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Abstract— We propose a novel approach for the generation
of polyphonic music based on LSTMs. We generate music in
two steps. First, a chord LSTM predicts a chord progression
based on a chord embedding. A second LSTM then generates
polyphonic music from the predicted chord progression. The
generated music sounds pleasing and harmonic, with only few
dissonant notes. It has clear long-term structure that is similar
to what a musician would play during a jam session. We show
that our approach is sensible from a music theory perspective
by evaluating the learned chord embeddings. Surprisingly,
our simple model managed to extract the circle of fifths, an
important tool in music theory, from the dataset.

I. INTRODUCTION

A. Motivation

Robocop, Ghost in the Shell, Titanfall: Popular culture
seems to believe that robots are mechanically stronger and
quicker than humans, but humans will always outsmart
robots; a human mind (“ghost”) in a robot body (“shell”)
is basically invincible. In the last few years, neural networks
have set out to question this doctrine. While creative com-
puting seemed out of reach not so long ago, it is getting
traction with the rise of machine learning tools. Recently,
neural networks have been writing novels in the style of
Shakespeare [1], and turning photos into paintings [2].

Music is believed to be closely connected to feelings,
closer than other forms of art. The area of music psychology
seeks to understand the relationship between music and
emotions. As such, music composition may be considered
a pinnacle to understand machine creativity. In this work,
we introduce JamBot1, a music theory aware system for the
generation of polyphonic music.

Some of the early approaches to mechanically compose
music using recurrent neural networks are now over two
decades old [3], [4]. Also long short-term memory (LSTM)
networks have been considered quite early [5]. These early
approaches were however limited. Recently models that
generate polyphonic, harmonic sounding music have been
proposed [6], [7], [8]. There were also some models that inte-
grate the concept of chords [9], [10]. In [10] the monophonic

* The three main authors are students. Authors listed in alphabetical
order.

1Music samples and our code can be found at www.youtube.com/
channel/UCQbE9vfbYycK4DZpHoZKcSw and https://github.
com/brunnergino/JamBot respectively

melody is predicted first, and then a chord is generated and
played to the melody. Generally, these models see chords
and melody as two separate entities, even though chords and
melody are usually not strictly separated in music. Instead,
chords and melody are two sides of the same coin: The single
notes of a chord can be played like a melody, and notes of
a melody can form a chord.

In contrast to other work, JamBot does not separate chords
and melody. We predict the chord progression first as a
structural guide for the music. Since there is only 1 chord
for every 8 time steps of our polyphonic model, the chord
structures last for a longer time frame; this is not possible
with only one LSTM. This chord structure is then fed into a
polyphonic LSTM that generates the actual music. In contrast
to other work, our polyphonic LSTM is free to predict any
note, not just chord notes. The chords are only provided as
information to the LSTM, not as a rule.

Our model manages to produce harmonic sounding music
with a long time structure. When trained on MIDI music in
major/natural minor scales with all twelve keys, our model
learns a chord embedding that corresponds strikingly well to
the circle of fifths. Thus, our LSTM is capable of extracting
an important concept of music theory from the data.

B. Related Work

Neural networks have been used to generate music for
decades. Mozer [4] used a recurrent neural network that
produced a pitch, duration and chord at each time step. This
approach however encoded principles of music theory into
the data representation. Eck and Schmidhuber [5] were the
first to use an LSTM. They trained the LSTM to repeat a
blues chord progression, and play melodies over it.

Boulanger-Lewandowski et al. [6] proposed a model that
predicts polyphonic music (multiple independent notes) with
no distinction between chords and melodies, but since the
predicted music is polyphonic it can form chords. The
resulting music sounds pleasing and contains some long term
structure. Since the music samples are a bit short it is not
possible to tell if the structure spans over multiple bars.

Other approaches that create polyphonic music are Had-
jeres et al. [7], which create nice sounding Bach chorales
that always have exactly 4 voices, and Johnson [8] which

www.youtube.com/channel/UCQbE9vfbYycK4DZpHoZKcSw
www.youtube.com/channel/UCQbE9vfbYycK4DZpHoZKcSw
https://github.com/brunnergino/JamBot
https://github.com/brunnergino/JamBot


generates pleasing sounding music also with some long term
structure.

