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Abstract: Algorithmic reasoning is a fundamental cognitive ability that plays a pivotal role in

problem-solving and decision-making processes. Reinforcement Learning (RL) has demonstrated

remarkable proficiency in tasks such as motor control, handling perceptual input, and managing

stochastic environments. These advancements have been enabled in part by the availability of

benchmarks. In this work we introduce PUZZLES, a benchmark based on Simon Tatham’s Portable

Puzzle Collection, aimed at fostering progress in algorithmic and logical reasoning in RL. PUZZLES

contains 40 diverse logic puzzles of adjustable sizes and varying levels of complexity, providing

detailed information on the strengths and generalization capabilities of RL agents. Furthermore, we

evaluate various RL algorithms on PUZZLES, providing baseline comparisons and demonstrating

the potential for future research. All of the software, including the environment, is available at

https://github.com/ETH-DISCO/rlp.
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1. Introduction

Human intelligence relies heavily on logical and algorithmic reasoning as integral
components for solving complex tasks. While Machine Learning (ML) has achieved remark-
able success in addressing many real-world challenges, logical and algorithmic reasoning
remains an open research question [1–7]. This research question is supported by the avail-
ability of benchmarks, which allow for a standardized and broad evaluation framework to
measure and encourage progress [8–10].

Similarly, Reinforcement Learning (RL) has made remarkable progress in various
domains, showcasing its capabilities in tasks such as game playing [11–15] , robotics [16–19]
and control systems [20–22]. Various benchmarks have been proposed to enable progress in
these areas [23–29]. More recently, advances have also been made in the direction of logical
and algorithmic reasoning within RL [30–32]. Popular examples also include the games of
chess, shogi, Go and Mahjong[33–35]. Realizing the importance of logical and algorithmic
reasoning, we propose a benchmark to guide future developments in this domain.

Logic puzzles have long been a playful challenge for humans, and they are an ideal
testing ground for evaluating the algorithmic and logical reasoning capabilities of RL
agents. A diverse range of puzzles, similar to the Atari benchmark [24], favors methods
that are broadly applicable. A unique aspect of logic puzzles is that, unlike tasks with
a fixed input size, they can be solved iteratively once an algorithmic solution is found,
allowing us to measure how well these solutions adapt and generalize to various sizes of
inputs. Furthermore, compared to games such as chess and Go, logic puzzles have a known
solution, making reward design easier and enabling tracking progress and guidance with
intermediate rewards.

In this paper, we introduce PUZZLES, a comprehensive RL benchmark specifically
designed to evaluate RL agents’ algorithmic reasoning and problem-solving abilities in the
realm of logical and algorithmic reasoning. Simon Tatham’s Puzzle Collection [36], curated
by the renowned computer programmer and puzzle enthusiast Simon Tatham, serves as
the foundation of PUZZLES. This collection includes a set of 40 logic puzzles, shown in
Figure 1, each of which presents distinct challenges with various dimensions of adjustable
complexity. They range from more well-known puzzles, such as Solo or Mines (commonly
known as Sudoku and Minesweeper, respectively) to lesser-known puzzles such as Cube or
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Black Box Bridges Cube Dominosa Fifteen Filling Flip Flood Galaxies Guess

Inertia Keen Lightup Loopy Magnets Map Mines Mosaic Net Netslide

Palisade Pattern Pearl Pegs Range Rectangles Same Game Signpost Singles Sixteen

Slant Solo Tents Towers Tracks Twiddle Undead Unequal Unruly Untangle

Figure 1. All puzzle classes of Simon Tatham’s Portable Puzzle Collection.

Slant. PUZZLES includes all 40 puzzles in a standardized environment, each playable with a
visual or discrete input and a discrete action space.

1.1. Contributions

We propose PUZZLES, an RL environment based on Simon Tatham’s Puzzle Collection,
comprising a collection of 40 diverse logic puzzles. To ensure compatibility, we have
extended the original C source code to adhere to the standards of the Pygame library.
Subsequently, we have integrated PUZZLES into the Gymnasium framework API, providing
a straightforward, standardized, and widely-used interface for RL applications. PUZZLES
allows the user to arbitrarily scale the size and difficulty of logic puzzles, providing detailed
information on the strengths and generalization capabilities of RL agents. Furthermore, we
have evaluated various RL algorithms on PUZZLES, providing baseline comparisons and
demonstrating the potential for future research.

2. Related Work

2.1. RL benchmarks

Various benchmarks have been proposed in RL. Bellemare et al. [24] introduced the
influential Atari-2600 benchmark, on which Mnih et al. [11] trained RL agents to play the
games directly from pixel inputs. This benchmark demonstrated the potential of RL in com-
plex, high-dimensional environments. PUZZLES allows the use of a similar approach where
only pixel inputs are provided to the agent. Todorov et al. [23] presented MuJoCo which
provides a diverse set of continuous control tasks based on a physics engine for robotic
systems. Another control benchmark is the DeepMind Control Suite by Duan et al. [26],
featuring continuous actions spaces and complex control problems. The work by Côté et al.
[28] emphasized the importance of natural language understanding in RL and proposed a
benchmark for evaluating RL methods in text-based domains. Lanctot et al. [29] introduced
OpenSpiel, encompassing a wide range of games, enabling researchers to evaluate and
compare RL algorithms’ performance in game-playing scenarios. These benchmarks and
frameworks have contributed significantly to the development and evaluation of RL algo-
rithms. OpenAI Gym by Brockman et al. [25], and its successor Gymnasium by the Farama
Foundation [37] helped by providing a standardized interface for many benchmarks. As
such, Gym and Gymnasium have played an important role in facilitating reproducibility
and benchmarking in reinforcement learning research. Therefore, we provide PUZZLES as a
Gymnasium environment to enable ease of use.

2.2. Logical and algorithmic reasoning within RL

Notable research in RL on logical reasoning includes automated theorem proving
using deep RL [16] or RL-based logic synthesis [38]. Dasgupta et al. [39] find that RL
agents can perform a certain degree of causal reasoning in a meta-reinforcement learning
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setting. The work by Jiang and Luo [30] introduces Neural Logic RL, which improves
interpretability and generalization of learned policies. Eppe et al. [40] provide steps to
advance problem-solving as part of hierarchical RL. Fawzi et al. [31] and Mankowitz et al.
[32] demonstrate that RL can be used to discover novel and more efficient algorithms
for well-known problems such as matrix multiplication and sorting. Neural algorithmic
reasoning has also been used as a method to improve low-data performance in classical RL
control environments [41,42]. Logical reasoning might be required to compete in certain
types of games such as chess, shogi and Go [13,33,34,43], Poker [44–47] or board games
[48–51]. However, these are usually multi-agent games, with some also featuring imperfect
information and stochasticity.

2.3. Reasoning benchmarks

Various benchmarks have been introduced to assess different types of reasoning
capabilities, although only in the realm of classical ML. IsarStep, proposed by Li et al.
[8], specifically designed to evaluate high-level mathematical reasoning necessary for
proof-writing tasks. Another significant benchmark in the field of reasoning is the CLRS
Algorithmic Reasoning Benchmark, introduced by Veličković et al. [9]. This benchmark em-
phasizes the importance of algorithmic reasoning in machine learning research. It consists
of 30 different types of algorithms sourced from the renowned textbook “Introduction to
Algorithms” by Cormen et al. [52]. The CLRS benchmark serves as a means to evaluate
models’ understanding and proficiency in learning various algorithms. In the domain of
large language models (LLMs), BIG-bench has been introduced by Srivastava et al. [10].
BIG-bench incorporates tasks that assess the reasoning capabilities of LLMs, including
logical reasoning.

Despite these valuable contributions, a suitable and unified benchmark for evaluating
logical and algorithmic reasoning abilities in single-agent perfect-information RL has yet
to be established. Recognizing this gap, we propose PUZZLES as a relevant and necessary
benchmark with the potential to drive advancements and provide a standardized evaluation
platform for RL methods that enable agents to acquire algorithmic and logical reasoning
abilities.

3. The PUZZLES Environment

In the following section we give an overview of the PUZZLES environment.1For a
detailed explanation of all features of the environment as well as their implementation,
please see Appendix A and Appendix B.

3.1. Environment Overview

Within the PUZZLES environment, we encapsulate the tasks presented by each logic
puzzle by defining consistent state, action, and observation spaces. It is also important to
note that the large majority of the logic puzzles are designed so that they can be solved
without requiring any guesswork. By default, we provide the option of two observation
spaces, one is a representation of the discrete internal game state of the puzzle, the other
is a visual representation of the game interface. These observation spaces can easily be
wrapped in order to enable PUZZLES to be used with more advanced neural architectures
such as graph neural networks (GNNs) or Transformers. All puzzles provide a discrete
action space which only differs in cardinality. To accommodate the inherent difficulty and
the need for proper algorithmic reasoning in solving these puzzles, the environment allows
users to implement their own reward structures, facilitating the training of successful RL
agents. All puzzles are played in a two-dimensional play area with deterministic state
transitions, where a transition only occurs after a valid user input. Most of the puzzles in
PUZZLES do not have an upper bound on the number of steps, they can only be completed
by successfully solving the puzzle. An agent with a bad policy is likely never going to

1 The puzzles are available to play online at https://www.chiark.greenend.org.uk/~sgtatham/puzzles/

https://www.chiark.greenend.org.uk/~sgtatham/puzzles/
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reach a terminal state. For this reason, we provide the option for early episode termination
based on state repetitions. As we show in Section 4.4, this is an effective method to facilitate
learning.

