
Theoretical Computer Science 452 (2012) 56–74

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Computing optimal contracts in combinatorial agencies✩

Yuval Emek a, Michal Feldman b,∗

a Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland
b School of Business Administration and the Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel

a r t i c l e i n f o

Article history:
Received 30 May 2010
Received in revised form 3 May 2012
Accepted 12 May 2012
Communicated by A. Fiat

Keywords:
Game theory
Mechanism design
Hidden action

a b s t r a c t

We study an economic setting in which a principal motivates a team of strategic agents to
exert costly effort toward the success of a joint project. The action of each agent is hidden
and affects the outcome of the agent’s individual task in a stochastic manner. A Boolean
technology function maps the outcomes of the individual tasks to the project’s outcome.
The principal induces a Nash equilibrium on the agents’ actions through payments which
are conditioned on the project’s outcome and themain challenge is that of determining the
Nash equilibrium that maximizes the principal’s net utility, namely, the optimal contract.

Babaioff, Feldman and Nisan study a basic combinatorial agency model for this setting,
and provide a full analysis of the AND technology. Here, we concentrate mainly on
OR technologies that, surprisingly, turn out to be much more complex. We provide a
complete analysis of the computational complexity of the optimal contract problem in
OR technologies which resolves an open question and disproves a conjecture raised by
Babaioff et al. While the AND case admits a polynomial time algorithm, we show that
computing the optimal contract in an OR technology is NP-hard. On the positive side, we
devise an FPTAS for OR technologies. We also study series–parallel (SP) technologies, which
are constructed inductively from AND and OR technologies. We establish a scheme that
given any SP technology, provides a (1 + ϵ)-approximation for all but an ϵ̂-fraction of the
relevant instances in time polynomial in the size of the technology and in the reciprocals
of ϵ and ϵ̂.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We consider the setting in which a principal motivates a team of rational agents to exert costly effort toward the success
of a joint project, where the actions of the agents are hidden from the principal. The outcome (usually, success or failure
of the project) is stochastically determined by the set of actions taken by the agents and is visible to all. As agents’ actions
are invisible, their compensation depends on the outcome and the principal’s challenge is to design contracts (conditional
payments to the agents) as to maximize her net utility, given the payoff that she obtains from a successful outcome.

The problem of hidden actions in production teams has been extensively studied in the economics literature [11,14,
19,12,20]. More recently, the problem has been examined from a computational perspective [9,1,4,2,13,6,3,5]. This line of
research complements the field of Algorithmic Mechanism Design (AMD) [16,15,18,8,17] that received much attention in
the past decade. While AMD studies the design of mechanisms in scenarios characterized by private information held by
the individual agents, our focus is on the complementary problem, that of hidden-action taken by the individual agents.

✩ A preliminary version has appeared in the Workshop on Internet and Network Economics, 2009.
∗ Corresponding author. Tel.: +972 54 3020222.

E-mail addresses: yuval.emek@tik.ee.ethz.ch (Y. Emek), michal.feldman@huji.ac.il (M. Feldman).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.05.018

http://dx.doi.org/10.1016/j.tcs.2012.05.018
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:yuval.emek@tik.ee.ethz.ch
mailto:michal.feldman@huji.ac.il
http://dx.doi.org/10.1016/j.tcs.2012.05.018


Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74 57

Themodel. Weuse themodel presented in [1] (which is an extension of themodel devised in [21]). In thismodel, a principal
employs a set1 N of agents in a joint project. Each agent i takes an action ai ∈ {0, 1}, which is known only to him, and succeeds
or fails in his own task probabilistically and independently. The individual outcome of agent i is denoted by xi ∈ {0, 1}. If the
agent shirks (ai = 0), he succeeds in his individual task (xi = 1) with probability 0 < γi < 1 and incurs no cost. If, however,
he decides to exert effort (ai = 1), he succeeds with probability 0 < δi < 1, where δi > γi, but incurs some positive real
cost ci > 0.

A key component of themodel is the way in which the individual outcomes determine the outcome of the whole project.
We assume amonotone Boolean functionϕ : {0, 1}n → {0, 1} that determineswhether the project succeeds as a function of
the individual outcomes of the n agents’ tasks (and is not determined by any set of n−1 agents). Two fundamental examples
of such Boolean functions are AND and OR. The AND function is the logical conjunction of xi (ϕ(x1, . . . , xn) =


i∈N xi),

representing the case in which the project succeeds only if all agents succeed in their tasks. In this case, we say that the
agents complement each other. The OR function represents the other extreme, in which the project succeeds if at least one
of the agents succeeds in his task. This function is the logical disjunction of xi (ϕ(x1, . . . , xn) =