Recently there have been some approaches that take chord
progressions into account. Choi et al. [9] propose a text
based LSTM that learns relationships within text documents
that represent chord progressions. Chu et al. [10] present
a hierarchical recurrent neural network where at first a
monophonic melody is generated, and based on the melody
chords and drums are added. It is worth noting that [10]
incorporates the circle of fifths as a rule for generating the
chord progressions, whereas our model is able to extract the
circle of fifths from the data.

Huang and Wu [11] also experiment with learning embed-
dings for the notes. The visualized embeddings show that the
model learned to distinguish between low and high pitches.

Oord et al. [12] created Wavenet, a text-to-speech model
based on CNNs that is trained on raw audio data. They show
that their model can also be used to generate music. Mehri
et al. [13] train hierarchical RNNs on raw audio data. Since
both of these approaches use raw audio data, whereas we use
MIDI files, the results are not directly comparable. Generally,
systems that use MIDI files produce better sounding, less
noisy music. Moreover, training on raw audio data requires
more computing power, and is often infeasible with current
approaches.

It is also noteworthy that music generation models not only
come from the scientific community anymore. With Avia2

and Jukedeck3 two startups joined the field of neural music
generation.

II. BASICS OF MUSIC THEORY

First we introduce some important principles from music
theory that we use in this paper. This is a basic introduction,
and we refer the reader to standard works such as [14] for
an in-depth overview.

A. Bar

In musical notation, a bar or measure is a segment of
time corresponding to a specific number of beats. Each beat
corresponds to a note value. The boundaries between bars
(hence the name) are indicated by vertical lines. In most,
but not all music a bar is 4 beats long.

B. Equal Temperament

Almost all music uses a 12 tone equal temperament
system of tuning, in which the frequency interval between
every pair of adjacent notes has the same ratio. Notes are:
C,C]/D[, D, D]/E[, E, F, F]/G[, G, G]/A[, A, H, and then
again C one octave higher. One cycle (e.g., C to next C) is
called an octave. Notes from different octaves are denoted
with a number, for example D6 is the D from the sixth octave.

2http://www.aiva.ai/
3https://www.jukedeck.com/

Fig. 1. Circle of fifths, a visualization of the relationship between the 12
notes as it is used by musicians.

C. Scale

A scale is a subset of (in most cases) 7 notes. Scales are
defined by the pitch intervals between the notes of the scale.
The most common scale is the major scale with the following
pitch intervals: 2, 2, 1, 2, 2, 2, 1. The first note of the scale
is called the root note. The pair of root note and scale is
called a key. The major scale with the root note C contains
the following notes:

C 2−→ D 2−→ E 1−→ F 2−→ G 2−→ A 2−→ H 1−→C.

The natural minor scale has different pitch intervals than
the major scale, but a natural minor scale with root note A
contains exactly the same notes as a major scale with root
note C. We call this a relative minor.

D. Chords

A chord is a set of 3 or more notes played together. Chords
are defined, like keys, by the pitch intervals and a starting
note. The two most common types of chords are major
chords and minor chords. We denote the major chords with
the capital starting note, e.g., F for an F major chord. For
minor chords we add an m, e.g., Dm for a D minor chord.

E. Circle of Fifths

The circle of fifths, which is shown in Figure 1, is the
relationship among the 12 notes and their associated major
and minor keys. It is a geometrical representation of the
12 notes that helps musicians switch between different keys
and develop chord progressions. Choosing adjacent chords
to form a chord progression often produces more harmonic
sounding music.

III. DATASET

A. General Description

To train the models we used a subset of the Lakh MIDI
Dataset [15]. The dataset contains approximately one hun-
dred thousand songs in the MIDI [16] data format. MIDI



files do not contain any sounds, but rather a series of
messages like “note on”, “note off”, “change tempo”. The
MIDI messages are interpreted by a hard- or software MIDI
instrument which then produces the sound. MIDI messages
may be sent on different channels which have different
sounding instruments assigned to them. For example channel
0 may represent a piano while channel 1 corresponds to
a guitar. Because MIDI files only contain a score (sheet
music) of the song and no actual sound, a song usually
takes much less storage space than other audio files such as
WAV or MP3. This is also beneficial when training neural
networks. Since the dataset is smaller, one can incorporate
more songs during training. Moreover it is simple to change
the instrument with which the music is played. Furthermore,
the MIDI format already provides a basic representation of
music, whereas a raw audio file is more difficult to interpret,
for humans as well as machine learning algorithms.