3.2. Difficulty Progression and Generalization

The PUZZLES environment places a strong emphasis on giving users control over the
difficulty exhibited by the environment. For each puzzle, the problem size and difficulty
can be adjusted individually. The difficulty affects the complexity of strategies that an agent
needs to learn to solve a puzzle. As an example, Sudoku has tangible difficulty options:
harder difficulties may require the use of new strategies such as forcing chains2 to find a
solution, whereas easy difficulties only need the single position strategy.3

The scalability of the puzzles in our environment offers a unique opportunity to
design increasingly complex puzzle configurations, presenting a challenging landscape
for RL agents to navigate. This dynamic nature of the benchmark serves two important
purposes. Firstly, the scalability of the puzzles facilitates the evaluation of an agent’s
generalization capabilities. In the PUZZLES environment, it is possible to train an agent in
an easy puzzle setting and subsequently evaluate its performance in progressively harder
puzzle configurations. For most puzzles, the cardinality of the action space is independent
of puzzle size. It is therefore also possible to train an agent only on small instances of a
puzzle and then evaluate it on larger sizes. This approach allows us to assess whether an
agent has learned the correct underlying algorithm and generalizes to out-of-distribution
scenarios. Secondly, it enables the benchmark to remain adaptable to the continuous
advancements in RL methodologies. As RL algorithms evolve and become more capable,
the puzzle configurations can be adjusted accordingly to maintain the desired level of
difficulty. This ensures that the benchmark continues to effectively assess the capabilities of
the latest RL methods.

4. Empirical Evaluation

We evaluate the baseline performance of numerous commonly used RL algorithms
on our PUZZLES environment. Additionally, we also analyze the impact of certain design
decisions of the environment and the training setup. Our metric of interest is the average
number of steps required by a policy to successfully complete a puzzle, where lower is
better. We refer to the term successful episode to denote the successful completion of a single
puzzle instance. We also look at the success rate, i.e. what percentage of the puzzles was
completed successfully.

To provide an understanding of the puzzle’s complexity and to contextualize the
agents’ performance, we include an upper-bound estimate of the optimal number of
steps required to solve the puzzle correctly. This estimate is a combination of both the
steps required to solve the puzzle using an optimal strategy, and an upper bound on the
environment steps required to achieve this solution, such as moving the cursor to the
correct position. The upper bound is denoted as Optimal. Please refer to Table A4 for details
on how this upper bound is calculated for each puzzle.

We run experiments based many relevant and commonly used RL algorithms. We
include both popular traditional algorithms such as PPO, as well as algorithms designed
more specifically for the kinds of tasks presented in PUZZLES, such as Muzero or DreamerV3.

Where possible, we used the implementations available in the RL library Stable
Baselines 3 [53], using the default hyper-parameters. For MuZero and DreamerV3, we used
the code available at [54] and [55], respectively. We provide a summary of all algorithms in
Appendix Table A2.

2 Forcing chains works by following linked cells to evaluate possible candidates, usually starting with a two-
candidate cell.

3 The single position strategy involves identifying cells which have only a single possible value.
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Figure 2. Average episode length of successful episodes for all evaluated algorithms on all puzzles

in the easiest setting (lower is better). Some puzzles, namely Loopy, Pearl, Pegs, Solo, and Unruly,

were intractable for all algorithms and were therefore excluded in this aggregation. The standard

deviation is computed with respect to the performance over all evaluated instances for all trained

seeds, aggregated for the total number of puzzles. Optimal refers the upper bound of the performance

of an optimal policy, it therefore does not include a standard deviation. We see that DreamerV3

performs the best with an average episode length of 1334. However, this is still worse than the

optimal upper bound at an average of 217 steps.

All selected algorithms are compatible with the discrete action space required by our
environment. This circumstance prohibits the use of certain other common RL algorithms
such as Soft-Actor Critic (SAC) [56] or Twin Delayed Deep Deterministic Policy Gradients
(TD3) [57].

4.1. Baseline Experiments

For the general baseline experiments, we trained all agents on all puzzles and evaluate
their performance. Due to the challenging nature of our puzzles, we have selected an
easy difficulty and small size of the puzzle where possible. Every agent was trained on
the discrete internal state observation using five different random seeds. We trained all
agents by providing rewards only at the end of each episode upon successful completion or
failure. For computational reasons, we truncated all episodes during training and testing at
10,000 steps. For such a termination, reward was kept at 0. We evaluate the effect of this
episode truncation in Section 4.4 We provide all experimental parameters, including the
exact parameters supplied for each puzzle in Appendix E.4.

We track an agent’s progress using episode lengths, i.e., how many actions an agent
needs to solve a puzzle. A lower number of actions indicates a stronger policy that is closer
to the optimal solution. To obtain the final evaluation, we run each policy on 1000 random
episodes of the respective puzzle, again with a maximum step size of 10,000 steps. All
experiments were conducted on NVIDIA 3090 GPUs. The training time for a single agent
with 2 million PPO steps varied depending on the puzzle and ranged from approximately
1.75 to 2.5 hours. The training for DreamerV3 and MuZero was more demanding and
training time ranged from approximately 6 to 10 hours.

Figure 2 shows the average successful episode length for all algorithms. It can be seen
that DreamerV3 performs best, with an average of 1334 steps for a successful episode. PPO
also achieves good performance, closely followed by TRPO and MuZero. This is especially
interesting since PPO and TRPO follow a much simpler training routine compared to
DreamerV3 and MuZero. It seems that the implicit world models learned by DreamerV3
struggle to appropriately capture some puzzles. The high variance of MuZero may indicate
some instability during training or the need for puzzle-specific hyperparamter tuning.
Upon closer inspection of the detailed results, presented in Appendix Table A6 and A7,
DreamerV3 manages to solve 62.7% of all puzzle instances. In 14 out of the 40 puzzles,
it has found a policy that solves the puzzles within the Optimal upper bound. PPO and
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TRPO managed to solve an average of 61.6% and 70.8% of the puzzle instances, however
only 8 and 11 of the puzzles have consistently solved within the Optimal upper bound. The
algorithms A2C, RecurrentPPO, DQN and QRDQN perform worse than a pure random
policy. Overall, it seems that some of the environments in PUZZLES are quite challenging
and well suited to show the difference in performance between algorithms.

4.2. Difficulty

We further evaluate the performance of a subset of the puzzles on the easiest preset
difficulty level for humans. We selected all puzzles where a random policy was able to solve
them with a probability of at least 10%, which are Netslide, Same Game and Untangle. By
using this selection, we estimate that the reward density should be relatively high, ideally
allowing the agent to learn a good policy. Again, we train all algorithms listed in Table A2.
We provide results for the two strongest algorithms, PPO and DreamerV3 in Table 1, with
complete results available in Appendix Table A6. Note that as part of Section 4.4, we also
perform ablations using DreamerV3 on more puzzles on the easiest preset difficulty level
for humans.

Table 1. Comparison of how many steps agents trained with PPO and DreamerV3 need on average

to solve puzzles of two difficulty levels. In brackets, the percentage of successful episodes is reported.

The difficulty levels correspond to the overall easiest and the easiest-for-humans settings. We also

give the upper bound of optimal steps needed for each configuration.

Puzzle Parameters PPO DreamerV3 # Optimal Steps

Netslide
2x3b1 35.3 ± 0.7 (100.0%) 12.0 ± 0.4 (100.0%) 48
3x3b1 4742.1 ± 2960.1 (9.2%) 3586.5 ± 676.9 (22.4%) 90

Same Game
2x3c3s2 11.5 ± 0.1 (100.0%) 7.3 ± 0.2 (100.0%) 42
5x5c3s2 1009.3 ± 1089.4 (30.5%) 527.0 ± 162.0 (30.2%) 300

Untangle
4 34.9 ± 10.8 (100.0%) 6.3 ± 0.4 (100.0%) 80
6 2294.7 ± 2121.2 (96.2%) 1683.3 ± 73.7 (82.0%) 150

We can see that for both PPO and DreamerV3, the percentage of successful episodes
decreases, with a large increase in steps required. DreamerV3 performs clearly stronger
than PPO, requiring consistently fewer steps, but still more than the optimal policy. Our
results indicate that puzzles with relatively high reward density at human difficulty levels
remain challenging. We propose to use the easiest human difficulty level as a first measure
to evaluate future algorithms. The details of the easiest human difficulty setting can be
found in Appendix Table A5. If this level is achieved, difficulty can be further scaled up by
increasing the size of the puzzles. Some puzzles also allow for an increase in difficulty with
fixed size.

4.3. Effect of Action Masking and Observation Representation

We evaluate the effect of action masking, as well as observation type, on training per-
formance. Firstly, we analyze whether action masking, as described in paragraph “Action
Masking” in Appendix A.4, can positively affect training performance. Secondly, we want
to see if agents are still capable of solving puzzles while relying on pixel observations. Pixel
observations allow for the exact same input representation to be used for all puzzles, thus
achieving a setting that is very similar to the Atari benchmark. We compare MaskablePPO
to the default PPO without action masking on both types of observations. We summarize
the results in Figure 3. Detailed results for masked RL agents on the pixel observations are
provided in Appendix Table A8.

As we can observe in Figure 3, action masking has a strongly positive effect on training
performance. This benefit is observed both in the discrete internal game state observations
and on the pixel observations. We hypothesize that this is due to the more efficient
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Figure 3. (a) We demonstrate the effect of action masking in both RGB observation and internal

game state. By masking moves that do not change the current state, the agent requires less actions to

explore, and therefore, on average solves a puzzle using fewer steps. (b) Moving average episode

length during training for the Flood puzzle. Lower episode length is better, as the episode gets

terminated as soon as the agent has solved a puzzle. Different colors describe different algorithms,

where different shades of a color indicate different random seeds. Sparse dots indicate that an agent

only occasionally managed to find a policy that solves a puzzle. It can be seen that both the use of

discrete internal state observations and action masking have a positive effect on the training, leading

to faster convergence and a stronger overall performance.

exploration, as actions without effect are not allowed. As a result, the reward density during
training is increased, and agents are able to learn a better policy. Particularly noteworthy are
the outcomes related to Pegs. They show that an agent with action masking can effectively
learn a successful policy, while a random policy without action masking consistently fails
to solve any instance. As expected, training RL agents on pixel observations increases the
difficulty of the task at hand. The agent must first understand how the pixel observation
relates to the internal state of the game before it is able to solve the puzzle. Nevertheless,
in combination with action masking, the agents manage to solve a large percentage of
all puzzle instances, with 10 of the puzzles consistently solved within the optimal upper
bound.

