
Efficient Multi-Word Locking Using Randomization

Phuong Hoai Ha
Department of Computer Science
Chalmers University of Technology

Sweden

phuong@cs.chalmers.se

Philippas Tsigas
Department of Computer Science
Chalmers University of Technology

Sweden

tsigas@cs.chalmers.se

Mirjam Wattenhofer
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

mirjam.wattenhofer@inf.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

ABSTRACT
In this paper we examine the general multi-word lock prob-
lem, where processes are allowed to multilock arbitrary reg-
isters. Aiming for a highly efficient solution we propose a
randomized algorithm which successfully breaks long de-
pendency chains, the crucial factor for slowing down an
execution. In the analysis we focus on the 2-word lock
problem and show that in this special case an execution
of our algorithm takes with high probability at most time
O(Δ3 log n/ log log n), where n is the number of registers and
Δ the maximal number of processes interested in the same
register (the contention). Furthermore, we implemented our
algorithm for the general multi-word lock problem on an
SGI Origin2000 machine, demonstrating that our algorithm
is not only of theoretical interest.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming;
D.4.1 [Operating Systems]: Process Management—Mul-
tiprocessing/multiprogramming/multitasking ;
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures ;
G.2.1 [Discrete Mathematics]: Combinatorics—Combi-
natorial algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms

General Terms
Algorithms, Theory, Performance, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05, July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-59593-994-2/05/0007 ...$5.00.

Keywords
shared memory, dining philosophers, multi-word locking,
randomization

1. INTRODUCTION
Edsger Dijkstra’s dining philosophers problem is widely

recognized as a prototypical resource allocation instance.
We are given n philosophers, sitting at a round table. Each
philosopher is an asynchronous process who cycles through
the three states thinking, hungry, and eating. Between each
neighboring pair of philosophers, there is a fork. When be-
coming hungry, a philosopher tries to grab her left and right
fork. After having acquired both forks, the philosopher eats.
When finished eating, the philosopher returns her forks and
goes back to thinking mode.

We can represent the classic dining philosophers problem
in a shared memory multi-processor system by having n
shared registers (the forks) and n processes (the philoso-
phers). The two registers (“forks”) which are of interest to
process pi (with i = 1, 2, . . . , n) are registers i and i + 1
(with the notable exception that the “right fork” of proces-
sor pn is register 1, and not n + 1, to achieve the desired
ring topology). In shared memory dining philosophers, each
process repeatedly and asynchronously tries to lock its two
registers (hungry), then performs some atomic operation on
these two registers, such as multi-word compare-and-swap
(eating), and then continues with other operations (think-
ing).

The dining philosophers problem perfectly illustrates typ-
ical multi-process synchronization difficulties. If all philoso-
phers become hungry at the same time, and pick up their left
fork simultaneously, we have a deadlock, since no philosopher
can grab her right fork as well. Similarly, if a process crashes
(or behaves awfully slow) after locking its registers, the two
neighbor processes cannot make progress; as a remedy the
research community has proposed non-blocking protocols,
such as recursive helping schemes, or transactional memory.

In this paper we focus on a third fundamental multi-
process synchronization issue, efficiency. In dining philoso-
phers, “even” philosophers (processes with even process id)
do not have a conflict of interest among themselves. An

efficient implementation striving for maximum concurrency
would therefore always let even and odd processes eat in
turns, thus maximizing the available resources.

In this paper we examine the general multi-word lock
problem, where processes are allowed to multi-lock arbi-
trary registers. The remainder of the paper is organized
as follows: In Section 2 we set our paper into context of
prior art. The model is then formally introduced in Section
3. In Section 4 we present our algorithm and analyze it;
in particular we show that a process has to wait at most
O(Δ3 log n/ log log n) time until it can eat, where n is the
number of registers and Δ the maximal number of processes
interested in the same register (the contention). In Section 5
we present extensive results from our implementation on an
SGI Origin2000 machine, proving that our idea is not only
of theoretical interest. Finally, in Section 6 we conclude the
paper.

2. RELATED WORK
Since processes without a conflict can proceed concur-

rently it seems promising to first compute a minimum color-
ing of the conflict graph. Yet solving the multi-lock problem
using coloring remained theory.

In a generalized variant of dining philosophers, a process
shares d forks and can only eat if it has obtained all d forks.
For this generalized problem [9] gave a solution with waiting
chains of length O(c), assuming that an oracle has colored
the conflict graph1 with c colors. The waiting chain length
was reduced to O(log c) in [13]. Assuming that a vertex col-
oring with d+1 colors is known, in [4] this length was further
reduced to 3. For a simplified version of dining philosophers
[11] manage to have waiting chains of length at most 4 in
constant time.

Unfortunately, even in a powerful message passing model,
coloring is a tough problem. It was proven in [8] that such
colorings cannot be found in constant time. In fact, even
simpler problems (such as independent sets) have logarith-
mic lower bounds [8]. More severely, the conflict graph is not
available straightforwardly. To compute the conflict graph,
processes need some form of synchronization. We believe
that this synchronization is as hard to achieve as the origi-
nal multi-lock problem.