B. Preprocessing

1) Scales and Keys: To analyze the scales and keys of
the songs we considered 5 scale types: Major, natural minor,
harmonic minor, melodic minor and the blues scale. Because
the major scale and its relative natural minor scale contain the
same notes and only the root note is different, we treat them
as the same major/relative minor scale in the preprocessing.
Every scale can start at 12 different root notes, so we have
4 ·12 = 48 different possible keys. To find the root notes and
scale types of the songs we computed a histogram of the
twelve notes over the whole song. To determine the keys, the
7 most occurring notes of the histograms were then matched
to the 48 configurations.

Analyzing the 114,988 songs of the dataset shows that
86,711 of the songs are in the major/relative minor scale,
1,600 are in harmonic minor, 765 are in the blues scale
and 654 are in melodic minor. The remaining 25,258 are
in another scale, there is a key change in the song or the
scale could not be detected correctly with our method. If the
key changes during a song, the histogram method possibly
detects neither key. Also, if a non scale note is played often
in a song, the key will also not be detected correctly.

To simplify the music generation task, we used only the
songs in the major/minor scales as training data, since they
make up most of the data. Additionally those songs were
shifted to the same root note C which corresponds to a
constant shift of all the notes in a song. We call this dataset
the shifted dataset from now on. This way the models only
have to learn to create music in one key instead of twelve
keys. This step is taken only to avoid overfitting due to a
lack of data per key. After generation, we can transpose the
song into any other key by simply adding a constant shift to
all the notes. If a song sounds good in one key, it will also
sound good in other keys.

Figure 2 shows a histogram of all the notes in the shifted
dataset. We notice that most of the notes belong to the scale,
but not all of them. Therefore, simply ignoring the notes that
do not belong to the scale and solely predicting in-scale notes

0 20 40 60 80 100
0

0.5

1

·106

Pitch

O
cc

ur
re

nc
es

Fig. 2. Histogram over the notes of the shifted dataset. The notes that
belong to the C major/A harmonic minor scale are blue, the others red.

would make the generated music “too simplistic”. In real
music, out of scale notes are played, e.g., to create tension.

2) Range: MIDI has a capacity of 128 different pitches
from C-1 to G9. Figure 2 shows that the very high and the
very deep notes are not played often. Because the LSTM
does not have enough data in these ranges to learn anything
meaningful and the notes in these ranges usually do not
sound pleasant, we only used the notes from C2 to C6 as
training data.

3) Chord Extraction: In order to train the chord LSTM
(see Section IV-B), we need to extract the chords from the
songs. Because it is not feasible to determine the chords
manually, we automated the process. To that end, we com-
pute a histogram of the 12 notes over a bar. The three most
played notes of the bar make up the chord. The length of one
bar was chosen because usually in popular music the chords
roughly change every bar.

Of course this is only an approximation to a chord as it is
defined in music theory. We only consider chords with up to
three notes, even though there are chords with four or more
notes. Our method might also detect note patterns that are
not chords in a music theoretical sense, but appear often in
real world music. For example, if a note that is not a note of
the current chord is played more often than the chord notes,
the detected chord might vary from the actual chord.

In Table I the 10 most common chords of the extracted
chord datasets can be seen. In both datasets the most common
chords are what one might expect from large datasets of
music, and coincides with [17], [18], [19]. Therefore we
conclude that our chord extraction method is plausible.

IV. MODELS

When you listen to a song, dependencies in the song are
important. Likewise, as you read this paper, you understand
each word based on your understanding of the context and
previous words. Classical neural networks, so-called Multi
Layer Perceptrons (MLP), cannot do this well. Recurrent
neural networks (RNN) were proposed to address this is-
sue, however, normal RNNs usually only capture short-term
dependencies. In order to add long-term dependencies into
generated music, which is believed to be a key feature of



TABLE I
THE 10 MOST FREQUENT CHORDS IN THE SHIFTED AND THE ORIGINAL

DATASET.