Furthermore, Figure 3 shows the individual training performance on the puzzle Flood.
It can be seen that RL agents using action masking and the discrete internal game state
observation converge significantly faster and to better policies compared to the baselines.
The agents using pixel observations and no action masking struggle to converge to any
reasonable policy.

4.4. Effect of Episode Length and Early Termination

We evaluate whether the cutoff episode length or early termination have an effect on
training performance of the agents. For computational reasons, we perform these experi-
ments on a selected subset of the puzzles on human level difficulty and only for DreamerV3
(see Appendix E.6 for details). As we can see in Table 2, increasing the maximum episode
length during training from 10,000 to 100,000 does not improve performance. Only when
episodes are terminated after visiting the exact same state more than 10 times, the agent is
able to solve more puzzle instances on average (31.5% vs. 25.2%). Given the sparse reward
structure, terminating episodes early seems to provide a better trade-off between allowing
long trajectories to successfully complete and avoiding wasting resources on unsuccessful
trajectories.

4.5. Discussion

The experimental evaluation demonstrates varying degrees of success among different
algorithms. For instance, puzzles such as Tracks, Map or Flip were not solvable by any of the
evaluated RL agents, or only with performance similar to a random policy. These findings
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Table 2. Comparison of the effect of the maximum episode length (# Steps) and early termination

(ET) on final performance. For each setting, we report average success episode length with standard

deviation with respect to the random seed, all averaged over all selected puzzles. In brackets, the

percentage of successful episodes is reported.

#Steps ET DreamerV3

1e5
10 2950.9 ± 1260.2 (31.6%)
- 2975.4 ± 1503.5 (25.2%)

1e4
10 3193.9 ± 1044.2 (26.1%)
- 2892.4 ± 908.3 (26.8%)

indicate that model-free approaches struggle with the sparse reward structure and relatively
large action spaces. This points towards the potential of intermediate rewards, better game
rule-specific action masking, or model-based approaches. To encourage exploration in
the state space, a mechanism that explicitly promotes it may be beneficial. On the other
hand, the fact that some algorithms managed to solve a substantial amount of puzzles with
presumably optimal performance demonstrates the advances in the field of RL. In light of
the strong results of DreamerV3, the improvement of agents that have certain reasoning
capabilities and an implicit world model by design stay an important direction for future
research. DreamerV3 might also profit from an increased model size and hyperparameter
tuning on PUZZLES.

The experimental results presented in Section 4.1 and Section 4.3 underscore the
positive impact of action masking and the correct observation type on performance. While
a pixel representation would lead to a uniform observation for all puzzles, it currently
increases complexity too much compared the discrete internal game state.

In summary, the different challenges posed by the logic-requiring nature of these
puzzles necessitates a good reward system, strong guidance of agents, and an agent design
more focused on logical reasoning capabilities. It will be interesting to see how alternative
architectures, such as graph neural networks (GNNs) perform. GNNs are designed to align
more closely with the algorithmic solution of many puzzles. While the notion that “reward
is enough” [58,59] might hold true, our results indicate that not just any form of correct
reward will suffice, and that advanced architectures might be necessary to learn an optimal
solution.

4.6. Limitations

While the PUZZLES framework provides the ability to gain comprehensive insights
into the performance of various RL algorithms on logic puzzles, it is crucial to recognize
certain limitations when interpreting results. The sparse rewards used in this baseline
evaluation add to the complexity of the task. Moreover, all algorithms were evaluated
with their default hyper-parameters. Additionally, the constraint of discrete action spaces
excludes the application of certain RL algorithms.

5. Conclusion

In this work, we have proposed PUZZLES, a benchmark that bridges the gap between
algorithmic reasoning and RL. In addition to containing a rich diversity of logic puzzles,
PUZZLES also offers an adjustable difficulty progression for each puzzle, making it a useful
tool for benchmarking, evaluating and improving RL algorithms. Our empirical evaluation
shows that while RL algorithms exhibit varying degrees of success, challenges persist,
particularly in puzzles with higher complexity or those requiring nuanced logical reasoning.
We are excited to share PUZZLES with the broader research community and hope that
PUZZLES will foster further research for improving the algorithmic reasoning abilities of RL
algorithms.
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Appendix A. Environment Features

Appendix A.1. Episode Definition

An episode is played with the intention of solving a given puzzle. The episode begins
with a newly generated puzzle and terminates in one of two states. To achieve a reward,
the puzzle is either solved completely or the agent has failed irreversibly. The latter state
is unlikely to occur, as only a few games, for example pegs or minesweeper, are able to
terminate in a failed state. Alternatively, the episode can be terminated early. Starting a
new episode generates a new puzzle of the same kind, with the same parameters such as
size or grid type. However, if the random seed is not fixed, the puzzle is likely to have a
different layout from the puzzle in the previous episode.

Appendix A.2. Observation Space

There are two kinds of observations which can be used by the agent. The first observa-
tion type is a representation of the discrete internal game state of the puzzle, consisting of a
combination of arrays and scalars. This observation is provided by the underlying code
of Tathams’s puzzle collection. The composition and shape of the internal game state is
different for each puzzle, which, in turn, requires the agent architecture to be adapted.

The second type of observation is a representation of the pixel screen, given as an inte-
ger matrix of shape (3×width×height). The environment deals with different aspect ratios
by adding padding. The advantage of the pixel representation is a consistent representation
for all puzzles, similar to the Atari RL Benchmark [11]. It could even allow for a single agent
to be trained on different puzzles. On the other hand, it forces the agent to learn to solve
the puzzles only based on the visual representation of the puzzles, analogous to human
players. This might increase difficulty as the agent has to learn the task representation
implicitly.

Appendix A.3. Action Space

Natively, the puzzles support two types of input, mouse and keyboard. Agents in
PUZZLES play the puzzles only through keyboard input. This is due to our decision to
provide the discrete internal game state of the puzzle as an observation, for which mouse
input would not be useful.

The action space for each puzzle is restricted to actions that can actively contribute to
changing the logical state of a puzzle. This excludes “memory aides” such as markers that
signify the absence of a certain connection in Bridges or adding candidate digits in cells in
Sudoku. The action space also includes possibly rule-breaking actions, as long as the game
can represent the effect of the action correctly.

The largest action space has a cardinality of 14, but most puzzles only have five to
six valid actions which the agent can choose from. Generally, an action is in one of two
categories: selector movement or game state change. Selector movement is a mechanism
that allows the agent to select game objects during play. This includes for example grid
cells, edges, or screen regions. The selector can be moved to the next object by four discrete
directional inputs and as such represents an alternative to continuous mouse input. A game
state change action ideally follows a selector movement action. The game state change
action will then be applied to the selected object. The environment responds by updating
the game state, for example by entering a digit or inserting a grid edge at the current
selector position.

Appendix A.4. Action Masking

The fixed-size action space allows an agent to execute actions that may not result
in any change in game state. For example, the action of moving the selector to the right
if the selector is already placed at the right border. The PUZZLES environment provides
an action mask that marks all actions that change the state of the game. Such an action
mask can be used to improve performance of model-based and even some model-free RL
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approaches. The action masking provided by PUZZLES does not ensure adherence to game
rules, rule-breaking actions can most often still be represented as a change in the game
state.

Appendix A.5. Reward Structure

In the default implementation, the agent only receives a reward for completing an
episode. Rewards consist of a fixed positive value for successful completion and a fixed
negative value otherwise. This reward structure encourages an agent to solve a given
puzzle in the least amount of steps possible. The PUZZLES environment provides the option
to define intermediate rewards tailored to specific puzzles, which could help improve
training progress. This could be, for example, a negative reward if the agent breaks the
rules of the game, or a positive reward if the agent correctly achieves a part of the final
solution.

Appendix A.6. Early Episode Termination

Most of the puzzles in PUZZLES do not have an upper bound on the number of steps,
where the only natural end can be reached via successfully solving the puzzle. The PUZZLES
environment also provides the option for early episode termination based on state repe-
titions. If an agent reaches the exact same game state multiple times, the episode can be
terminated in order to prevent wasteful continuation of episodes that no longer contribute
to learning or are bound to fail.

Appendix B. PUZZLES Implementation Details

In the following, a brief overview of PUZZLES’s code implementation is given. The
environment is written in both Python and C, in order to interface with Gymnasium [37] as
the RL toolkit and the C source code of the original puzzle collection. The original puzzle
collection source code is available under the MIT License.4 In Figure A1, an overview of
the environment and how it fits with external libraries is presented. The modular design in
both PUZZLES and the Puzzle Collection’s original code allows users to build and integrate
new puzzles into the environment.

4 The source code and license are available at https://www.chiark.greenend.org.uk/~sgtatham/puzzles/.

https://www.chiark.greenend.org.uk/~sgtatham/puzzles/
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Appendix B.1. Environment Class

The reinforcement learning environment is implemented in the Python class PuzzleEnv
in the rlp package. It is designed to be compatible with the Gymnasium-style API for RL
environments to facilitate easy adoption. As such, it provides the two important functions
needed for progressing an environment, reset() and step().

Upon initializing a PuzzleEnv, a 2D surface displaying the environment is created.
This surface and all changes to it are handled by the Pygame [60] graphics library. PUZZLES
uses various functions provided in the library, such as shape drawing, or partial surface
saving and loading.