In this paper we present an efficient but blocking algo-
rithm for the general multi-lock problem, consequently with-
out making a detour through coloring. A blocking algorithm
for the multi-lock problem can be turned into a lock-free al-
gorithm if it is combined with a helping technique. The
basic idea of the so called cooperative technique [3], a form
of helping technique, was improved and is still developing in
a series of nifty research papers [7, 12, 1, 10, 6, 5].

For readability we do not integrate our algorithm with
a helping scheme; however, it can be added to our algo-
rithm: Each process, before locking registers, somewhere
notes what it wanted to do with that register. In case the
process crashes while holding the lock, others can help it
finish by following its steps. The implementation of our al-
gorithm used in Section 5 of this paper includes a helping
scheme, rendering our implementation lock-free.

1Here the conflict graph is a graph where each node repre-
sents a process and each edge represents a resource which is
shared by the two endpoint processes. Our conflict graph is
different, see also Section 3.

In distributed graph algorithms (message passing), ran-
domization techniques are widely used. With a few excep-
tions [2], the shared memory community does generally not
apply randomization, presumably because its alleged over-
head. Our experiments show that the overhead due to ran-
domization is less than 1% of the total execution time.

3. PROBLEM AND MODEL
In this section we recapitulate the problem we consider

and formally define the model used in the next sections.
We study the multi-lock problem, which is a generalization

of dining philosophers. In the multi-lock problem each par-
ticipating process needs to lock multiple registers in order
to do some operation on the locked registers, like an N-word
compare-and-swap (CASN).

Typically, in a multi-lock implementation a process tries
to lock all its registers one by one. To avoid deadlocks, the
registers are totally ordered, conventionally by their iden-
tifiers (id). When executing a k-lock, a process p locks its
registers r1, . . . , rk according to their total order.

As discussed in Section 2, there exist several schemes
which can be employed once a process is blocked by other
processes from locking its registers. In the analysis we as-
sume that processes simply wait (spin-lock) until the block is
resolved, yet for the implementation (Section 5) we include
a helping scheme.

We consider m asynchronous processes which can access n
shared registers. In the analysis we concentrate on 2-locks.
Each process only executes a single 2-lock and then goes to
sleep.

The dependencies between the processes are modelled by
a directed acyclic conflict graph G = (V, E). In G each
node represents a register and each edge represents a pro-
cess. In the following, we will use the terms node/register
and edge/process interchangeably. There is a directed edge
p from node r1 to node r2 iff process p tries to lock register
r1 first and after being successful tries to lock register r2,
meaning that r1 comes before r2 in the total order of reg-
isters. Since all directed edges point from nodes with lower
id to nodes with higher id the resulting graph G is acyclic.

Following the conventions for asynchronous processes, in
the analysis we assume that each atomic operation, like read-
ing, writing, or locking a register, incurs a delay of at most
one time unit. An operation on multiple locked registers
(e.g. CAS2) incurs a delay. For convenience let c be the
longest time which elapses from the moment a process has
locked its last register until it releases the lock on all its
registers.

In the remainder of this section, to illustrate our model, we
quickly analyze a classical implementation of dining philoso-
phers. We show that it is a factor Ω(n) less efficient than
an optimal implementation.

The classical implementation proceeds as follows: the pro-
cesses try to lock their registers one by one, each starting
with the register with smaller identifier. Consider the follow-
ing execution: First, each process pi, i < n, locks register ri,
whereas pn fails to lock r1 (due to p1). Then, each process
tries to lock register ri+1, yet only process pn−1 succeeds.
The second register of all other processes is locked by an-
other process. Thus, process pi has to wait until process pi+1

releases its lock on ri+1. By induction, after having waited
Θ(cn) time units p1 releases its lock on r1 and pn may lock
both its registers. Thus, the execution time is Ω(cn). An

optimal implementation needs only O(c) time and hence the
classical algorithm is a factor Ω(n) less efficient than an op-
timal algorithm.

4. RANDOMIZED REGISTERS
In this section we present a more efficient algorithm for

multi-lock and analyze it according to two standard criteria
for the special case of 2-lock.

4.1 The Algorithm
Alerted by the poor execution time of the classical algo-

rithm for dining philosophers due to its long dependency
chain, we aim at breaking dependency chains. A promis-
ing yet simple (allowing for an efficient implementation) ap-
proach is randomization. Specifically, we suggest to ran-
domly permute the order of the registers. Let Π be a per-
mutation on the registers, chosen uniformly at random. The
permutation represents the new total ordering of the regis-
ters. For details on how the randomization can be imple-
mented we refer to Section 5.

In short we henceforth write p = (ri, rj) meaning that
process p wants to acquire register ri and rj and that
Π(id(ri)) < Π(id(rj)). Thus, ri is p’s first register and rj is
p’s second register.

In the next sections we analyze the efficiency of the sug-
gested 2-lock algorithm which uses a randomized total order-
ing of registers. As in [13] we evaluate two related properties:
the maximum length of a waiting chain and the longest time
a process needs until it successfully performs a 2-lock. To-
wards this goal, we first prove some basic properties of the
conflict graph2. Thereafter, we analyze the length of wait-
ing chains and finally show that with high probability after
O(cΔ3 log n/ log log n) time the execution is finished.