Shifted Not Shifted
1. C G
2. G C
3. F D
4. Am F
5. Dm A
6. Csus4 Am
7. Em E
8. Gsus4 Em
9. Csus6 B
10. Asus7 Dm

pleasing music, we use LSTM (Long Short-Term Memory)
networks [20] which is an architecture designed to improve
upon the RNN with the introduction of simple memory
cells with a gating architecture. These gates decide whether
LSTM cells should forget or persist the previous state in
each loop and thus make LSTMs capable of learning useful
dependencies within a long sequence.

We denote by x0, . . . ,xt , . . . the input sequences and
y0, . . . ,yt , . . . the output sequences. For each memory cell,
the network computes the output of four gates: an update
gate, input gate, forget gate and output gate. The outputs of
these gates are:

i = σ(Uixt +Viht−1)

f = σ(U f xt +Vf ht−1)

o = σ(Uoxt +Voht−1)

g = tanh(Ugxt +Vght−1)

where Ui,U f ,Uo,Ug,Vi,Vf ,Vo,Vg are all weight matrices. The
bias terms have been omitted for clarity. The memory cell
state is then updated as a function of the input and the
previous state:

ct = f � ct−1 + i�g.

The hidden state is computed as a function of the cell state
and the output gate, and finally the output is computed as
the output activation function δ of the output matrix Wout
multiplied with the hidden state:

ht = o� tanh(ct)

yt = δ (Woutht)

For more details about general LSTMs, we refer the
interested readers to [21].

In Figure 3 JamBot’s architecture is shown. We will
explain it in detail in the remainder of this section.

A. Data Representation

1) Polyphonic LSTM: To represent the music data that
is fed into the polyphonic LSTM we use a piano roll
representation. Every bar is divided into eight time steps. The
notes that are played at each time step are represented as a
vector. The length of these vectors is the number of notes. If
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Fig. 3. The architecture of JamBot. Chords and piano roll representations
are extracted from the MIDI files in the training data (in black). The
extracted chords and piano rolls are then used to train the chord and
polyphonic LSTMs (in red). During music generation (in blue), the chord
LSTM generates a chord progression that is used as input to the polyphonic
LSTM which generates new music in MIDI format. When listening to the
music, one can freely vary tempo and instrumentation.

a note is played at that time step, the corresponding vector
entry is a 1 and if the note is not played the corresponding
entry is a 0. The piano rolls of the songs are created with
the pretty midi library [22] for Python.

2) Chord LSTM: To represent the chords of a song we
borrow a technique from natural language processing. In
machine learning applications that deal with language, words
are often replaced with integer ids and the word/id pairs
are stored in a dictionary. The vocabulary size is usually
limited. Only the N most occurring words of a corpus receive
a unique id, because the remaining words do not occur
often enough for the algorithms to learn anything meaningful
from them. The rarely occurring words receive the id of
an unknown tag. For the chord LSTM we use the same
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Fig. 4. This figure shows the number of occurrences of all 300 unique
chords in the shifted dataset.

technique. The chords are replaced with ids and the chord/id
pairs stored in a dictionary. So the chord LSTM only sees
the ids of the chords and has no knowledge of the notes that
make up the chords.

Figure 4 shows the number of occurrences of all unique
chords in the shifted dataset. On the left is the most frequent
chord and on the right the least frequent one. Even though
there are 12 ·11 ·10+12 ·11+12 = 1,465 different possible
note combinations for 3, 2 or 1 notes, there are only 300
different combinations present in the shifted dataset. This
makes sense since most random note combinations do not
sound pleasing, and thus do not occur in real music. It can
be seen that few chords are played very often and then the
number of occurrences of the chords drops very fast. Based
on this data the vocabulary size was chosen to be 50. The
remaining chords received the id of the unknown tag.