The reset() function changes the environment state to the beginning of a new episode,
usually by generating a new puzzle with the given parameters. An agent solving the puzzle
is also reset to a new state. reset() also returns two variables, observation and info,
where observation is a Python dict containing a NumPy 3D array called pixels of size
(3 × surface_width × surface_height). This NumPy array contains the RGB pixel data of
the Pygame surface, as explained in Appendix A.2. The info dict contains a dict called
puzzle_state, representing a copy of the current internal data structures containing the
logical game state, allowing the user to create custom rewards.

The step() function increments the time in the environment by one step, while
performing an action chosen from the action space. Upon returning, step() provides the
user with five variables, listed in Table A1.

Table A1. Return values of the environment’s step() function. This information can then be used by

an RL framework to train an agent.

Variable Description

observation 3D NumPy array containing RGB pixel data
reward The cumulative reward gained throughout all steps of the episode
terminated A bool stating whether an episode was completed by the agent
truncated A bool stating whether an episode was ended early,

for example by reaching the maximum allowed steps for an episode
info A dict containing a copy of the internal game state

Appendix B.2. Intermediate Rewards

The environment encourages the use of Gymnasium’s Wrapper interface to implement
custom reward structures for a given puzzle. Such custom reward structures can provide
an easier game setting, compared to the sparse reward only provided when finishing a
puzzle.

Appendix B.3. Puzzle Module

The PuzzleEnv object creates an instance of the class Puzzle. A Puzzle is essentially
the glue between all Pygame surface tasks and the C back-end that contains the puzzle
logic. To this end, it initializes a Pygame window, on which shapes and text are drawn.
The Puzzle instance also loads the previously compiled shared library containing the C
back-end code for the relevant puzzle.

The PuzzleEnv also converts and forwards keyboard inputs (which are for example
given by an RL agent’s action) into the format the C back-end understands.

Appendix B.4. Compiled C Code

The C part of the environment sits on top of the highly-optimized original puzzle
collection source code as a custom front-end, as detailed in the collection’s developer
documentation [61]. Similar to other front-end types, it represents the bridge between the
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graphics library that is used to display the puzzles and the game logic back-end. Specifically,
this is done using Python API calls to Pygame’s drawing facilities.

Appendix C. Puzzle Descriptions

We provide short descriptions of each puzzle from www.chiark.greenend.org.uk/ sg-
tatham/puzzles/. For detailed instructions for each puzzle, please visit the docs available
at www.chiark.greenend.org.uk/ sgtatham/puzzles/doc/index.html

Figure A2. Black Box: Find the hidden balls in the box by bouncing laser

beams off them.

Figure A3. Bridges: Connect all the islands with a network of bridges.

Figure A4. Cube: Pick up all the blue squares by rolling the cube over them.

Figure A5. Dominosa: Tile the rectangle with a full set of dominoes.

Figure A6. Fifteen: Slide the tiles around to arrange them into order.

https://www.chiark.greenend.org.uk/~sgtatham/puzzles/
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/doc/index.html
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Figure A7. Filling: Mark every square with the area of its containing region.

Figure A8. Flip: Flip groups of squares to light them all up at once.

Figure A9. Flood: Turn the grid the same colour in as few flood fills as

possible.

Figure A10. Galaxies: Divide the grid into rotationally symmetric regions

each centred on a dot.

Figure A11. Guess: Guess the hidden combination of colours.

Figure A12. Inertia: Collect all the gems without running into any of the

mines.

Figure A13. Keen: Complete the latin square in accordance with the arith-

metic clues.

Figure A14. Light Up: Place bulbs to light up all the squares.
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Figure A15. Loopy: Draw a single closed loop, given clues about number of

adjacent edges.

Figure A16. Magnets: Place magnets to satisfy the clues and avoid like

poles touching.

Figure A17. Map: Colour the map so that adjacent regions are never the

same colour.

Figure A18. Mines: Find all the mines without treading on any of them.

Figure A19. Mosaic: Fill in the grid given clues about number of nearby

black squares.

Figure A20. Net: Rotate each tile to reassemble the network.

Figure A21. Netslide: Slide a row at a time to reassemble the network.

Figure A22. Palisade: Divide the grid into equal-sized areas in accordance

with the clues.
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Figure A23. Pattern: Fill in the pattern in the grid, given only the lengths of

runs of black squares.

Figure A24. Pearl: Draw a single closed loop, given clues about corner and

straight squares.

Figure A25. Pegs: Jump pegs over each other to remove all but one.

Figure A26. Range: Place black squares to limit the visible distance from

each numbered cell.

Figure A27. Rectangles: Divide the grid into rectangles with areas equal to

the numbers.

Figure A28. Same Game: Clear the grid by removing touching groups of

the same colour squares.

Figure A29. Signpost: Connect the squares into a path following the arrows.

Figure A30. Singles: Black out the right set of duplicate numbers.
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Figure A31. Sixteen: Slide a row at a time to arrange the tiles into order.

Figure A32. Slant: Draw a maze of slanting lines that matches the clues.

Figure A33. Solo: Fill in the grid so that each row, column and square block

contains one of every digit.

Figure A34. Tents: Place a tent next to each tree.

Figure A35. Towers: Complete the latin square of towers in accordance with

the clues.

Figure A36. Tracks: Fill in the railway track according to the clues.

Figure A37. Twiddle: Rotate the tiles around themselves to arrange them

into order.

Figure A38. Undead: Place ghosts, vampires and zombies so that the right

numbers of them can be seen in mirrors.
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Figure A39. Unequal: Complete the latin square in accordance with the >

signs.

Figure A40. Unruly: Fill in the black and white grid to avoid runs of three.

Figure A41. Untangle: Reposition the points so that the lines do not cross.
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Appendix D. PUZZLES Environment Usage Guide

A Python code example for using the PUZZLES environment is provided in Listing 1.
All puzzles support seeding the initialization, by adding #{seed} after the parameters,
where {seed} is an int. The allowed parameters are displayed in Table A4. A full custom
initialization argument would be as follows: {parameters}#{seed}.

1 import gymnasium as gym

2 import rlp

3

4 # init an agent suitable for Gymnasium environments

5 agent = Agent.create()

6

7 # init the environment

8 env = gym.make(’rlp/Puzzle -v0’, puzzle="bridges",

9 render_mode="rgb_array", params="4x4#42")

10 observation , info = env.reset()

11

12 # complete an episode

13 terminated = False

14 while not terminated:

15 action = agent.choose(env) # the agent chooses the next action

16 observation , reward , terminated , truncated , info = env.step(action)

17 env.close()

18

Listing 1: Code example of how to initialize an environment and have an agent complete
one episode. The PUZZLES environment is designed to be compatible with the Gymnasium
API. The choice of Agent is up to the user, it can be a trained agent or random policy.

A Python code example for implementing a custom reward system is provided in
Listing 2. To this end, the environment’s step() function provides the puzzle’s internal
state inside the info Python dict.

1 import gymnasium as gym

2 class PuzzleRewardWrapper(gym.Wrapper):

3 def step(self, action):

4 obs, reward , terminated , truncated , info = self.env.step(action)

5 # Modify the reward by using members of info["puzzle_state"]

6 return obs, reward , terminated , truncated , info

7

Listing 2: Code example of a custom reward implementation using Gymnasium’s Wrapper
class. A user can use the game state information provided in info["puzzle_state"] to
modify the rewards received by the agent after performing an action.

Appendix E. Evaluation Details

Appendix E.1. Considered algorithms

We present an overview of all evaluated algorithms in Table A2.

Table A2. Summary of all evaluated RL algorithms.

Algorithm Policy Type Action Masking

Proximal Policy Optimization (PPO) [62] On-Policy No
Recurrent PPO [63] On-Policy No
Advantage Actor Critic (A2C) [64] On-Policy No
Asynchronous Advantage Actor Critic (A3C) [64] On-Policy No
Trust Region Policy Optimization (TRPO) [65] On-Policy No
Deep Q-Network (DQN) [11] Off-Policy No
Quantile Regression DQN (QRDQN) [66] Off-Policy No
MuZero [67] Off-Policy Yes
DreamerV3 [68] Off-Policy No
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Appendix E.2. Action Space

We display the action spaces for all supported puzzles in Table A3. The action spaces
vary in size and in the types of actions they contain. As a result, an agent must learn the
meaning of each action independently for each puzzle.

Table A3. The action spaces for each puzzle are listed, along with their cardinalities. The actions are

listed with their name in the original Puzzle Collection C code.

Puzzle Cardinality Action space

Black Box 5 UP, DOWN, LEFT, RIGHT, SELECT
Bridges 5 UP, DOWN, LEFT, RIGHT, SELECT
Cube 4 UP, DOWN, LEFT, RIGHT
Dominosa 5 UP, DOWN, LEFT, RIGHT, SELECT
Fifteen 4 UP, DOWN, LEFT, RIGHT
Filling 13 UP, DOWN, LEFT, RIGHT, 1, 2, 3, 4, 5, 6, 7, 8, 9
Flip 5 UP, DOWN, LEFT, RIGHT, SELECT
Flood 5 UP, DOWN, LEFT, RIGHT, SELECT
Galaxies 5 UP, DOWN, LEFT, RIGHT, SELECT
Guess 5 UP, DOWN, LEFT, RIGHT, SELECT
Inertia 9 1, 2, 3, 4, 6, 7, 8, 9, UNDO
Keen 14 UP, DOWN, LEFT, RIGHT, SELECT2, 1, 2, 3, 4, 5, 6, 7, 8, 9
Light Up 5 UP, DOWN, LEFT, RIGHT, SELECT
Loopy 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Magnets 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Map 5 UP, DOWN, LEFT, RIGHT, SELECT
Mines 7 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2, UNDO
Mosaic 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Net 5 UP, DOWN, LEFT, RIGHT, SELECT
Netslide 5 UP, DOWN, LEFT, RIGHT, SELECT
Palisade 5 UP, DOWN, LEFT, RIGHT, CTRL
Pattern 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Pearl 5 UP, DOWN, LEFT, RIGHT, SELECT
Pegs 6 UP, DOWN, LEFT, RIGHT, SELECT, UNDO
Range 5 UP, DOWN, LEFT, RIGHT, SELECT
Rectangles 5 UP, DOWN, LEFT, RIGHT, SELECT
Same Game 6 UP, DOWN, LEFT, RIGHT, SELECT, UNDO
Signpost 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Singles 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Sixteen 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Slant 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Solo 13 UP, DOWN, LEFT, RIGHT, 1, 2, 3, 4, 5, 6, 7, 8, 9
Tents 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Towers 14 UP, DOWN, LEFT, RIGHT, SELECT2, 1, 2, 3, 4, 5, 6, 7, 8, 9
Tracks 5 UP, DOWN, LEFT, RIGHT, SELECT
Twiddle 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Undead 8 UP, DOWN, LEFT, RIGHT, SELECT2, 1, 2, 3
Unequal 13 UP, DOWN, LEFT, RIGHT, 1, 2, 3, 4, 5, 6, 7, 8, 9
Unruly 6 UP, DOWN, LEFT, RIGHT, SELECT, SELECT2
Untangle 5 UP, DOWN, LEFT, RIGHT, SELECT
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Appendix E.3. Optional Parameters

We display the optional parameters for all supported puzzles in Table A4. If none are
supplied upon initialization, a set of default parameters gets used for the puzzle generation
process.

