on the surface,
RW on the Graph, bounded DFS on a spanning tree, and
a bounded flooding. All RW were limited to exponentially
growing regions (see Section IV), and all but the RW on
the surface implemented the power of choice technique. The
bounded DFS on an arbitrary spanning tree is not a local
algorithm and was chosen for comparison. In that algorithm,
we first built a spanning tree, and then perform a DFS on the
tree, where the maximal depth to explore the graph increases
exponentially. Finally, we implemented a recovery algorithm
that uses flooding to escape a local minimum. The flooding
relies on a mark-bits to avoid repetitions of the message, and
is thus not memoryless. The TTL of the flooding message was
incremented exponentially to obtain an optimal search time.

Figure 3 compares the overhead (measured in routing hops)
of the five recovery algorithms. For ease of interpretation, we
plotted against the overhead of the flooding algorithm, such
that the y-axis shows how much more overhead the other
routing algorithms induced.

A first important observation is that limiting the RW to the
surface of the hole does in fact not help at all. The reason is
two-fold: First, unless the network is very dense, it tends to
have a single huge face covering nearly the entire network. I.e.
the holes in the network are nearly never completely closed
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Fig. 3. The overhead of our routing techniques compared against a non-
memoryless flooding algorithm. The x-axis indicates how many nodes were
deployed, the y-axis how much more routing-messages our routing algorithms
induced.

and most of them are interconnected over the surface. As a
result, the restriction to the face does not reduce the number
of nodes to visit. Secondly, we needed to drop the “power
of choice” for the RW on the surface, which boosts the RW
considerably, especially for sparse, tree-like networks. Thus,
limiting the RW to the surface is not worth its price.

We can further observe that the overhead of the RW on
the dual is below the overhead of the RW on the graph,
which shows that we achieved our goals of obtaining a sparse
network graph via the dual graph. The astonishing good
performance of the DFS on the spanning tree for the sparse
networks can be traced back to the fact that the nodes of
these networks have very low degree, resulting in a tree-like
network. For denser networks, however, the RW approaches
perform much better. In particular, the RW on the dual and
the RW on the surface perform even better than the flooding
for very dense networks, as they operate on a sparser network.

CONCLUSIONS

Geographic routing schemes are both memoryless and local,
which makes them highly suitable for mobile ad hoc networks
and sensor networks. The geographic routing schemes for
2D networks, however, cannot be translated to 3D networks
directly. For instance, limiting the recovery algorithm to visit
only nodes on the surface of the network hole which caused
the local minimum makes little sense in 3D, as most networks
tend to have a single huge surface. Whereas the analysis of
the surface detection was limited to UBG, the greedy-random-
greedy routing scheme is applicable for real networks.
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