4.2 Length of Directed Paths
Henceforth, we denote by G the conflict graph as obtained

by the random permutation of the registers. Let the max-
imum degree in G be Δ. In this section we analyze the
length of a directed path in G. The following facts are used
for the analysis, the proofs of which can be found in standard
mathematical textbooks.

Fact 4.1 (Stirling).

k! ≥ 2

√
kkk

ek
.

Fact 4.2 (Markov).

P(X ≥ t) ≤ E[X]/t.

Throughout the paper log n denotes the logarithm with
base two.

To estimate the length of a directed path in G, we first up-
per bound the number of distinct undirected paths of length
k in G: To obtain an undirected path of length k one can
choose one out of n nodes in G as start node. In any node
there are at most Δ neighbor nodes to continue the path.
Therefore:

Observation 4.3. There are at most n·Δk distinct undi-
rected paths of length k in G.

2Note, that the conflict graph is only needed for analysis
purposes. The processes do not know the conflict graph.

As a next step we give the probability that a given path
of length k in G is directed.

Observation 4.4. The probability that a given path of
length k in G is directed is 2

(k+1)!
.

Proof. In a path of length k there are k + 1 nodes
u1, . . . , uk+1. For the path to be directed, it must hold
that either Π(id(u1)) < Π(id(u2)) < . . . < Π(id(uk+1)) or
Π(id(u1)) > Π(id(u2)) > . . . > Π(id(uk+1)). Hence, there
are exactly two good out of (k + 1)! possible choices.

Thus, the probability that a path is directed decreases
exponentially with increasing path-length. Combining both
Observation 4.3 and Observation 4.4 gives an upper bound
on the number of directed paths of length k.

Lemma 4.5. Let C be the number of directed paths of
length k. Then, E[C] < 1

nΔ , for k ≥ 3Δ log n
log log n

.

Proof. Let pi denote a path of length k and let Xpi be
defined as follows

Xpi =

{
1, if pi directed
0, otherwise.

Then by linearity of expectation,

E[C] = E[
∑
∀pi

Xpi]

=
∑
∀pi

E[Xpi]

≤ nΔk 2

(k + 1)!
,

by Observation 4.3 and Observation 4.4. Applying Stirling’s
formula (Fact 4.1) and substituting 3Δ log n/ log log n for k
yields the following inequalities

E[C] < nΔk ek

√
kkk

≤ nΔk ek

(3Δ log n/ log log n)k

< n
1

(log n/ log log n)k

= n
1

23Δ log n/ log log n(log log n−log log log n)

= n
1

n3Δ(1−log log log n/ log log n)

≤ 1

nΔ
.

Finally, we bound the probability that there exists a di-
rected path in G by applying Markov’s inequality.

Corollary 4.6. With probability at most 1/nΔ there ex-
ists a directed path of length at least 3Δ log n/ log log n.

Proof. By Fact 4.2 and Lemma 4.5

P(C ≥ 1) ≤ E[C] ≤ 1/nΔ.

4.3 Length of Waiting Chains
Following the notation of [13] we define a waiting chain

as a series of processes such that each process in the chain
is waiting for some action by the next process in the chain.
Avoiding long waiting chains is important since it implies a
long wait for the last process in the chain.

A process p is delayed by another process q if q can, by
slowing down or stopping, cause p to have a longer total
waiting time than if q stayed in its remainder section. The
maximum length of a waiting chain is the maximum distance
between two processes such that one process can delay the
other.

r6

r7 q5

p q3 q4
r1 r2 r3

r4

q1

q2

q6

Figure 1: Delation of p.

We want to intuitively depict the concept of delaying with
the example of Figure 1. Process p can be delayed by all
processes in the figure: E.g. process q2 can delay p if q1

locks r1 before p and q2 locks r6 before q1. Thus, q1 has to
wait for q2 until it can acquire (and release) both its locks
and consequently p (which waits for q1 to release the lock
on r1) also has to wait for q2. Process q6 can also delay p:
q6 locks r3, q3 locks r2 and p locks r1. Thus, p is waiting
for q3 to release r2 which itself is waiting for q6 to release
r3. On the other hand, process p could not be delayed by
a (not shown) process q7 = (r4, x), where x is some register
not depicted in Figure 1. This is because process q7 may
acquire register r4 before q6 and thus q6 has to wait until q7

releases this register again before it can proceed. Yet, this
does in no way delay p since it does not impose a longer
waiting time on p. In general:

Lemma 4.7. Process q = (R1, R2) can delay process p =
(r1, r2) if and only if R2 lies on a directed path starting in
either r1 or r2.

Proof. By definition, if process q delays process p the
waiting time of p must be longer if q slows down or stops
than if q stayed in its remainder section. If processes q’s
second register R2 lies on a directed path starting in ri,
i ∈ {1, 2}, then there exists a directed path of processes
q1 = (ri, rj), . . . , qk = (rl, R2), with possibly qk = q. In the
case that each process in this path locked its first register–
and given that qk �= q q also locked its second register–none
of the processes q1, . . . , qk makes any progress as long as
q does not make any progress. Thus, process p will not
be able to lock its register ri and hence its waiting time is
longer than if q stayed in its remainder section, showing that
q delays p.