Table A4. For each puzzle, all optional parameters a user may supply are shown and described. We

also give the required data type of variable, where applicable (e.g., int or char). For parameters that

accept one of a few choices (such as difficulty), the accepted values and corresponding explanation

are given in braces. As as example: a difficulty parameter is listed as d{int} with allowed values

{0 = easy, 1 = medium, 2 = hard}. In this case, choosing medium difficulty would correspond to d1.

Puzzle Example Parameter Description Optimal Step Upper Bound

Black Box w8h8m5M5 w{int} grid width (w· h + w + h + 1)
h{int} grid height · (w + 2) · (h + 2)
m{int} minimum number of balls
M{int} maximum number of balls

Bridges 7x7i5e2m2d0 {int}x{int} grid width × grid height 3 · w · h · (w + h + 8)
i{int} percentage of island squares
e{int} expansion factor
m{int} max bridges per direction
d{int} difficulty {0 = easy, 1 = medium, 2 = hard}

Cube c4x4 {char} type {c = cube, t = tetrahedron, w · h · F
o = octahedron, i = icosahedron} F = number of the body’s faces

{int}x{int} grid width × grid height

Dominosa 6db {int} maximum number of dominoes 1
2

(

w2 + 3w + 2
)

d{char} difficulty {t = trivial, b = basic, h = hard, ·(4
√

w2 + 3w + 2 + 1)
e = extreme, a = ambiguous}

Fifteen 4x4 {int}x{int} grid width × grid height (w · h)4

Filling 13x9 {int}x{int} grid width × grid height (w · h) · (w + h + 1)

Flip 5x5c {int}x{int} grid width × grid height (w · h) · (w + h + 1)
{char} type {c = crosses, r = random}

Flood 12x12c6m5 {int}x{int} grid width × grid height (w · h) · (w + h + 1)
c{int} number of colors
m{int} extra moves permitted (above the

solver’s minimum)

Galaxies 7x7dn {int}x{int} grid width × grid height (2 · w · h − w − h)
d{char} difficulty {n = normal, u = unreasonable} ·(2 · w + 2 · h + 1)

Guess c6p4g10Bm c{int} number of colors (p + 1) · g · (c + p)
p{int} pegs per guess
g{int} maximum number of guesses
{char} allow blanks {B = no, b = yes}
{char} allow duplicates {M = no, m = yes}

Inertia 10x8 {int}x{int} grid width × grid height 0.2 · w2 · h2

Keen 6dn {int} grid size (2 · w + 1) · w2

d{char} difficulty {e = easy, n = normal, h = hard,
x = extreme, u = unreasonable}

{char} (Optional) multiplication only {m = yes}

Light Up 7x7b20s4d0 {int}x{int} grid width × grid height 1
2 · (w + h + 1)

b{int} percentage of black squares ·(w · h + 1)
s{int} symmetry {0 = none, 1 = 2-way mirror,

2 = 2-way rotational, 3 = 4-way mirror,
4 = 4-way rotational}

d{int} difficulty {0 = easy, 1 = tricky, 2 = hard}

Loopy 10x10t12dh {int}x{int} grid width × grid height (2 · w · h + 1) · 3 · (w · h)2

t{int} type {0 = squares, 1 = triangular,
2 = honeycomb, 3 = snub-square,
4 = cairo, 5 = great-hexagonal,
6 = octagonal, 7 = kites,
8 = floret, 9 = dodecagonal,
10 = great-dodecagonal,
11 = Penrose (kite/dart),
12 = Penrose (rhombs),
13 = great-great-dodecagonal,
14 = kagome, 15 = compass-dodecagonal,
16 = hats}

d{char} difficulty {e = easy, n = normal,
t = tricky, h = hard}

Continued on next page
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Table A4 – continued from previous page

Puzzle Example Parameter Description Optimal Step Upper Bound

Magnets 6x5dtS {int}x{int} grid width × grid height w · h · (w + h + 2)
d{char} difficulty {e = easy, t = tricky
{char} (Optional) strip clues {S = yes}

Map 20x15n30dn {int}x{int} grid width × grid height 2 · n · (1 + w + h)
n{int} number of regions
d{char} difficulty {e = easy, n = normal, h = hard,

u = unreasonable}

Mines 9x9n10 {int}x{int} grid width × grid height w · h · (w + h + 1)
n{int} number of mines
p{char} (Optional) ensure solubility {a = no}

Mosaic 10x10h0 {int}x{int} grid width × grid height w · h · (w + h + 1)
{str} (Optional) aggressive generation {h0 = no}

Net 5x5wb0.5 {int}x{int} grid width × grid height w · h · (w + h + 3)
{char} (Optional) walls wrap around {w = yes}
b{float} barrier probability, interval: [0, 1]
{char} (Optional) ensure unique solution {a = no}

Netslide 4x4wb1m2 {int}x{int} grid width × grid height 2 · w · h · (w + h − 1)
{char} (Optional) walls wrap around {w = yes}
b{float} barrier probability, interval: [0, 1]
m{int} (Optional) number of shuffling moves

Palisade 5x5n5 {int}x{int} grid width × grid height (2 · w · h − w − h)
n{int} region size ·(w + h + 3)

Pattern 15x15 {int}x{int} grid width × grid height w · h(w + h + 1)

Pearl 8x8dtn {int}x{int} grid width × grid height w · h · (w + h + 2)
d{char} difficulty {e = easy, t = tricky}
{char} allow unsoluble {n = yes}

Pegs 7x7cross {int}x{int} grid width × grid height w · h · (w + h + 2)
{str} type {cross, octagon, random}

Range 9x6 {int}x{int} grid width × grid height w · h · (w + h + 1)

Rectangles 7x7e4 {int}x{int} grid width × grid height 2 · w · h · (w + h + 1)
e{int} expansion factor
{char} ensure unique solution {a = no}

Same Game 5x5c3s2 {int}x{int} grid width × grid height w · h · (w + h + 2)
c{int} number of colors
s{int} scoring system {1 = (n − 1)2,

2 = (n − 2)2}
{char} (Optional) ensure solubility {r = no}

Signpost 4x4c {int}x{int} grid width × grid height 2 · w · h · (w + h + 1)
{char} (Optional) start and end in corners

{c = yes}

Singles 5x5de {int}x{int} grid width × grid height w · h · (w + h + 1)
d{char} difficulty {e = easy, k = tricky}

Sixteen 5x5m2 {int}x{int} grid width × grid height w · h · (w + h + 3)
m{int} (Optional) number of shuffling moves

Slant 8x8de {int}x{int} grid width × grid height w · h · (w + h + 1)
d{char} difficulty {e = easy, h = hard}

Solo 3x3 {int}x{int} rows of sub-blocks × cols of sub-blocks (w · h)2 ∗ (2 · w · h + 1)
{char} (Optional) require every digit on each

main diagonal {x = yes}
{char} (Optional) jigsaw (irregularly shaped

sub-blocks) main diagonal {j = yes}
{char} (Optional) killer (digit sums) {k = yes}
{str} (Optional) symmetry. If not set,

it is 2-way rotation. {a = None,
m2 = 2-way mirror, m4 = 4-way mirror,
r4 = 4-way rotation, m8 = 8-way mirror,
md2 = 2-way diagonal mirror,
md4 = 4-way diagonal mirror}

d{char} difficulty {t = trivial, b = basic,
i = intermediate, a = advanced,
e = extreme, u = unreasonable}

Tents 8x8de {int}x{int} grid width × grid height 1
4 · (w + 1) · (h + 1)

d{char} difficulty {e = easy, t = tricky} ·(w + h + 1)

Towers 5de {int} grid size 2 · (w + 1) · w2

d{char} difficulty {e = easy, h = hard
x = extreme, u = unreasonable}

Continued on next page
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Table A4 – continued from previous page

Puzzle Example Parameter Description Optimal Step Upper Bound

Tracks 8x8dto {int}x{int} grid width × grid height w · h(2 · (w + h) + 1)
d{char} difficulty {e = easy, t = tricky, h = hard}
{char} (Optional) disallow consecutive 1 clues

{o = no}

Twiddle 3x3n2 {int}x{int} grid width × grid height (2 · w · h · n2 + 1)
n{int} rotating block size ·(w + h − 2 · n + 1)
{char} (Optional) one number per row {r = yes}
{char} (Optional) orientation matters {o = yes}
m{int} (Optional) number of shuffling moves

Undead 4x4dn {int}x{int} grid width × grid height w · h · (w + h + 1)
d{char} difficulty {e = easy, n = normal, t = tricky}

Unequal 4adk {int} grid size w2 · (2 · w + 1)
{char} (Optional) adjacent mode {a = yes}
d{char} difficulty {t = trivial, e = easy, k = tricky,

x = extreme, r = recursive}

Unruly 8x8dt {int} grid size w · h · (w + h + 1)
{char} (Optional) unique rows and cols {u = yes}
d{char} difficulty {t = trivial, e = easy, n = normal}

Untangle 25 {int} number of points n · (n +
√

3n · 4 + 2)
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Appendix E.4. Baseline Parameters

In Table A5, the parameters used for training the agents used for the comparisons in
Section 4 is shown.