Before we feed the chord ids into the chord LSTM we
have to encode them as vectors. To do so we use one-hot
encoding. The input vectors are the same size as the size of
the chord vocabulary. All the vector entries are 0, except for
the entry at the index of the chord id which equals 1.

B. Chord LSTM

1) Architecture: For the first layer of the chord LSTM we
used another technique from natural language processing;
word embeddings. This technique has been pioneered by
Bengio et al. [23] and has since been continuously developed
and improved. Google’s word2vec[24] is a recent and suc-
cessful result of this trend. In natural language processing, a
word embedding maps words from the vocabulary to vectors
of real numbers. Those embeddings are often not fixed,
but learned from the training data. The idea is that the
vector space can capture relationships between words, e.g.,
words that are semantically similar are also close together
in the vector space. For example, the days of the week, or
words like king and queen, might be close together in the
embedding space. For the chords we used this exact same
technique. The one-hot vectors xchord as described in Section
IV-A.2 are multiplied with an embedding matrix Wembed ,
resulting in a 10-dimensional embedded chord vector:

xembed =Wembed · xchord

The goal is that the chord LSTM learns a meaningful
representation of the chords from the training data. In our
LSTM the embedding matrix Wembed consists of learnable
parameters. Those parameters are trained at the same time
as the rest of the chord LSTM.

After the embedding layer, the embedded chords are fed
into an LSTM with 256 hidden cells. As output activation
function softmax was used. The output of the LSTM then
corresponds to a vector that contains the probabilities for all
the chords to be played next.

2) Training: To train the chord LSTM we used cross-
entropy as loss function and the Adam optimizer[25]. The
best initial learning rate we found was 10−5. The training
data consists of the extracted chords of 80,000 songs from
the shifted dataset. We trained the model with this data
for 4 epochs. We also trained a second chord LSTM with
the extracted chords of 100’000 songs from the original
unshifted dataset to visualize the embeddings that it learned.

3) Prediction: To predict a new chord progression, we
first feed a seed of variable length into the LSTM. The next
chord is then predicted by sampling the output probability
vector with temperature. The predicted chord is then fed into
the LSTM again and the next chord is again sampled with
temperature, and so on. The temperature parameter controls
how divers the generated chord progression is. A temperature
of zero would mean that for a given seed, the predicted chord
progression would stay the same in each run.

C. Polyphonic LSTM

1) Input: The input vector of the polyphonic LSTM can
be seen in Figure 5. It consists of the vectors from the
piano rolls of the songs, as described in Section IV-A.1, with
additional features appended to the vectors.

The first feature is the embedded chord of the next time
step. The embedding is the same as in the completely trained
chord LSTM described in Section IV-B. With the chord
of the notes to be predicted given, the LSTM can learn
which notes are usually played to which chords. This way
the predicted notes follow the chord progression and the
generated songs receive more long term structure.

In music the melodies often “lead” to the next chord. For
this reason we also append the embedded vector of the chord
which follows the chord of the next time step. This way the
LSTM has a target where to go with the melodies when
predicting the music. This should cause the generated songs
to be more structured.

The last feature that is appended is a simple binary counter
that counts from 0 to 7 in every bar. This helps the LSTM
to know at which time step in the bar it is and how many
steps remain to the next chord change. This should make the
chord-transitions smoother.

2) Architecture: The input vectors are fed into an LSTM
with 512 cells in the hidden layer. The activation function
of the output is a sigmoid. The output of the LSTM at time
t yt

poly can be seen in Figure 6. It is a vector with the same
number of entries as there are notes. Every output vector
entry is the probability of the corresponding note to be played
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Fig. 5. The input vector of the polyphonic LSTM at time t. It consists of
the piano roll vector, the embedded current chord, the embedded next chord
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Fig. 6. The output vector of the polyphonic LSTM at time t.

at the next time step, conditioned on all the inputs of the time
steps before.

3) Training: The polyphonic LSTM is trained to reduce
the cross entropy loss between the output vectors yt

poly and
the ground truth. We use the Adam optimizer with an initial
learning rate of 10−6. Since for every time step in the chord
LSTM there are 8 time steps in the polyphonic LSTM,
the training data for the polyphonic LSTM only consists
of 10,000 songs from the shifted dataset in order to reduce
training time. We trained the LSTM for 4 epochs.