In order to show the other direction of the lemma we let
Q be the set of processes which do not lie with their second
register on a directed path from ri, i ∈ {1, 2}. Between any
arbitrary process q in Q and any directed path Pi from ri

there is at least one process q̄ which breaks this directed
path, that is q̄’s second register lies on Pi whereas its first

register does not. By slowing down or stopping its execution
q may hinder q̄ in acquiring its first register, yet it does not
hinder q̄ in acquiring its second register, otherwise one of
q’s registers would also lie on a directed path from ri, a
contradiction to the assumption that q is in Q. Thus, by
slowing down or stopping q either does not affect q̄ or q̄
cannot participate in the execution at all as long as q does
not make any progress. Hence, process q cannot delay p via
q̄ and consequently it cannot delay p via any process on Pi.
Furthermore, q is not incident to p and thus it cannot delay
p directly. Since q cannot delay p indirectly via a process
on a directed path nor directly, p is not affected if q slows
down or stops which concludes the proof.

Corollary 4.8. The maximum length of a waiting chain
in the randomized registers algorithm is with probability at
least 1 − 1/nΔ at most 3Δ log n/ log log n + 1.

Proof. The maximal number of edges between a process
p and a process q which delays p is at most the length of the
longest directed path plus one, since by Lemma 4.7 a process
which delays p must be incident with its second register to
a directed path. Hence, we can directly apply Corollary
4.6.

4.4 Execution Time
Though the length of a waiting chain is an indicator of

the efficiency of an algorithm, it is only a lower bound for
the execution time. For the execution time we must bound
two values: First, we need to bound the time until a process
is able to lock its first register, then we need to bound the
time until it can lock its second register. Towards this goal
we introduce some helpful definitions.

The execution starts at time zero. A process p = (r1, r2)
locks its first register at time t1(p) and its second register
at time t2(p). Using the definition of Section 3 process p
releases both its locks at time t3(p) ≤ t2(p) + c. (See also
Figure 2.)

c

0 t1 t2 t3

lock of second register

lock of first register

both registers released

start of execution

Figure 2: t1, t2 and t3 for a process.

Definition 4.9 (Delay Graph). Let p be a process
with p = (r1, r2). Then p’s delay graph, denoted by D(p)
contains all processes with q = (R1, R2) where R1 lies on a
directed path starting in r1. The depth of process p depth(p)
is then defined as the length of the longest directed path
(number of processes in the path) in D(p).

In the example of Figure 3 processes p, q1, q2, q3, q4 are in p’s
delay graph, whereas process q5, q6 are not, since there is no
directed path from r1 to q6’s first register r4, respectively
q5’s first register r8. Intuitively, processes which are incident
to a directed path from p merely by their second register, do
not delay p much, since those processes release their lock on
the crucial register quickly after acquiring it. Note, that the
depth of a process is at least one since at least the process
itself lies in its delay graph.

r6

r7 q5

p q3 q4
r1 r2 r3

r4

q1

q2

q6

r8

Figure 3: Process p, q1, q2, q3, q4 are in p’s delay graph.
The depth of p is 3, q1’s depth is also 3.

We now bound the maximal depth of any process by di-
rectly applying Corollary 4.6:

Corollary 4.10. The maximum depth k∗ of any process
is at most 3Δ log n/ log log n with probability at least 1 −
1/nΔ.

The next lemma reveals a key property of the delay graph.

Lemma 4.11. Let D(p) be processes p = (r1, r2) delay
graph and let q = (R1, R2) be a process in D(p). Then,

depth(q) ≤ depth(p).

Furthermore, if R1 �= r1 then

depth(q) < depth(p).

Proof. Assume without loss of generality that PRju =
(Rj , u1, . . . , uk, u), j ∈ {1, 2}, is a longest directed
path in q’s delay graph. Then, depth(q)= |PRju| =
|{Rj , u1, . . . , uk, u}| − 1. Since q ∈ D(p) there is a di-
rected path Pr1R1 = (r1, v1, . . . , vl, R1) from r1 to R1,
where |Pr1R1 | = |{r1, v1, . . . , vl, R1}|−1 is the length of this
path. Consequently, there exists a directed path Pr1u =
(r1, . . . , R1, Rj , . . . , u) from r1 to u. Thus,

depth(p) ≥ |Pr1u|
= |{r1, . . . , vl, R1, Rj , . . . , u}| − 1

≥ |{Rj , . . . , u}| − 1

= depth(q).

If furthermore, r1 �= R1 then

depth(p) = |{r1, . . . , vl, R1, Rj , . . . , u}| − 1

≥ |{r1, . . . , vl}| + |{R1, Rj , . . . , u}| − 1

≥ 1 + |PRju|
> depth(q).

The following corollary shows that along a directed path
the depth of the processes is strictly decreasing.