i∈N xi), and we say that the

agents substitute each other.
Given the action profile a = (a1, . . . , an) ∈ {0, 1}n and a monotone Boolean function ϕ : {0, 1}n → {0, 1}, the

effectivenessof the actionprofile a, denoted by f (a), is the probability that thewhole project succeeds under a andϕ according
to the distribution specified above. That is, the effectiveness f (a) is defined as the probability that ϕ(x1, . . . , xn) = 1, where
xi ∈ {0, 1} is determined probabilistically (and independently) by ai: if ai = 0, then xi = 1with probability γi; if ai = 1, then
xi = 1 with probability δi. The monotonicity of ϕ and the assumption that δi > γi for every i ∈ N imply the monotonicity
of the effectiveness function f , i.e., if we denote by a−i ∈ {0, 1}n−1 the vector of actions taken by all agents excluding agent
i (namely, a−i = (a1, . . . , ai−1, ai+1, . . . , an)), then the effectiveness function must satisfy f (1, a−i) > f (0, a−i) for every
i ∈ N and a−i ∈ {0, 1}n−1. Note that it is inherent to our model (in fact, the model of [1]) that the effectiveness f (a) consists
of a ‘‘probabilistic component’’ that determines the individual outcomes x1, . . . , xn and a ‘‘deterministic component’’ that
maps these individual outcomes to success or failure of the whole project.

The agents’ success probabilities, the costs of exerting effort, and the monotone Boolean function that determines the
final outcomedefine the technology, formally defined as the five-tuple t = ⟨N, {γi}

n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩, whereN is a (finite)

set of agents, γi (respectively, δi) is the probability that xi = 1 when agent i shirks (resp., when agent i exerts effort), where
δi > γi, ci is the cost incurred on agent i for exerting effort, and ϕ : {0, 1}n → {0, 1} is the monotone Boolean function that
maps the individual outcomes x1, . . . , xn to the outcome of the whole project. We sometimes abuse notation and refer to
the Boolean function ϕ as the technology. It is important to emphasize that the technology is assumed to be known by the
principal and the agents.

Since exerting effort entails some positive cost, an agent will not exert effort unless induced to do so by appropriately
designed incentives. The principal can motivate the agents by offering them individual payments. However, due to the non-
visibility of the agents’ actions, the individual payments cannot be directly contingent on the actions of the agents, but rather
only on the success of thewhole project. The conditional payment to agent i is thus given by a real value pi ≥ 0 that is granted
to agent i by the principal if the project succeeds (otherwise, the agent receives 0 payment).2

The expected utility of agent i under the profile of actions a = (a1, . . . , an) and the conditional payment pi is pi · f (a)
if ai = 0, and pi · f (a) − ci if ai = 1. Given a real payoff v > 0 that the principal obtains from a successful outcome of
the project, the principal wishes to design the payments pi as to maximize her own expected utility defined as Ua(v) =

f (a) ·

v −


i∈N pi


, where the action profile a is assumed to be at Nash-equilibrium with respect to the payments pi (i.e.,

no agent can improve his utility by a unilateral deviation). As multiple Nash equilibria may (and actually do) exist, we focus
on the one that maximizes the utility of the principal. This is as if we let the principal choose the desired Nash equilibrium,
and ‘‘suggest’’ it to the agents. The following observation is established in [1].

Observation. The best conditional payments (from the principal’s point of view) that induce the action profile a ∈ {0, 1}n as
a Nash equilibrium are pi = 0 for agent i who shirks (ai = 0), and pi =

ci
∆i(a−i)

for agent i who exerts effort (ai = 1), where
∆i(a−i) = f (1, a−i) − f (0, a−i). (Note that the monotonicity of the effectiveness function guarantees that ∆i(a−i) is always
positive.)

The last observation implies that once the principal chooses the action profile a ∈ {0, 1}n, her (maximum) expected
utility is determined to be Ua(v) = f (a) · (v − p(a)), where p(a) is the total payment (in the case of a successful outcome
of the project), given by p(a) =


i|ai=1

ci
∆i(a−i)

. Therefore the principal’s goal is merely to choose a subset S ⊆ N of agents
that exert effort (the rest of the agents shirk) so that her expected utility is maximized. The agent subset S is referred to as
a contract and we say that the principal contracts with agent i if i ∈ S. We sometimes abuse notation and denote f (S), p(S)
and US(v) instead of f (a), p(a) and Ua(v), respectively, where ai = 1 if i ∈ S and ai = 0 if i /∈ S. Given the principal’s payoff
v > 0, a contract T ⊆ N is said to be optimal if UT (v) ≥ US(v) for every contract S ⊆ N .