4) Generation: To predict a new song we first feed a seed
consisting of the piano roll and the corresponding chords into
the LSTM. The notes which are played at the next time step
are then sampled from the output vector yt

poly. The notes are
sampled independently, so if one note is chosen to be played,
the probabilities of the other notes do not change.

We also implement a soft upper limit for the number of
notes to be played at one time step. The training data mainly
consists of songs where different instruments are playing at
the same time with different volumes. The predicted song
however is played back with only one instrument and every
note is played at the same volume. So while the songs from
the training data might get away with many notes playing at
the same time, with our playback method it quickly sounds
too cluttered. For this reason we implemented a soft upper
limit for the number of notes to be played at one time step.
Before prediction we take the sum of all probabilities of the
output vector and if it is greater than the upper limit l, we
divide all the probabilities by the sum and then multiply them
by l:

s = sum{yt
poly}=

N

∑
i=1

P(ni = 1|x0
poly, · · · ,xt−1

poly)

yt
polynew

= yt
poly · (l/s)

This prevents the LSTM from predicting too many notes to
be played simultaneously.

In the piano roll representation there is no distinction
between a note that is held for t time steps and a note
played repeatedly for t time steps. So it is up to us how to
interpret the piano roll when replaying the predicted song.
We found that it generally sounds better if the notes are
played continuously. To achieve this, we merge consecutive
notes of the same pitch before saving the final MIDI file.
However, at the beginning of each bar all notes are repeated
again. This adds more structure to the music and emphasizes
the chord changes.

The instrumentation and the tempo at which the predicted
songs are played back with can be chosen arbitrarily. Thus,
the produced music can be made more diverse by choosing
different instruments, e.g., piano, guitar, organ, etc. and
varying the tempo that is set in the produced MIDI file.

V. RESULTS

A. Chord LSTM

The most interesting result from the chord LSTM are the
embeddings it learned from the training data. To visual-
ize those embeddings we used PCA (Principal Component
Analysis) to reduce the ten dimensional embeddings of the
chords to two dimensions. In Figure 7 we can see a plot
of the visualized embeddings of a chord LSTM that was
trained with the original unshifted dataset. The plot contains
all the major chords from the circle of fifths, which we
can see in Figure 1. Interestingly the visualized embeddings
form exactly the same circle as the circle of fifths. So the
chord LSTM learned a representation similar to the diagram
that musicians use to visualize the relationships between the
chords. Thus, our model is capable of extracting concepts of
music theory from songs.

In contrast to previous methods such as [10] where the
background knowledge is input manually to help the system
do post-processing (i.e., to produce the chords with the circle
of fifths), our method automatically mines this knowledge
from the dataset and then exploits this mined theory to
produce good songs. Actually, these two learning methods
are also similar to the ways in which human-being learns. A
human musician either learns the theory from her teacher, or
learns by listening to a number of songs and summarizing a
high level description and frequent patterns of good music.
At a first glance, the first way appears more efficient, but
in most cases encoding knowledge into a machine-readable
way manually is difficult and expensive, if not impossible.
Besides, the second learning way may help us extend the
current theory by finding some new patterns from data.

On the other hand, if someone wants to generate good
music based on her own preference, but she is not an expert
in music or machine learning, how could she input her own
preferred “theory” into the system? Now, our data mining
based method becomes more powerful since she can just tell
the system which music she likes (and which not).

This is also related to another active research field; that
of learning salient representations from data. When we
have a meaningful representation, similar instances should
lie closely to each other in the new representation space.
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This phenomenon plays an important role in our model for
generating high-quality new music.

In Figure 8 we used the same technique to visualize
the chord embeddings trained on the shifted dataset. The
embeddings of the 15 most occurring chords are plotted.
Instead of the chord names the three notes that make up each
chord are shown. We can see that chords which contain two
common notes are close together. It makes sense that chords
that share notes are also close together in the vector space.
The circle of fifths is not present in the chord LSTM trained
with the shifted dataset. Not even all chords are present in
the chord dictionary, since its size has been limited to 50.
This makes sense because many of the those chords do not
occur often in C major/A harmonic minor.