Corollary 4.12. Let P = (r1, r2, . . . , rk+1) be a directed
path and let pi = (ri, ri+1), 1 ≤ i ≤ k, be the processes on
this path. Then, depth(pi) > depth(pi+1), 1 ≤ i ≤ k − 1.

Proof. By the definition of a delay graph, a process q =
(R1, R2) lies in the delay graph D(p) of process p = (r1, r2)
iff there is a directed path between r1 and R1. Thus, pro-
cess pi+1 lies in the delay graph of process pi since by the
assumption ri and ri+1 lie on a directed path. We hence
may apply Lemma 4.11 which states that the depth of a
process q which lies in the delay graph D(p) of process p
is strictly smaller than p’s depth if p’s first register is not
equal to q’s first register. Since in our case the first register
of pi+1 is ri+1 and the first register of pi is ri this condition
holds and thus the depth of pi+1 is strictly smaller than pi’s
depth.

Corollary 4.13. There is a process with depth one in
any conflict graph G.

Proof. Let p1 = (r1, r2) be a process in G with depth
k. Then, there exists a directed path P = (r1, r2, . . . , rk+1)
from r1 to some node rk+1 of length (number of processes
in P) k. By Corollary 4.12 the depth of the processes pi =
(ri, ri+1), 1 ≤ i ≤ k, in this path is strictly decreasing.
Thus, depth(pi+1) ≤ depth(pi)− 1, 1 ≤ i ≤ k − 1, and since
depth(p1) = k we have depth(pk) ≤ 1. The depth of any
process is at least one and consequently depth(pk) = 1.

In the next lemma we upper bound t3(p) for a process p
with depth one.

p

type a
type b

Figure 4: Depth(p)=1.

Lemma 4.14. For a process p = (r1, r2) with depth(p)=1
we have t3(p) ≤ 4cΔ2.

Proof. A process p has depth one iff the following two
conditions hold: A process qj incident to p’s first register
r1 is either incoming in r1 (type a), that is qj = (x, r1),
x an arbitrary register, or qj = (r1, x) and all processes
incident to qj ’s second register x are incoming in x (type b).
A process qi incident to p’s second register r2 is incoming
in r2, that is qi = (x, r2), x an arbitrary register. (See also
Figure 4.)

We first concentrate on type a processes: Processes of type
a releases their lock on r1 at most c time units after acquiring
it. The next process acquires the lock on r1 at most one time
unit later. Thus each process of type a adjacent to r1 delays
p for at most c + 1 ≤ 2c time units.

A process qj = (r1, x) of type b must wait at the utmost
for all processes incident to its second register x until it can
acquire the lock on x and thereafter release r1. A process
incident to x releases its lock on x at most c time units after
acquiring it and the next process acquires it at most one
time unit later. Thus, each process incident to x delays qj

for at most c + 1 ≤ 2c time units. Besides qj there are at
most Δ − 1 processes incident to x. We thus immediately
get that qj acquires its lock on x after at most 2c(Δ−1)+1

time units and releases its locks after at most c more time
units. Thus each process of type b adjacent to r1 delays p
for at most 2c(Δ − 1) + 1 + c ≤ 2cΔ time units.

Besides p there are at most Δ−1 processes incident to r1,
each of which releases its lock on r1 at most 2cΔ time units
after acquiring it. Therefore, we immediately get

t1(p) ≤ 2cΔ(Δ − 1) + 1.

The time until p can lock r2 is by the same argument as the
argument for type a processes at most 2c(Δ − 1) + 1 and
hence

t3(p) ≤ t2(p) + c

≤ 2cΔ(Δ − 1) + 1 + 2c(Δ − 1) + 1 + c

≤ 4cΔ2.

Lemma 4.15. For a process p with depth(p)=k we have

t3(p) ≤ 4cΔ2k.

Proof. We prove the theorem by induction on the depth
of a process p = (r1, r2). By Corollary 4.13 there always
exists a process of depth one in the conflict graph G and
thus we may base the induction in this case.

Base Case: In case that depth(p)= 1 t3(p) ≤ 4cΔ2 by
Lemma 4.14.

Induction: We henceforth assume that for a process q
with depth(q)≤ (k − 1) it holds that t3(q) ≤ 4cΔ2(k − 1)
and consider process p with depth k. By Lemma 4.11 all
processes in p’s dependency graph D(p) which do not have
r1 as their first register have depth less than k and thus
–by the induction hypothesis– finished their operations at
time 4cΔ2(k−1) at latest. Thus, the only processes in D(p)
which are still active are those which have r1 as their first
register and consequently at time 4cΔ2(k − 1) p’s depth is
at most one. We then apply Lemma 4.14 and get

t3(p) ≤ 4cΔ2(k − 1) + 4cΔ2 = 4cΔ2k.

Theorem 4.16. A process p finishes its operations af-
ter time O(cΔ3 log n/ log log n) with probability at least 1 −
1/nΔ.

Proof. By Corollary 4.10 the depth of any process is at
most 3Δ log n/ log log n with probability at least 1 − 1/nΔ.
Thus, using Lemma 4.15,

t3(p) ≤ 4cΔ2 · 3Δ log n/ log log n

∈ O(cΔ3 log n/ log log n).