While finding the optimal set of payments that induces a particular set of agents to exert effort is a straightforward task
(and can be efficiently computed), finding an optimal contract for a given payoff v > 0 is themain challenge addressed in this

1 Unless stated otherwise, we assume that N = [n], where [n] denotes the set {1, . . . , n}.
2 We impose the limited liability constraint, implying that the principal can pay the agents but not fine them. Thus, all payments must be non-negative.



58 Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74

paper. Given a technology t = ⟨N, {γi}
n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩, we refer to the collection of contracts that can be obtained as

an optimal contract for some payoff as the orbit of t (ties between different contracts are broken according to a lexicographic
order3). Once the contract S ⊆ N is chosen, the expected utility of the principal US(v) = f (S)(v − p(S)) becomes a linear
function of the payoff v. Therefore each contract S corresponds to some line in R2. It follows that computing the orbit of t is
equivalent to identifying the (positive) top envelope of the line collection {US(·) | S ⊆ N} in R2.

It is easy to see that for sufficiently low payoffs, no agent will ever be contracted while for sufficiently high payoffs, all
agents will always be contracted. Therefore the trivial contracts ∅ and N are always in the orbit. Let v∗

= inf{v > 0 |

N is optimal for v}. Clearly, the trivial contract N is optimal for every v > v∗ and the infinite interval (v∗, ∞) does not
exhibit any transitions in the orbit. We refer to the payoffs in the interval (0, v∗

] as the relevant payoffs.

Our results. Multi-agent projects may exhibit delicate combinatorial structures of dependencies between the agents’
actions, which can be represented by a wide range of monotone Boolean functions. In the two extremes of this range reside
two simple and natural functions, namelyAND andOR, which correspond to the respective cases of pure complementarities
and pure substitutabilities. These are arguably the two most fundamental interrelations between agents’ actions.

The AND case was fully analyzed in [1]. In particular, it was (implicitly) shown that the optimal contract of any AND
technology can be computed in polynomial time. In contrast, the OR case was left unresolved to the most part. Specifically,
one of the main open questions raised in [1] asked whether the optimal contract problem on OR technologies can be solved
in polynomial time.

We provide a complete analysis of the computational complexity of the optimal contract problem on OR technologies.
Our first theorem, established in Section 2, addresses the hardness of this problem. Note that aside from establishing the
computational hardness of the problem, our analysis implies the existence ofOR technologies which admit exponential-size
orbits, thus refuting a conjecture raised in [1].

Theorem 1. The problem of computing the optimal contract in OR technologies is NP-hard.4 The problem remains NP-hard even
for the special case in which ci = 1 and δi = 1 − γi for every i ∈ N.

This hardness result is complemented by an approximation scheme in Section 3.2.

Theorem 2. The problem of computing the optimal contract in OR technologies admits a fully polynomial-time approximation
scheme (FPTAS).

In fact, the FPTAS devised in Theorem 2 is based on a more general scheme, developed in Section 3.1. This scheme can be
applied to a generalization of AND and OR technologies, referred to as series–parallel (SP) technologies that we now turn to
define.

SP functions are monotone Boolean functions defined inductively as follows. The uni-argument identity function is
considered SP. Consider two SP functions ϕl : {0, 1}nl → {0, 1} and ϕr : {0, 1}nr → {0, 1}. The Boolean functions
ϕl ∧ ϕr : {0, 1}nl+nr → {0, 1}, defined as the logical conjunction of ϕl and ϕr , and ϕl ∨ ϕr : {0, 1}nl+nr → {0, 1},
defined as the logical disjunction of ϕl and ϕr , are also considered SP. We refer to the former (respectively, the latter) as
a series composition (resp., a parallel composition) of ϕl and ϕr , hence the name series–parallel. Since series and parallel
compositions are associative, it follows that the class of SP Boolean functions is indeed a generalization of both AND andOR
Boolean functions. SP Boolean functions are of great interest to computer science. For instance, they play an important role
in combinatorial games due to their equivalence to game trees (AND-OR trees).

General SP technologies are considerably more involved and the approximability of the optimal contract problem on
such technologies remains an open question. However, an interesting insight into this question is provided by a scheme
that approximates all but a small fraction of the relevant payoffs. The following theorem is established in Section 3.3.

Theorem 3. Given an SP technology t and two real parameters 0 < ϵ, ϵ̂ ≤ 1, there exists a scheme that on input payoff v > 0,
either returns a (1 + ϵ)-approximate solution for v or outputs a failure message, in time poly(|t|, 1/ϵ, 1/ϵ̂). Assuming that
F ⊆ R>0 is the set of reals on which the scheme outputs a failure message, it is guaranteed that5


∞

0 1F (v)dv ≤ ϵ̂v∗, where 1F is
the characteristic function of F .