Table A5. Listed below are the generation parameters supplied to each puzzle instance before training

an agent, as well as some puzzle-specific notes. We propose the easiest preset difficulty setting as a

first challenge for RL algorithms to reach human-level performance.

Puzzle Supplied Parameters Easiest Human Level Preset Notes

Black Box w2h2m2M2 w5h5m3M3
Bridges 3x3 7x7i30e10m2d0
Cube c3x3 c4x4
Dominosa 1dt 3dt
Fifteen 2x2 4x4
Filling 2x3 9x7
Flip 3x3c 3x3c
Flood 3x3c6m5 12x12c6m5
Galaxies 3x3de 7x7dn
Guess c2p3g10Bm c6p4g10Bm Episodes were terminated and negatively rewarded

after the maximum number of guesses was made
without finding the correct solution.

Inertia 4x4 10x8
Keen 3dem 4de Even the minimum allowed problem size

proved to be infeasible for a random agent
Light Up 3x3b20s0d0 7x7b20s4d0
Loopy 3x3t0de 3x3t0de
Magnets 3x3deS 6x5de
Map 3x3n5de 20x15n30de
Mines 4x4n2 9x9n10
Mosaic 3x3 3x3
Net 2x2 5x5
Netslide 2x3b1 3x3b1
Palisade 2x3n3 5x5n5
Pattern 3x2 10x10
Pearl 5x5de 6x6de
Pegs 4x4random 5x7cross
Range 3x3 9x6
Rectangles 3x2 7x7
Same Game 2x3c3s2 5x5c3s2
Signpost 2x3 4x4c
Singles 2x3de 5x5de
Sixteen 2x3 3x3
Slant 2x2de 5x5de
Solo 2x2 2x2
Tents 4x4de 8x8de
Towers 3de 4de
Tracks 4x4de 8x8de
Twiddle 2x3n2 3x3n2r
Undead 3x3de 4x4de
Unequal 3de 4de
Unruly 6x6dt 8x8dt Even the minimum allowed problem size

proved to be infeasible for a random agent
Untangle 4 6
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Appendix E.5. Detailed Baseline Results

As we limited the agents to a single final reward upon completion, where possible, we
chose puzzle parameters that allowed random policies to successfully find a solution. Note
that if a random policy fails to find a solution, an RL algorithm without guidance (such as
intermediate rewards) will also be affected by this. If an agent has never accumulated a
reward with the initial (random) policy, it will be unable to improve its performance at all.

The chosen parameters roughly corresponded to the smallest and easiest puzzles, as
more complex puzzles were found to be intractable. This fact is highlighted for example in
Solo/Sudoku, where the reasoning needed to find a valid solution is already rather complex,
even for a grid with 2×2 sub-blocks. A few puzzles were still intractable due to the
minimum complexity permitted by Tathams’s puzzle-specific problem generators, such as
with Unruly.

For the RGB pixel observations, the window size chosen for these small problems was
set at 128×128 pixels.
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Puzzle Supplied Parameters Optimal Random PPO TRPO DreamerV3 MuZero

Blackbox w2h2m2M2 144 2206 (99.2%) 1773 ± 472 (59.5%) 1744 ± 454 (96.3%) 32 ± 5 (100.0%) 46 ± 0 (0.1%)
Bridges 3x3 378 547 (100.0%) 682 ± 197 (85.1%) 546 ± 13 (100.0%) 9 ± 0 (100.0%) 397 ± 181 (86.7%)
Cube c3x3 54 4181 (66.9%) 744 ± 1610 (77.5%) 433 ± 917 (99.8%) 5068 ± 657 (22.5%) -
Dominosa 1dt 32 1980 (99.2%) 457 ± 954 (70.0%) 12 ± 1 (100.0%) 11 ± 1 (100.0%) 3659 ± 0 (0.0%)
Fifteen 2x2 256 54 (100.0%) 3 ± 0 (100.0%) 3 ± 0 (100.0%) 4 ± 0 (100.0%) 5 ± 1 (100.0%)
Filling 2x3 36 820 (100.0%) 290 ± 249 (97.5%) 9 ± 2 (100.0%) 443 ± 56 (83.4%) 1099 ± 626 (15.0%)
Flip 3x3c 63 3138 (88.9%) 3008 ± 837 (40.1%) 2951 ± 564 (90.8%) 1762 ± 568 (8.0%) 1207 ± 1305 (3.1%)
Flood 3x3c6m5 63 134 (97.4%) 12 ± 0 (99.9%) 21 ± 4 (99.6%) 14 ± 1 (100.0%) 994 ± 472 (14.4%)
Galaxies 3x3de 156 4306 (33.9%) 3860 ± 1778 (8.3%) 4755 ± 527 (24.8%) 3367 ± 1585 (11.0%) 6046 ± 2722 (8.2%)
Guess c2p3g10Bm 200 358 (73.4%) - 316 ± 52 (72.0%) 268 ± 226 (77.0%) 24 ± 0 (0.8%)
Inertia 4x4 51 13 (6.5%) 22 ± 9 (6.3%) 635 ± 1373 (5.7%) 926 ± 217 (5.7%) 104 ± 73 (3.1%)
Keen 3dem 63 3152 (0.5%) 3817 ± 0 (0.2%) 5887 ± 1526 (0.4%) 4350 ± 1163 (1.3%) -
Lightup 3x3b20s0d0 35 2237 (98.1%) 1522 ± 1115 (82.7%) 2127 ± 168 (95.8%) 438 ± 247 (72.0%) 1178 ± 1109 (2.1%)
Loopy 3x3t0de 4617 - - - - -
Magnets 3x3deS 72 1895 (99.1%) 1366 ± 1090 (90.2%) 1912 ± 60 (99.1%) 574 ± 56 (78.5%) 1491 ± 0 (0.7%)
Map 3x3n5de 70 903 (99.9%) 1172 ± 297 (75.7%) 950 ± 34 (99.9%) 1680 ± 197 (64.9%) 467 ± 328 (0.9%)
Mines 4x4n2 144 87 (18.1%) 2478 ± 2424 (9.9%) 123 ± 66 (18.8%) 272 ± 246 (50.1%) 19 ± 22 (4.6%)
Mosaic 3x3 63 4996 (9.8%) 4928 ± 438 (2.5%) 5233 ± 615 (5.0%) 4469 ± 387 (15.9%) 5586 ± 0 (0.2%)
Net 2x2 28 1279 (100.0%) 9 ± 0 (100.0%) 9 ± 0 (100.0%) 10 ± 0 (100.0%) 339 ± 448 (8.2%)
Netslide 2x3b1 48 766 (100.0%) 1612 ± 1229 (41.6%) 635 ± 145 (100.0%) 12 ± 0 (100.0%) 683 ± 810 (25.0%)
Netslide 3x3b1 90 4671 (11.0%) 4671 ± 498 (9.2%) 4008 ± 1214 (8.9%) 3586 ± 677 (22.4%) 3721 ± 1461 (13.2%)
Palisade 2x3n3 56 1428 (100.0%) 939 ± 604 (87.0%) 1377 ± 35 (99.9%) 39 ± 56 (100.0%) 86 ± 0 (0.0%)
Pattern 3x2 36 3247 (92.9%) 1542 ± 1262 (71.9%) 2908 ± 355 (90.2%) 820 ± 516 (58.0%) 4063 ± 1696 (1.9%)
Pearl 5x5de 300 - - - - -
Pegs 4x4Random 160 - - - - -
Range 3x3 63 535 (100.0%) 780 ± 305 (65.8%) 661 ± 198 (99.9%) 888 ± 238 (55.6%) 91 ± 76 (5.1%)
Rect 3x2 72 723 (100.0%) 27 ± 44 (99.8%) 9 ± 4 (100.0%) 8 ± 1 (100.0%) -
Samegame 2x3c3s2 42 76 (100.0%) 123 ± 197 (98.8%) 7 ± 0 (100.0%) 7 ± 0 (100.0%) 1444 ± 541 (28.7%)
Samegame 5x5c3s2 300 571 (32.1%) 1003 ± 827 (30.5%) 672 ± 160 (30.8%) 527 ± 162 (30.2%) 184 ± 107 (4.9%)
Signpost 2x3 72 776 (96.1%) 838 ± 53 (97.2%) 799 ± 13 (97.0%) 859 ± 304 (91.3%) 4883 ± 1285 (5.9%)
Singles 2x3de 36 353 (100.0%) 7 ± 3 (100.0%) 7 ± 4 (100.0%) 11 ± 8 (99.9%) 733 ± 551 (28.4%)
Sixteen 2x3 48 2908 (94.1%) 2371 ± 1226 (55.7%) 2968 ± 181 (92.8%) 17 ± 1 (100.0%) 3281 ± 472 (68.7%)
Slant 2x2de 20 447 (100.0%) 333 ± 190 (80.4%) 21 ± 2 (99.9%) 596 ± 163 (100.0%) 1005 ± 665 (7.4%)
Solo 2x2 144 - - - - -
Tents 4x4de 56 4442 (44.3%) 4781 ± 86 (10.3%) 4828 ± 752 (31.0%) 3137 ± 581 (12.1%) 4556 ± 3259 (0.6%)
Towers 3de 72 4876 (1.0%) - 3789 ± 1288 (0.5%) 3746 ± 1861 (0.5%) -
Tracks 4x4de 272 5213 (0.5%) 4129 ± nan (0.1%) 5499 ± 2268 (0.3%) 4483 ± 1513 (0.3%) -
Twiddle 2x3n2 98 851 (100.0%) 8 ± 1 (99.9%) 11 ± 7 (100.0%) 8 ± 0 (100.0%) 761 ± 860 (37.6%)
Undead 3x3de 63 4390 (40.1%) 4542 ± 292 (5.7%) 4179 ± 299 (31.0%) 4088 ± 297 (35.8%) 3677 ± 342 (9.0%)
Unequal 3de 63 4540 (6.7%) - 5105 ± 193 (3.6%) 2468 ± 2025 (4.8%) 4944 ± 368 (7.2%)
Unruly 6x6dt 468 - - - - -
Untangle 4 150 141 (100.0%) 13 ± 1 (100.0%) 11 ± 0 (100.0%) 6 ± 0 (100.0%) 499 ± 636 (26.5%)
Untangle 6 79 2165 (96.9%) 2295 ± 66 (96.2%) 2228 ± 126 (96.5%) 1683 ± 74 (82.0%) 2380 ± 0 (11.2%)