In a model where an operation takes exactly time c clearly
also an optimal algorithm needs at least the congestion times
c time units. Therefore:

Corollary 4.17. With probability at least 1 − 1/nΔ

the randomized registers algorithm is O(Δ2 log n/ log log n)
competitive.

5. EVALUATION
We have proposed a multi-lock algorithm, where the op-

eration performed after all registers are locked can be de-
fined arbitrarily by the programmer. To evaluate the algo-
rithm, we chose the operation specifically to be a single-word
compare-and-swap on each register. With this choice, our al-
gorithm became a multi-word compare-and-swap algorithm.

The multi-word compare-and-swap operations (CASN)
extend the single-word compare-and-swap operations from
one word to many. A single-word compare-and-swap oper-
ation (CAS) takes as input three parameters: the address,
an old value and a new value of a word, and atomically up-
dates the contents of the word if its current value is the
same as the old value (cf. Figure 5). Similarly, an N-word
compare-and-swap operation takes the addresses, old values
and new values of N words, and if the current contents of
these N words all are the same as the respective old values,
the CASN will write the new values to the respective words
atomically. Otherwise, we say that the CAS/CASN fails,
leaving the variable values unchanged.

CAS(x, old, new)
atomically {

if (x = old) {x← new; return (true)};
else return (false);
}

Figure 5: The single-word compare-and-swap prim-
itive

The multi-word compare-and-swap operations are power-
ful constructs, which make the design of concurrent data
structures more effective and easier. As expected, they
attracted the attention of many researchers, consequently
many CASN implementations appear in the literature [7,
12, 1, 10, 6, 5]. One approach suggested to construct CASN
operations is cooperative technique, which allows processes
to concurrently access the shared data as long as they write
down what they are doing. Before changing a portion of
the shared data that was locked by another process pj , a
process pi must help pj complete its task first. The tech-
nique was first theoretically suggested by Barnes [3] and
then was transformed into a more applicable one by Israeli
et al. [7], which was used to implement a lock-free multi-
word compare-and-swap operation. This implementation
was later improved by Harris et al. [6] to reduce the per-
word space overhead. A wait-free multi-word compare-and-
swap was developed by Anderson based on this technique [1].
However, this cooperative technique uses a recursive helping
policy, where a process has to help many other processes
before completing its own task. The helping chains, where
process pi helps pi+1, may be very long. All processes re-
lated to a chain may do the same task, the task of the last
process in the chain, which reduces parallelism and creates
high collision levels on the shared data needed by the com-
mon task.

In order to evaluate the performance of our algorithm
(randomized CAS, in short RaCASN) and also check its fea-
sibility in a real setting we implemented it and ran it on a
ccNUMA SGI Origin2000 multiprocessor that was equipped
with 30 CPUs. As discussed in Section 2 we equipped our
randomized registers algorithm with a helping policy [7]. In
order to see in practice the performance benefits of the ran-

domization we also implemented the deterministic recursive
helping policy (DeCASN) presented in [7]. The implementa-
tion of RaCASN was similar to that of DeCASN except that
the order of registers/words3 chosen to be locked was ran-
dom in RaCASN. In other words, both algorithms are lock-
free. For the tests we used a micro-benchmark and a small
application. The micro-benchmark was designed to gener-
ate an execution environment with high contention on the
shared registers. The application was a parallel-prefix ap-
plication with continuous input feed and space constraints.

5.1 The micro-benchmark
The micro-benchmark aims at generating an environment

with high contention on shared registers. In the micro-
benchmark, a set of N +k virtual registers vi, 1 ≤ i ≤ N +k,
are mapped on k system registers r1, r2, · · · , rk, where N
is the number of registers to be updated atomically by the
CASN operations. The mapping used is

vi =

{
ri if 1 ≤ i ≤ k
ri−k if k + 1 ≤ i ≤ k + N .

The virtual registers are accessed by k N-word compare-
and-swap operations CASN1, CASN2, · · · , CASNk. Dur-
ing the execution of this benchmark, each CASNi opera-
tion tries to update virtual registers vi, vi+1, · · · , vi+N−1

atomically. Note that two consecutive CASNs CASNi and
CASNi+1 have N − 1 system registers in common and thus
the micro-benchmark can generate helping chains of length
up to k, where a helping chain is a chain of CASN operations
that a thread has to help before completing its own CASN.

In our experiment, we ran the micro-benchmark with De-
CASN and RaCASN. In the RaCASN implementation, k
random numbers corresponding to the k system registers
were precomputed and stored in a shared array. For each
execution, we measured the longest helping chain and then
computed the distribution of the chain lengths over one mil-
lion executions. We also measured the average execution
time of the micro-benchmark using DeCASN and RaCASN.
Our experiment ran the micro-benchmark with 28 threads
on 28 processors of the SGI Origin2000 machine. We tested
the benchmark with N = 2, 4, 6 and 8, i.e. CAS2, CAS4,
CAS6 and CAS8. The results are presented in Figure 6 and
Figure 7.