It may be the case that the hardness of the optimal contract problem on SP technologies is somehow ‘‘concentrated’’
exactly in those payoffs which cannot be reached by the scheme of Theorem 3. However, if an instance of the problem
is chosen uniformly at random out of the ‘‘relevant instances’’, then with high probability our scheme provides a good
approximation for this instance. (Recall that the trivial contractN is optimal for any non-relevant payoff.) In fact, the payoffs
v on which the scheme of Theorem 3 outputs a failure message belong to a small (polynomial) number of sub-intervals of
(0, v∗

]; by making the parameter ϵ̂ smaller, we decrease the guaranteed bound on the size of each such sub-interval.
It is interesting to contrast the aforementioned results with the observable-action case, where the agents’ actions are not

hidden and may be contracted on, which admits a polynomial time algorithm for SP technologies [7].

3 This implies that there are no two contracts with the same effectiveness in the orbit.
4 The hardness is established via a polynomial time Turing reduction.
5 Recall that v∗

= inf{v > 0 | N is optimal for v}.



Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74 59

Finally, we obtain a positive result regarding the general case. Consider an arbitrary technology t and let S be a collection
of contracts. Given some real α > 1, we say that S is an α-approximation of t ’s orbit if for every payoff v, there exists a
contract S ∈ S such that US(v) ≥

UT (v)

α
, where T is optimal for v. The following theorem, which guarantees the existence of

a polynomial size collection approximating t , is established in Section 3.4.

Theorem 4. For every technology t = ⟨N, {γi}
n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩ and for any ϵ > 0, the orbit of t admits a (1 + ϵ)-

approximation of size poly(|t|, 1/ϵ).

Unfortunately, in the case of arbitrary technologies (as opposed to OR technologies) we do not know how to construct
the approximating collection efficiently.

2. NP-hardness of OR technologies

In this section, we establish the NP-hardness of the optimal contract problem on OR technologies.

Theorem 1. The problem of computing the optimal contract in OR technologies is NP-hard.

We start with a high-level description.

Overview. We present a polynomial time Turing reduction from X3SAT (Problem LO4 in [10]) to the problem of computing
an optimal contract for an OR technology. A 3-CNF formula φ is solvable under X3SAT if there exists a truth assignment for
the variables of φ that assigns true to exactly one literal in every clause. The X3SAT problem is known to be NP-hard even
if the literals in φ are all positive. Given a 3-CNF formula φ with m clauses and n variables in which all literals are positive,
we construct an OR technology t = ⟨N, {γj}

n+5
j=1 , {δj}

n+5
j=1 , {cj}n+5

j=1 , ϕ⟩ such that (1) the agent set N contains n + 5 agents, (2)
the cost incurred on agent j for exerting effort is cj = 1 for every j ∈ N , and (3) γj = 1− δj for every j ∈ N . The construction
is designed to guarantee that by performing O(n) queries, each revealing the optimal contract for some carefully chosen
payoff, we can decide whether φ is solvable under X3SAT.

Let W = {0, 1, 2, 3}m+2
× {0, 1}2. Each agent j ∈ N is assigned with a vector uj

= (uj
0, . . . , u

j
m+3) ∈ W . The first n

agents correspond to the n variables of the 3-CNF formula φ and affect coordinates 1, . . . ,m in a manner that reflects the
appearance of their corresponding variables in them clauses. The additional 5 agents affect coordinates 0,m+1,m+2,m+3
and are provided for the sake of analysis. We extend the assignment of vectors to sets of agents (a.k.a. contracts) in a natural
way: given a contract S ⊆ N , we define the vector uS

=


j∈S u
j. (Note that different contracts may be assigned with the

same vector.) The assignment of vectors to contracts guarantees that the formula φ is solvable under X3SAT if and only if
there exists a contract S with vector uS

= (1, . . . , 1).
The parameters of {γj}

n+5
j=1 and {δj}

n+5
j=1 are defined as follows. Consider the vector x = (x0, . . . , xm+3) in W . Let σ(x) =m+1

i=0 xi4i and fixµ = 45(m+2). The evaluation of x is defined to be τ(x) =


1 +

1
µ

σ(x)
·µ2xm+2 ·µ5xm+3 . Let ϵ = µ−κ , where

κ is a sufficiently large constant.
We would have wanted to fix γj = 1 − δj = τ(uj) · ϵ for every j ∈ N . Unfortunately, the standard binary representation

of τ(uj)may bemuch larger than the binary representation of φ for some j, and in particular, exponential inm. To overcome
this obstacle, we use a carefully chosen estimation of τ(uj), so that on the one hand, the desired properties of the evaluation
function are preserved, and on the other hand, the binary representation of γj (and δj) is polynomial in m. In particular,
the choice of {γj}

n+5
j=1 and {δj}

n+5
j=1 guarantees that for every two contracts S, T ⊆ N , f (S) > f (T ) if and only if |S| > |T | or

|S| = |T | and uS is lexicographically smaller than uT .
We argue that if some contracts S with uS