Summary - 217 1984 (71.2%) 1604 ± 801 (61.6%)(8) 1773 ± 639 (70.8%)(11) 1334 ± 654 (62.7%)(14) 1808 ± 983 (16.0%)(5)
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Puzzle Supplied Parameters Optimal Random A2C RecurrentPPO DQN QRDQN

Blackbox w2h2m2M2 144 2206 (99.2%) 2524 ± 1193 (85.2%) 2009 ± 427 (98.7%) 2063 ± 70 (99.0%) 2984 ± 1584 (76.8%)
Bridges 3x3 378 547 (100.0%) 540 ± 69 (100.0%) 653 ± 165 (100.0%) 549 ± 20 (100.0%) 1504 ± 2037 (83.4%)
Cube c3x3 54 4181 (66.9%) 4516 ± 954 (17.5%) 4943 ± 620 (16.2%) 4407 ± 414 (43.4%) 4241 ± 283 (26.4%)
Dominosa 1dt 32 1980 (99.2%) 6408 ± nan (0.2%) 3009 ± 988 (80.6%) 15 ± 6 (100.0%) 4457 ± 2183 (50.0%)
Fifteen 2x2 256 54 (100.0%) 4 ± 1 (100.0%) 3 ± 0 (100.0%) 3 ± 0 (100.0%) 3 ± 0 (100.0%)
Filling 2x3 36 820 (100.0%) 777 ± 310 (99.3%) 764 ± 106 (100.0%) 761 ± 109 (99.7%) 2828 ± 2769 (63.2%)
Flip 3x3c 63 3138 (88.9%) 4345 ± 1928 (29.4%) 3356 ± 1412 (46.9%) 3493 ± 129 (87.1%) 3741 ± 353 (56.8%)
Flood 3x3c6m5 63 134 (97.4%) 406 ± 623 (93.4%) 120 ± 17 (97.7%) 128 ± 12 (90.8%) 1954 ± 2309 (65.2%)
Galaxies 3x3de 156 4306 (33.9%) 4586 ± 980 (10.8%) 3939 ± 1438 (0.4%) 4657 ± 147 (26.1%) -
Guess c2p3g10Bm 200 358 (73.4%) - 323 ± 52 (44.6%) 550 ± 248 (71.9%) 3260 ± 2614 (34.4%)
Inertia 4x4 51 13 (6.5%) 105 ± 197 (6.1%) 1198 ± 1482 (5.6%) 179 ± 156 (7.1%) 1330 ± 296 (5.8%)
Keen 3dem 63 3152 (0.5%) - - 6774 ± 1046 (0.4%) -
Lightup 3x3b20s0d0 35 2237 (98.1%) 3034 ± 793 (62.7%) 3493 ± 929 (66.5%) 2429 ± 214 (97.5%) 3440 ± 945 (57.8%)
Loopy 3x3t0de 4617 - - - - -
Magnets 3x3deS 72 1895 (99.1%) 3057 ± 1114 (47.9%) 1874 ± 222 (99.2%) 2112 ± 331 (98.1%) 5182 ± 3878 (33.8%)
Map 3x3n5de 70 903 (99.9%) 2552 ± 1223 (52.5%) 2608 ± 1808 (59.4%) 949 ± 30 (99.9%) 1753 ± 769 (78.1%)
Mines 4x4n2 144 87 (18.1%) 120 ± 41 (14.7%) 1189 ± 1341 (12.1%) 207 ± 146 (17.6%) 1576 ± 1051 (13.2%)
Mosaic 3x3 63 4996 (9.8%) 4937 ± 424 (8.4%) 4907 ± 219 (8.3%) 5279 ± 564 (7.0%) 9490 ± 155 (0.0%)
Net 2x2 28 1279 (100.0%) 149 ± 288 (100.0%) 1232 ± 92 (100.0%) 9 ± 0 (100.0%) 1793 ± 1663 (81.3%)
Netslide 2x3b1 48 766 (100.0%) 976 ± 584 (100.0%) 2079 ± 1989 (64.7%) 779 ± 37 (100.0%) 1023 ± 206 (80.9%)
Netslide 3x3b1 90 4671 (11.0%) 4324 ± 657 (8.1%) 2737 ± 1457 (1.7%) 4099 ± 846 (5.1%) 2025 ± 1475 (0.4%)
Palisade 2x3n3 56 1428 (100.0%) 1666 ± 198 (99.4%) 1981 ± 1053 (92.5%) 1445 ± 96 (99.9%) 1519 ± 142 (99.8%)
Pattern 3x2 36 3247 (92.9%) 3445 ± 635 (82.9%) 3733 ± 513 (79.7%) 2809 ± 733 (89.7%) 3406 ± 384 (51.1%)
Pearl 5x5de 300 - - - - -
Pegs 4x4Random 160 - - - - -
Range 3x3 63 535 (100.0%) 1438 ± 782 (81.4%) 730 ± 172 (99.9%) 594 ± 28 (100.0%) -
Rect 3x2 72 723 (100.0%) 3470 ± 2521 (17.6%) 916 ± 420 (99.6%) 511 ± 193 (97.4%) 1560 ± 1553 (81.8%)
Samegame 2x3c3s2 42 76 (100.0%) 8 ± 1 (100.0%) 1777 ± 1643 (43.5%) 8 ± 0 (100.0%) 14 ± 9 (100.0%)
Samegame 5x5c3s2 300 571 (32.1%) 609 ± 155 (29.9%) 1321 ± 1170 (30.3%) 850 ± 546 (29.2%) 5577 ± 1211 (12.8%)
Signpost 2x3 72 776 (96.1%) 2259 ± 1394 (85.9%) 1000 ± 266 (77.9%) 793 ± 17 (97.0%) 2298 ± 2845 (78.0%)
Singles 2x3de 36 353 (100.0%) 372 ± 47 (100.0%) 331 ± 66 (100.0%) 361 ± 47 (99.1%) 392 ± 29 (100.0%)
Sixteen 2x3 48 2908 (94.1%) 3903 ± 479 (71.7%) 3409 ± 574 (67.6%) 2970 ± 107 (93.2%) 4550 ± 848 (21.9%)
Slant 2x2de 20 447 (100.0%) 984 ± 470 (99.8%) 465 ± 34 (100.0%) 496 ± 97 (100.0%) 1398 ± 2097 (87.1%)
Solo 2x2 144 - - - - -
Tents 4x4de 56 4442 (44.3%) 6157 ± 1961 (2.1%) 4980 ± 397 (12.8%) 4515 ± 59 (38.1%) 5295 ± 688 (7.8%)
Towers 3de 72 4876 (1.0%) 9850 ± nan (0.0%) 8549 ± nan (0.0%) 5836 ± 776 (0.5%) -
Tracks 4x4de 272 5213 (0.5%) 4501 ± nan (0.0%) - 5809 ± 661 (0.3%) -
Twiddle 2x3n2 98 851 (100.0%) 1248 ± 430 (99.6%) 827 ± 71 (100.0%) 83 ± 149 (100.0%) 3170 ± 1479 (33.4%)
Undead 3x3de 63 4390 (40.1%) 5818 ± 154 (0.9%) 5060 ± 2381 (0.5%) - -
Unequal 3de 63 4540 (6.7%) 5067 ± 1600 (1.0%) 5929 ± 1741 (1.1%) 5057 ± 582 (5.6%) -
Unruly 6x6dt 468 - - - - -
Untangle 4 150 141 (100.0%) 1270 ± 1745 (90.4%) 135 ± 18 (100.0%) 170 ± 29 (100.0%) 871 ± 837 (99.0%)
Untangle 6 79 2165 (96.9%) 3324 ± 1165 (72.5%) 2739 ± 588 (91.7%) 2219 ± 84 (95.9%) -

Summary - 217 1984 (71.2%) 2743 ± 954 (54.8%)(3) 2342 ± 989 (61.1%)(2) 1999 ± 365 (70.2%)(5) 2754 ± 1579 (56.0%)(2)
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Puzzle Supplied Parameters Optimal Random PPO (Internal State) PPO (RGB Pixels) MaskablePPO (Internal State) MaskablePPO (RGB Pixels)