5.1.0.1 Results:.
Figure 6 shows that RaCASN breaks the helping chains

much better than DeCASN, thus making themselves faster.
Long helping chains degrade the efficiency of the whole sys-
tem since all processors related to a chain try to lock the
same registers of the last CASN in the chain, which gener-
ates high collision levels on these registers.

In the case of CAS2 in Figure 6, RaCASN exhibits exe-
cutions with the longest helping chain of length 4 in 61% of
the total number of executions, of length 3 in 21% of the
total number of executions and of length 5 in 16% of the
total number of executions. The RaCASN longest helping
chain over one million executions has length 7 in 0.2% of the
total number of executions. Regarding DeCASN, it exhibits
executions with longest helping chains of length 20 in 32%
of the total number of executions, of length 21 in 16% of the
total number of executions and of length 19 in 15% of the

3Terms register and word can be used interchangeably.

Micro-benchmark execution time on
Origin2000

0

200

400

600

800

1000

1200

1400

1600

CAS2 CAS4 CAS6 CAS8
Operations

Av
er

ag
e

ex
ec

. t
im

e
(m

ic
ro

se
c) Original

Randomized

Figure 7: The micro-benchmark execution times on
the SGI Origin2000.

total number of executions. The DeCASN exhibits execu-
tions with longest helping chain of length 28, the maximal
number of CASN operations, in 4% of the total number of
executions.

When the number of registers to be updated increases, the
distribution of RaCASN longest chain lengths shifts to the
right slowly but is still much better than that of DeCASN
as shown in the charts of CAS4, CAS6 and CAS8 (cf. Fig-
ure 6). Note that the probability that one CASN must help
another grows with N . However, the length of the longest
helping chain may not increase since a successful CASN can
reduce this length by at least N . We can observe this effect
in Figure 6 where the highest bar in the DeCASN longest
length distribution shifts to the left slowly when N increases
from 2 to 8.

Since RaCASN helps the micro-benchmark break long
helping chains, which by itself reduces collision on mem-
ory and increases parallelism, RaCASN achieves better per-
formance on the benchmark as shown in Figure 7. The
RaCASN is from 20% to 31% faster than DeCASN. The
overhead of computing k random numbers in RaCASN im-
plementation is not significant, which consumed only 0.07
percent of the execution time.

5.2 The application
As we have experienced, an algorithm that gains good

performance on a micro-benchmark may not keep such per-
formance on a real application. This motivated us to do
another comparison between RaCASN and DeCASN on an
application.

The application comes from the following problem:

5.2.0.2 The problem:.
There are n registers r1, r2, · · · , rn, each of which belongs

to one of n agents a1, a2, · · · , an. The agents communicate
with the underlying computational system via these regis-
ters: agent ak reads a result in register rk written by the
system before writing there a new input ik for the system.
Input values ik are put in register rk randomly and inde-
pendently of other agents. The input values change all the
time dynamically. (We can think that they are inputs from
sensors.)

The computational system computes an output/result ok

for agent ak from the prefix i1, i2, · · · , ik. For simplicity,

CAS2: Distribution of longest wait-queue
lengths on Origin2000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27
The longest length of wait-queues in one execution

%
 o

f e
xe

cu
tio

ns
 w

ith
 th

is

lo
ng

es
t l

en
gt

h

Original
Randomized

CAS4: Distribution of longest wait-queue
lengths on Origin2000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27
The longest length of wait-queues in one execution

%
 o

f e
xe

cu
tio

ns
 w

ith
 th

is

lo
ng

es
t l

en
gt

h

Original
Randomized

CAS6: Distribution of longest wait-queue
lengths on Origin2000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27
The longest length of wait-queues in one execution

%
 o

f e
xe

cu
tio

ns
 w

ith
 th

is

lo
ng

es
t l

en
gt

h

Original
Randomized

CAS8: Distribution of longest wait-queue
lengths on Origin2000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27
The longest length of wait-queues in one execution

%
 o

f e
xe

cu
tio

ns
 w

ith
 th

is

lo
ng

es
t l

en
gt

h

Original
Randomized

Figure 6: The distributions of the longest wait-queue lengths in the micro-benchmark on the SGI Origin2000.

we assume that it computes a prefix-sum

ok = i1 + i2 + · · · + ik = ok−1 + ik

for all k in [2, n]. The system writes the result ok back to
register rk only if the values used to compute ok have not
changed yet. That means:

• either all registers r1, r2, · · · , rk have not changed yet
if ok is computed from i1, i2, · · · , ik, or

• registers rk−1 and rk have not changed yet if ok is com-
puted from ok−1 and ik, where ok−1 had been written
successfully to register rk−1 and no new input ik−1 has
been put in this register since ok−1 was written back.

The efficiency of the computational system is evaluated by
the number of results written successfully. The more results
are written successfully, the better the system is.

5.2.0.3 A simple algorithm solving the problem:.
The following two observations can be made:

• The results must be computed as fast as possible in
order to write them back to the registers before new
inputs are put in them.

• Using ok−1 and ik to compute ok has higher probability
of success than using i1, i2, · · · , ik.