= (1, . . . , 1) exist, then at least one of them is in the orbit. This is done as
follows. A vector x = (x0, . . . , xm+3) is said to be protected if xm+2 = xm+3 = 1. The key lemma of our proof asserts that
any contract assigned with a protected vector x cannot be dominated by any two contracts assigned with different vectors.
Following some standard geometric arguments, we conclude that the contracts assigned with x cannot be dominated by
any set of (other) contracts. More formally, for every 0 ≤ k ≤ n + 5, we denote Ψk(x) = {S ⊆ N | uS

= x and |S| = k}, and
show that for any protected vector x, if Ψk(x) is not empty, then at least one contract in Ψk(x) is in the orbit. In particular,
assuming that x = (1, . . . , 1), if Ψk(x) ≠ ∅, then there exist a contract S ∈ Ψk(x) and a payoff v∗

k such that S is optimal for
v∗

k .
Computing the payoff v∗

k for every 1 ≤ k ≤ n + 5 remains our ultimate challenge. To achieve this goal, we define two
additional vectorsw = (2, 1, 1, . . . , 1) ∈ W and y = (0, 1, 1, . . . , 1) ∈ W . The choice of the additional vectors guarantees
that if Ψk(x) is not empty, then neither are Ψk(y) and Ψk(w). Suppose that Ψk(x) ≠ ∅ and fix λ

w,x
k = max{v[S, T ] | S ∈

Ψk(w) and T ∈ Ψk(x)} and λ
x,y
k = min{v[S, T ] | S ∈ Ψk(x) and T ∈ Ψk(y)}, where v[S, T ] is the intersection payoff of S

and T , i.e., US(v[S, T ]) = UT (v[S, T ]). We show that the optimal contract for every λ
w,x
k < v < λ

x,y
k must be in Ψk(x). The

analysis is completed by identifying some payoff λw,x
k < v∗

k < λ
x,y
k such that the binary representation of v∗

k is polynomial
in m.

The decisionwhether the formulaφ is solvable under X3SAT is now carried out as follows. For k = 1, . . . , n+5, we query
on the optimal contract Sk for the payoff v∗

k . If u
Sk is of the form (1, . . . , 1) for some k, then φ must be solvable. Otherwise,

there does not exist any such contract and φ is not solvable.



60 Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74

Fig. 1. The n + 5 vectors representing the n + 5 agents of the technology. The first n agents correspond to the n variables of the 3-CNF formula φ, and the
additional 5 agents are assigned with the vectors uα , uβ , uA , uB and uC .

The reduction. We now turn to describe the reduction in detail. Let W = {0, 1, 2, 3}m+2
× {0, 1}2. Each agent j ∈ N is

assigned with a vector uj
= (uj

0, . . . , u
j
m+3) ∈ W . The first n agents correspond to the n variables of the 3-CNF formula φ.

Assuming that variable j appears in clauses Γj ⊆ {1, . . . ,m} (always as a positive literal), the vector uj is defined so that
uj
i = 1 if i ∈ Γj and uj

i = 0 if i /∈ Γj for every 0 ≤ i ≤ m + 3 (thus uj
0 = uj

m+1 = uj
m+2 = uj

m+3 = 0).
Agents n + j for j = 1, . . . , 5 are provided for the sake of the analysis. To avoid cumbersome indexing, we denote n + 1

and n + 2 by α and β , respectively, and n + 3, n + 4 and n + 5 by A, B and C , respectively. Agents α and β are assigned
with the vectors uα

= (0, . . . , 0, 1, 0) ∈ W and uβ
= (0, . . . , 0, 0, 1) ∈ W , respectively. Agents A, B and C are assigned

with the vectors uA
= (0, . . . , 0, 1, 0, 0) ∈ W , uB

= (1, 0, 0, . . . , 0, 1, 0, 0) ∈ W and uC
= (2, 0, 0, . . . , 0, 1, 0, 0) ∈ W ,

respectively (see Fig. 1). Observe that the first n agents affect coordinates 1, . . . ,m, agents α and β affect coordinatesm+ 2
and m + 3, and agents A, B and C affect coordinates 0 andm + 1.