The chord progressions predicted by the chord LSTM con-
tain structures that are often present in western pop music. It
often repeats four chords, especially if the temperature is set
low. If the temperature is set higher, the chord progressions
become more divers and there are fewer repeating structures.
If the sampling temperature is low, the predicted chords are
mostly also the ones that occur the most in the training data,
i.e., from the Top 10 in Table I. If the sampling temperature
is high the less occurring chords are predicted more often.

B. Polyphonic LSTM

The songs generated by the polyphonic LSTM sound
pleasing. There clearly is a long term structure in the
songs and one can hear distinct chord changes. The LSTMs
succeeded in learning the relationship between the chords
and which notes can be played to them. Therefore it is able
to generate polyphonic music to the long term structure given
by the predicted chords.

The music mostly sounds harmonic. Sometimes there are
short sections that sound dissonant. That may be because
even if the probabilities for playing dissonant notes are small,
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Fig. 8. Chord embeddings of the chord LSTM trained with the shifted
dataset. Instead of the chord names, the notes of the chord are shown. The
ten dimensional embeddings were again reduced to two dimensions with
PCA.

it can still happen that one is sampled from time to time.
Sometimes it adds suspense to the music, but sometimes it
just sounds wrong.

With a lower sampling temperature for the chord LSTM,
the songs sound more harmonic but also more boring.
Accordingly, if the sampling temperature is high, the music
sounds less harmonic, but also more diverse. This might be
because the chord LSTM predicts more less occurring chords
with a higher temperature and there is less training data to
learn the relationship between the less occurring chords and
the notes.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

We introduced JamBot, a system to predict chord pro-
gressions as a structural guide for a song and then generate
polyphonic music to those chord progressions. The generated
music has a long term structure similar to what a human
musician might play during an improvisation (“jam”) session.

By visualizing the embedded chords, we show that JamBot
learns the circle of fifths from the original dataset. When
trained with the shifted dataset it also learns meaningful
embeddings, where related chords are closer together in the
embedding space. This is especially surprising considering
that the chord LSTM only was provided with the chord ids. It
did not receive any information about the notes of the chords.
Thus, without having to explicitly implement principles of
music theory, the model gained an understanding of them by
observing them in the dataset.

JamBot has a simple structure and is thus easy to imple-
ment and use. Since it uses MIDI data instead of raw audio
files it is fast to train on a single GPU.



B. Future Work

JamBot is capable of learning meaningful representations.
We plan to incorporate more representation learning meth-
ods, such as autoencoders, in order to learn more complex
music theory related representations from the data.

The notes to be played in the next time step are sampled
independently from the probability output vector yt

poly (Fig-
ure 6). However, it matters which notes are played together,
since the intervals between the played notes characterize the
chords and harmonies. This is a common problem for models
that generate polyphonic music. We were able to mitigate this
problem by providing the polyphonic LSTM with the current
chord. Instead of sampling every note probability P(ni = 1)
independently, one could come up with a way to calculate
the joint probabilities P(n0, · · · ,nN) of the notes. This could
help reduce the number of dissonant notes and would be
closer to how humans compose music.

One limitation of the piano roll data representation is
that it cannot distinguish between a note that is held for
several time steps and a note that is repeatedly played
at every time step. Most existing data representations that
address this problem only work for monophonic music. A
data representation that allows both polyphony and notes of
different lengths would be favorable.

So far we use a two-level approach: In the first step we
generate chord progressions. In the second step the generated
chords are used to generate music. Thus, the chord LSTM
guides the polyphonic LSTM and helps it produce music
with long-term structure. It would be interesting to add
more levels to the hierarchy, by for example adding another
network that guides the chord LSTM. This might enable our
system to produce music with repeating structures such as
choruses and verses.

Parts of the Lakh MIDI dataset are aligned with the
Million Song Dataset 4 that contains meta information like
artist, genre and lyrics of the songs. To make the generated
music more diverse, one could input a “genre feature” into
the LSTMs. When generating a new song one could provide
the LSTMs with any desired genre feature, thus conditioning
its output on said genre.
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