Therefore, we use n threads t1, t2, · · · , tn, where the main
task of thread tk is to compute ok fast. The algorithm is
illustrated in Figure 8.

In our experiment, the CASN operation in the algorithm
was in turn replaced by RaCASN and DeCASN and then

while True do
Read registers from k to k′, where register r′

k is the first reg.
that is observed containing an output/result. Note o1 = i1.
Compute ok: ok′+1 := ok′ + ik′+1; · · · ; ok := ok−1 + ik;
if CASN(〈rk′ , rk′+1, · · · , rk〉, 〈ok′ , ik′+1, ..., ik〉,

〈ok′ , ok′+1, ..., ok〉) = Success) then break;
done

Figure 8: The algorithm for a thread tk in computing
one result/output

the average execution times of the application were mea-
sured over one million executions. The number of registers
or threads n was varied from 4 to 28. The experiment with
higher n generates higher collision level on the registers due
to the helping policy. In the experiment, each thread ran
exclusively on one processor of the Origin2000 machine. The
result is presented in Figure 9.

5.2.0.4 Results:.
The experimental result shows that RaCASN helps the

application run faster compared to DeCASN. It is up to
40% faster in the case of 28 registers or 28 threads. Fig-
ure 9 shows that with more threads the DeCASN/ReCASN
speed-up relation grows. This implies that the randomiza-
tion in RaCASN plays a significant role in reducing collisions
on the shared registers, thus helping the application achieve
better performance. The overhead of pre-computing n ran-
dom numbers corresponding to n registers is not significant:
it takes at most 0.7% of the execution time. (This worst case
is measured in the case where the number of register is 4.)

Application execution time on Origin2000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

4 8 12 16 20 24 28
The number of registers

Ex
ec

ut
io

n
tim

e
(m

ic
ro

se
c)

Original
Randomized

Figure 9: The application execution times on the
SGI Origin2000.

6. CONCLUSIONS
In this paper we advocated randomization for implement-

ing multi-locking such as CASN efficiently. We showed that
our approach is efficient, in theory as well as in practice.

In the past, multi-lock algorithms were usually evaluated
by random simulations. That is, in an evaluation/simulation
of an algorithm it was assumed that randomly chosen reg-
isters were accessed by the processes. We believe that this
is a conceptual faux pas. In fact, shared memory processes
operate on shared data structures (e.g. search trees, linked
lists) which are accessed anything but randomly. In reality,
as in dining philosophers, access is not random but well-
structured. For example, in a shared ordered linked list a
process needs to multi-lock the two neighbor records in order
to insert a new record.

By shifting the randomization from the simulation to the
actual implementation our system is efficient in any appli-
cation, as worst-case as it may be.

7. REFERENCES
[1] J. H. Anderson and M. Moir. Universal constructions

for large objects. Proc. of the International Workshop
on Distributed Algorithms, pages 168–182, 1995.

[2] H. Attiya, F. Kuhn, M. Wattenhofer, and
R. Wattenhofer. Efficient adaptive collect using
randomization. Proc. of the Intl. Symp. on Distributed
Computing (DISC), pages 159–173, 2004.

[3] G. Barnes. A method for implementing lock-free
shared-data structures. Proc. of the ACM Symp. on
Parallel Algorithms and Architectures (SPAA), pages
261–270, 1993.

[4] M. Choy and A. K. Singh. Efficient fault tolerant
algorithms for resource allocation in distributed
systems. Proc. of ACM Symp. on Theory of
Computing (STOC), pages 593–602, 1992.

[5] P. H. Ha and P. Tsigas. Reactive multi-word
synchronization for multiprocessors. The Journal of
Instruction-Level Parallelism, page
http://www.jilp.org/vol6/v6paper3.pdf, 2004.

[6] T. L. Harris, K. Fraser, and I. A. Pratt. A practical
multi-word compare-and-swap operation. Proc. of the
Intl. Symp. on Distributed Computing (DISC), pages
265–279, 2002.

[7] A. Israeli and L. Rappoport. Disjoint-access-parallel
implementations of strong shared memory primitives.
Proc. of Symp. on Principles of Distributed
Computing (PODC), pages 151–160, 1994.

[8] N. Linial. Locality in distributed graph algorithms.
SIAM Journal on Computation, 21(1):193–201, 1992.

[9] N. A. Lynch. Upper bounds for static resource
allocation in a distributed system. Journal for
Computer and System Sciences, 23(2):254–278, 1981.

[10] M. Moir. Transparent support for wait-free
transactions. Proc. of the Intl. Workshop on
Distributed Algorithms, pages 305–319, 1997.

[11] M. Naor and L. Stockmeyer. What can be computed
locally? SIAM Journal on Computation,
24(6):1259–1277, 1995.

[12] N. Shavit and D. Touitou. Software transactional
memory. Proc. of Symp. on Principles of Distributed
Computing (PODC), pages 204–213, 1995.

[13] E. Styer and G. L. Peterson. Improved algorithms for
distributed resource allocation. Proc. of Symp. on
Principles of Distributed Computing (PODC), pages
615–628, 1988.