We extend the assignment of vectors to sets of agents (a.k.a. contracts) in a natural way. Given a contract S ⊆ N , we
define the vector uS

=


j∈S u
j. As each clause in φ contains (at most) three variables, and by the definition of the vectors

uα , uβ , uA, uB and uC , it follows that uS
∈ W for every contract S ⊆ N . Observe that different contracts may be assigned

with the same vector in W .
The reduction relies on the following fact: the formula φ is solvable under X3SAT if and only if there exists a contract S

with vectoruS
= (1, . . . , 1) ∈ W . To justify this fact, note that there exists a truth assignment that assigns true to exactly one

variable in every clause of φ if and only if there exists a contract S ⊆ [n] such that uS
= (uS

0, 1, 1, . . . , 1, u
S
m+1, u

S
m+2, u

S
m+3),

where uS
0 = uS

m+1 = uS
m+2 = uS

m+3 = 0. Agents α, β and B can be added to S, thus setting uS
0 = uS

m+1 = uS
m+2 = uS

m+3 = 1,
without affecting any other coordinate. We will show that if such a contract exists, then it is optimal for some payoff v∗

which will be determined later on.

Vector evaluations. We now turn to define the parameters γi and δi of the agents. For that purpose, we first have to define
a couple of functions that map the vectors in W to the reals. Consider the vector x = (x0, . . . , xm+3) in W . Let

σ(x) =

m+1
i=0

xi4i

and fix µ = 45(m+2). The partial evaluation of x is defined to be

τp(x) =


1 +

1
µ

σ(x)

and the full evaluation of x is defined to be

τ(x) = τp(x) · µ2xm+2 · µ5xm+3 .

Observe that τ(x) = τp(x) if xm+2 = xm+3 = 0.
Let ϵ = µ−κ , where κ is a sufficiently large constant (independent of m and n) that will be determined later on. We

would have wanted to define the effectiveness factors of the OR technology by fixing γj = 1− δj = τ(uj) · ϵ for every j ∈ N .
Unfortunately, the standard binary representation of τ(uj)may bemuch larger than the binary representation of φ for some
j, and in particular, exponential inm. We handle this obstacle by estimating the vector evaluations as follows.

Note that since xi ≤ 3 for every 0 ≤ i ≤ m + 1, and since µ >
m+1

i=0 3 · 4i
5

, it follows that µ > (σ(x))5 for every

x ∈ W . The partial evaluation of x can be rewritten as τp(x) =
σ(x)

j=0


σ(x)
j


µ−j, thus

τp(x) =

k−1
j=0


σ(x)
j


µ−j

+ O

µ−4k/5 (1)

for any 0 < k ≤ σ(x). Moreover, τ(x) ≤ (1 + O(µ−4/5))µ7. Fix χ = 2µ7 (so that χ > τ(x) for every vector x ∈ W ).
Given a vector x = (x0, . . . , xm+3) ∈ W , let τp(x) =

⌈5(κ+7)/4⌉−1
j=0


σ(x)
j


µ−j

= τp(x) − O(µ−κ−7) = τp(x) − O(ϵµ−7)

andτ(x) = τp(x) · µ2xm+2 · µ5xm+3 = τ(x) − O(ϵ). Note that the size of the binary representation ofτ(x) is polynomial



Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74 61

(linear actually) inm. The technology t is now determined by fixing

γj = 1 − δj =τ(uj)ϵ = τ(uj)ϵ − O(ϵ2) (2)

for all j ∈ N .
Next,we establish some important properties of the vector evaluations.We impose a lexicographic order on the vectors in

W : the vector x = (x0, . . . , xm+3) is lexicographically greater than the vector y = (y0, . . . , ym+3) if there exists a coordinate
0 ≤ j ≤ m + 3 such that xi = yi for every i > j and xj > yj. Clearly, for any two vectors x, y ∈ W , the full evaluation of x is
greater than the full evaluation of y if and only if x is lexicographically greater than y.

Proposition 2.1. Let x = (x0, . . . , xm+3) and y = (y0, . . . , ym+3) be two vectors in W such that x is lexicographically greater
than y. The difference τ(x) − τ(y) satisfies (i) if xm+2 ≠ ym+2 or xm+3 ≠ ym+3, then τ(x) − τ(y) = (1 + o(1))µ2xm+2+5xm+3 ,
and (ii) if xm+2 = ym+2 and xm+3 = ym+3, then µ2xm+2+5xm+3−1

≤ τ(x) − τ(y) ≤ O(µ2xm+2+5xm+3−(4/5)).