Blackbox w2h2m2M2 144 2206 (99.2%) 1773 ± 472 (59.5%) 1509 ± 792 (97.9%) 9 ± 0 (99.7%) 30 ± 1 (99.2%)
Bridges 3x3 378 547 (100.0%) 682 ± 197 (85.1%) 89 ± 176 (99.1%) 25 ± 0 (99.4%) 9 ± 0 (99.6%)
Cube c3x3 54 4181 (66.9%) 744 ± 1610 (77.5%) 3977 ± 442 (67.7%) 16 ± 1 (81.2%) 410 ± 157 (75.1%)
Dominosa 1dt 32 1980 (99.2%) 457 ± 954 (70.0%) 539 ± 581 (100.0%) 12 ± 0 (100.0%) 19 ± 2 (100.0%)
Fifteen 2x2 256 54 (100.0%) 3 ± 0 (100.0%) 37 ± 26 (100.0%) 4 ± 0 (100.0%) 3 ± 0 (100.0%)
Filling 2x3 36 820 (100.0%) 290 ± 249 (97.5%) 373 ± 175 (99.9%) 7 ± 0 (100.0%) 34 ± 3 (99.9%)
Flip 3x3c 63 3138 (88.9%) 3008 ± 837 (40.1%) 3616 ± 395 (78.3%) 2174 ± 1423 (70.3%) 319 ± 128 (81.3%)
Flood 3x3c6m5 63 134 (97.4%) 12 ± 0 (99.9%) 28 ± 12 (99.7%) 12 ± 0 (99.9%) 14 ± 0 (99.9%)
Galaxies 3x3de 156 4306 (33.9%) 3860 ± 1778 (8.3%) 4439 ± 224 (29.1%) 3640 ± 928 (40.2%) 3372 ± 430 (40.5%)
Guess c2p3g10Bm 200 358 (73.4%) - 344 ± 35 (72.0%) 145 ± 19 (75.4%) -
Inertia 4x4 51 13 (6.5%) 22 ± 9 (6.3%) 237 ± 10 (99.7%) 41 ± 19 (79.0%) 169 ± 233 (69.8%)
Keen 3dem 63 3152 (0.5%) 3817 ± 0 (0.2%) - - -
Lightup 3x3b20s0d0 35 2237 (98.1%) 1522 ± 1115 (82.7%) 2401 ± 148 (97.5%) 25 ± 8 (99.1%) 1608 ± 1144 (90.1%)
Loopy 3x3t0de 4617 - - - - -
Magnets 3x3deS 72 1895 (99.1%) 1366 ± 1090 (90.2%) 1794 ± 109 (98.7%) 222 ± 33 (98.8%) 425 ± 68 (99.2%)
Map 3x3n5de 70 903 (99.9%) 1172 ± 297 (75.7%) 958 ± 33 (99.9%) 321 ± 33 (99.9%) 467 ± 69 (99.1%)
Mines 4x4n2 144 87 (18.1%) 2478 ± 2424 (9.9%) 2406 ± 296 (44.7%) 412 ± 268 (43.3%) 653 ± 396 (43.1%)
Mosaic 3x3 63 4996 (9.8%) 4928 ± 438 (2.5%) 5673 ± 1547 (6.7%) 3381 ± 906 (29.4%) 3158 ± 247 (28.5%)
Net 2x2 28 1279 (100.0%) 9 ± 0 (100.0%) 180 ± 44 (100.0%) 9 ± 0 (100.0%) -
Netslide 2x3b1 48 766 (100.0%) 1612 ± 1229 (41.6%) 35 ± 18 (100.0%) 13 ± 0 (100.0%) 96 ± 7 (100.0%)
Netslide 3x3b1 90 4671 (11.0%) 4671 ± 498 (9.2%) - - -
Palisade 2x3n3 56 1428 (100.0%) 939 ± 604 (87.0%) 1412 ± 23 (99.9%) 90 ± 55 (99.9%) 347 ± 26 (99.8%)
Pattern 3x2 36 3247 (92.9%) 1542 ± 1262 (71.9%) 2983 ± 173 (92.5%) 14 ± 0 (96.9%) 1201 ± 1021 (88.7%)
Pearl 5x5de 300 - - - - -
Pegs 4x4Random 160 - - - 1730 ± 579 (34.9%) 1482 ± 687 (37.3%)
Range 3x3 63 535 (100.0%) 780 ± 305 (65.8%) 613 ± 25 (100.0%) 50 ± 69 (100.0%) 209 ± 26 (100.0%)
Rect 3x2 72 723 (100.0%) 27 ± 44 (99.8%) 300 ± 387 (100.0%) 8 ± 0 (100.0%) 38 ± 9 (100.0%)
Samegame 2x3c3s2 42 76 (100.0%) 123 ± 197 (98.8%) 11 ± 8 (100.0%) 8 ± 0 (100.0%) 9 ± 0 (100.0%)
Samegame 5x5c3s2 300 571 (32.1%) 1003 ± 827 (30.5%) - - -
Signpost 2x3 72 776 (96.1%) 838 ± 53 (97.2%) 779 ± 50 (97.0%) 567 ± 149 (97.7%) 454 ± 50 (97.5%)
Singles 2x3de 36 353 (100.0%) 7 ± 3 (100.0%) 306 ± 57 (100.0%) 5 ± 1 (100.0%) 218 ± 17 (100.0%)
Sixteen 2x3 48 2908 (94.1%) 2371 ± 1226 (55.7%) 3211 ± 450 (89.6%) 19 ± 2 (94.3%) 3650 ± 190 (68.5%)
Slant 2x2de 20 447 (100.0%) 333 ± 190 (80.4%) 325 ± 119 (100.0%) 12 ± 0 (100.0%) 89 ± 21 (100.0%)
Solo 2x2 144 - - - - -
Tents 4x4de 56 4442 (44.3%) 4781 ± 86 (10.3%) 4493 ± 155 (37.5%) 3485 ± 63 (39.9%) 3485 ± 456 (45.0%)
Towers 3de 72 4876 (1.0%) - - - -
Tracks 4x4de 272 5213 (0.5%) 4129 ± nan (0.1%) 4217 ± nan (1.6%) 5461 ± 976 (0.3%) 5019 ± 2297 (0.4%)
Twiddle 2x3n2 98 851 (100.0%) 8 ± 1 (99.9%) 348 ± 466 (100.0%) 7 ± 0 (100.0%) 12 ± 1 (100.0%)
Undead 3x3de 63 4390 (40.1%) 4542 ± 292 (5.7%) 4129 ± 139 (40.0%) 3415 ± 379 (42.8%) 3482 ± 406 (46.1%)
Unequal 3de 63 4540 (6.7%) - - 2322 ± 988 (38.7%) 3021 ± 1368 (26.5%)
Unruly 6x6dt 468 - - - - -
Untangle 4 150 141 (100.0%) 13 ± 1 (100.0%) 35 ± 58 (100.0%) 12 ± 0 (100.0%) 7 ± 0 (100.0%)
Untangle 6 79 2165 (96.9%) 2295 ± 66 (96.2%) - - -

Summary - 217 1984 (71.2%) 1604 ± 801 (61.6%)(8) 1619 ± 380 (82.8%)(6) 814 ± 428 (81.2%)(21) 1047 ± 583 (79.2%)(10)
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Appendix E.6. Episode Length and Early Termination Parameters

In Table A9, the puzzles and parameters used for training the agents for the ablation
in Section 4.4 are shown in combination with the results. Due to limited computational
budget, we included only a subset of all puzzles at the easy human difficulty preset for
DreamerV3. Namely, we have selected all puzzles where a random policy was able to
complete at least a single episode successfully within 10,000 steps in 1000 evaluations. It
contains a subset of the more challenging puzzles, as can be seen by the performance of
many algorithms in Table A6. For some puzzles, e.g. Netslide, Samegame, Sixteen and
Untangle, terminating episodes early brings a benefit in final evaluation performance when
using a large maximal episode length during training. For the smaller maximal episode
length, the difference is not always as pronounced.

Table A9. Listed below are the puzzles and their corresponding supplied parameters. For each

setting, we report average success episode length with standard deviation with respect to the random

seed, all averaged over all selected puzzles. In brackets, the percentage of successful episodes is

reported.

Puzzle Supplied Parameters # Steps ET DreamerV3

Bridges 7x7i30e10m2d0
1e4

10 4183.0 ± 2140.5 (0.2%)
- -

1e5
10 4017.9 ± 1390.1 (0.3%)
- 4396.2 ± 2517.2 (0.3%)

Cube c4x4
1e4

10 21.9 ± 1.4 (100.0%)
- 21.4 ± 0.9 (100.0%)

1e5
10 22.6 ± 2.0 (100.0%)
- 21.3 ± 1.2 (100.0%)

Flood 12x12c6m5
1e4

10 -
- -

1e5
10 -
- -

Guess c6p4g10Bm
1e4

10 -
- 1060.4 ± 851.3 (0.6%)

1e5
10 2405.5 ± 2476.4 (0.5%)
- 3165.2 ± 1386.8 (0.6%)

Netslide 3x3b1
1e4

10 3820.3 ± 681.0 (18.4%)
- 3181.3 ± 485.5 (21.1%)

1e5
10 3624.9 ± 746.5 (23.0%)
- 4050.6 ± 505.5 (10.6%)

Samegame 5x5c3s2
1e4

10 53.8 ± 7.5 (38.3%)
- 717.4 ± 309.0 (29.1%)

1e5
10 47.3 ± 6.6 (36.7%)
- 1542.9 ± 824.0 (26.4%)

Signpost 4x4c
1e4

10 6848.9 ± 677.7 (1.1%)
- 6861.8 ± 301.8 (1.5%)

1e5
10 6983.7 ± 392.4 (1.6%)
- -

Sixteen 3x3
1e4

10 4770.5 ± 890.5 (2.9%)
- 4480.5 ± 2259.3 (25.5%)

1e5
10 3193.3 ± 2262.0 (57.0%)
- 3517.1 ± 1846.7 (23.5%)

Undead 4x4de
1e4

10 5378.0 ± 1552.7 (0.5%)
- 5324.4 ± 557.9 (0.6%)

1e5
10 5666.2 ± 553.3 (0.5%)
- 5771.3 ± 2323.6 (0.4%)

Untangle 6
1e4

10 474.7 ± 117.6 (99.1%)
- 1491.9 ± 193.8 (89.3%)

1e5
10 597.0 ± 305.5 (96.3%)
- 1338.4 ± 283.6 (88.7%)
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