Proof. The bound in (i) follows immediately from the definition of full evaluation as the partial evaluation is 1 + o(1). To
establish (ii), note that since τ(x) > τ(y) although xm+2 = ym+2 and xm+3 = ym+3, we must have τp(x) > τp(y). By the
definition of partial evaluation, it follows that τp(x)

τp(y)
=

1 + µ−1

σ(x)−σ(y), hence 1+µ−1
≤

τp(x)
τp(y)

≤ 1+O(µ−4/5). Therefore

µ−1
≤ τp(y)(1 + µ−1

− 1) ≤ τp(x) − τp(y) ≤ τp(y)(1 + O(µ−4/5) − 1) ≤ O(µ−4/5)

The proof is completed as τ(x) − τ(y) = µ2xm+2+5xm+3(τp(x) − τp(y)). �

Let S ⊆ N be some contract and assume that |S| = k > 0. Let ν be the maximum among all constants hidden in the O
notation of (2), that is, τ(uj)ϵ − γj ≤ νϵ2 for every j ∈ N . By the definition of OR technologies, we have

f (S) = 1 −


j∈S

(1 − δj)


j∈N−S

(1 − γj)

= 1 −


j∈S

ϵ

τ(uj) − O(ϵ)

 
j∈N−S


1 − ϵ


τ(uj) − O(ϵ)


= 1 − ϵk


j∈S

τ(uj) −

n+5
l=1

(−1)lϵk+l
· O


ν lχ


n + 5

l



= 1 − τ(uS)ϵk
−

n+5
l=1

(−1)lϵk+l
· O


ν lχ


n + 5

l


.

Taking ϵ <


1
νχ(n+5)

2
guarantees that

f (S) = 1 − τ(uS)ϵk
± O(ϵk+(1/2)). (3)

Following a similar line of arguments, we conclude that f (∅) = O(ϵ1/2). The next proposition can now be established.

Proposition 2.2. Let S, S ′
⊆ N be two contracts and let k = |S|, k′

= |S ′
|. Then f (S) < f (S ′) if and only if (i) k < k′; or

(ii) k = k′ and τ(uS) > τ(uS′

).

Proof. The first claim follows immediately from (3) by taking ϵ ≪ χ−1. For the second claim, note that by (3), it is sufficient
to prove that τ(uS) − τ(uS′

) = ω(ϵ1/2). This is guaranteed due to Proposition 2.1 by taking ϵ ≪ µ−2. �

A direct consequence of Proposition 2.2 is that f (S) = f (S ′) if and only if |S| = |S ′
| anduS

= uS′

. The conditional payment
to the agents in S, where |S| = k, can now be expressed as

p(S) =


j∈S

1
f (S) − f (S − j)

=


j∈S


1 − τ(uS)ϵk

± O(ϵk+(1/2)) − 1 + τ(uS−j)ϵk−1
± O(ϵk−(1/2))

−1

=


j∈S


τ(uS−j)ϵk−1

± O(ϵk−(1/2))
−1

=


j∈S

1
τ(uS−j)

ϵ1−k
± O(ϵ(3/2)−k)

=


j∈S

1
τ(uS−j)

ϵ1−k
± O(ϵ(5/4)−k),



62 Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74

where S−j denotes the contract S−{ j} and the last equation follows by taking ϵ < (n+5)−4. Defineπ(S) =


j∈S τ−1(uS−j),
so that

p(S) = π(S)ϵ1−k
± O(ϵ(5/4)−k). (4)

Note that π(S) < |S| for every contract S ⊆ N since each term in the sum is smaller than 1.
Let S ⊆ N be some contract and assume that |S| = k > 0. By plugging (3) and (4) into the definition of utility, we get

US(v) =

1 − τ(uS)ϵk

± O(ϵk+(1/2))
 

v − π(S)ϵ1−k
± O(ϵ(5/4)−k)


= v − π(S)ϵ1−k

± O(ϵ(5/4)−k) − τ(uS)vϵk
+ π(S)τ (uS)ϵ ± O(τ (uS)ϵ5/4)

± O(vϵk+(1/2)) ± O(π(S)ϵ3/2) ± O(ϵ7/4)

= v − π(S)ϵ1−k
− τ(uS)vϵk

± O(ϵ(5/4)−k) ± O(vϵk+(1/2)),

where the last equation is guaranteed by taking ϵ < ((n + 5)χ)−4/3. For the empty contract, we have p(∅) = 0 and
U∅(v) = v · O(ϵ1/2).

Consider two contracts S, T ⊆ N . Assuming that f (S) ≠ f (T ), we refer to the payoff on which the lines US(·) and UT (·)
intersect as the intersection payoff of S and T , denoted v[S, T ], namely,US(v[S, T ]) = UT (v[S, T ]). The next lemma correlates
the intersection payoffs to the size of the contracts and to the vectors representing the contracts.

Lemma 2.3. Let S, S ′
⊆ N be two contracts such that f (S) ≠ f (S ′). Define k = |S| and k′

= |S ′
|. The intersection payoff v[S, S ′

]

satisfies (i) if 0 < k = k′, then

v[S, S ′
] = ϵ1−2k π(S ′) − π(S) ± O(ϵ1/4)

τ (uS) − τ(uS′
) ± O(ϵ1/2)

;

and (ii) if k ≠ k′, k, k′
≥ 0, then

Ω(ϵ(5/4)−k−k′) ≤ v[S, S ′
] ≤ O(ϵ(3/4)−k−k′).

(Observe that the case 0 = k = k′ is irrelevant as there is only one empty contract.)

Proof. Assume without loss of generality that k ≤ k′. Suppose first that k > 0. By comparing the utilities of S and S ′ on
payoff v[S, S ′

], we get

π(S)ϵ1−k
+ τ(uS)v[S, S ′

]ϵk
± O(ϵ(5/4)−k) ± O(v[S, S ′

]ϵk+(1/2))

= π(S ′)ϵ1−k′
+ τ(uS′

)v[S, S ′
]ϵk′

± O(ϵ(5/4)−k′) ± O(v[S, S ′
]ϵk′+(1/2)) ,

hence

v[S, S ′
] =

π(S ′)ϵ1−k′
− π(S)ϵ1−k

± O(ϵ(5/4)−k′)

τ (uS)ϵk − τ(uS′
)ϵk′ ± O(ϵk+(1/2))

.

By setting k = k′, (i) is established. Otherwise, if 0 < k < k′, then, by taking ϵ < min{(n + 5)−2, χ−2
}, we get

v[S, S ′
] =

π(S ′)ϵ1−k′
± O(ϵ(5/4)−k′)

τ (uS)ϵk ± O(ϵk+(1/2))
= ϵ1−k′−k π(S ′) ± O(ϵ1/4)

τ (uS) ± O(ϵ1/2)
. (5)

It remains to consider the case 0 = k < k′. Once again by comparing the utilities of S and S ′ on payoff v[S, S ′
], we have

v[S, S ′
] − π(S ′)ϵ1−k′

− τ(uS′

)v[S, S ′
]ϵk′

± O(ϵ(5/4)−k′) ± O(v[S, S ′
]ϵk′+(1/2)) = v[S, S ′

] · O(ϵ1/2),

hence, by taking ϵ < χ−2, we get

v[S, S ′
] =

π(S ′)ϵ1−k′
± O(ϵ(5/4)−k′)

1 − O(ϵ1/2)
. (6)

The bounds in (ii) are established by taking ϵ < (max {(n + 5), χ})−4. �



Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74 63

Protected vectors. Let x = (x0, . . . , xm+3) be a vector in W . We say that x is protected if xm+2 = xm+3 = 1. For every
0 ≤ k ≤ n + 5, let Ψk(x) = {S ⊆ N | uS

= x and |S| = k}. We argue that if x is a protected vector in W , and if Ψk(x) ≠ ∅,
then at least one contract in Ψk(x) is in the top envelope of the line collection {US(·) | S ⊆ N}. We first establish some
bounds related to π(·).

Proposition 2.4. Let S ⊆ N be a contract. If uS is protected, then π(S) = Θ(µ−2) and in particular, τ−1(uS−β) ≤ π(S) ≤

(1 + O(µ−3))τ−1(uS−β). If uS is not protected, then 1 − o(1) ≤ π(S) ≤ |S|.

Proof. Suppose that uS is protected. First observe that since α ∈ S − β , it follows that τ(uS−β) = Θ(µ2). Therefore
if τ−1(uS−β) ≤ π(S) ≤ (1 + O(µ−3))τ−1(uS−β), then π(S) is indeed Θ(µ−2). Recall that π(S) =


j∈S τ−1(uS−j) =

j∈S−{α,β}
τ−1(uS−j) + τ−1(uS−α) + τ−1(uS−β). For every j ∈ S − {α, β}, we have τ−1(uS−j)

τ−1(uS−β )
=

τ(uj)
τ (uβ )

=
1+O(µ−4/5)

µ5 , and
τ−1(uS−α)

τ−1(uS−β )
=

τ(uα)

τ (uβ )
=

1
µ3 . Therefore

π(S)
τ−1(uS−β )

=
(k−2)(1+O(µ−4/5))

µ5 +
1

µ3 + 1. Since k − 2 ≤ n + 3 ≤ 3m + 3 ≪ µ, we have

π(S) = (1 +
O(1)
µ3 )τ−1(uS−β).

Now suppose that uS is not protected. We choose agent j′ as follows. If α ∈ S or β ∈ S, then let j′ be the (sole) agent in
S ∩ {α, β}. (Recall that {α, β} * S as S is not protected.) Otherwise, let j′ be any agent in S. Denote uS−j′

= (u0, . . . , um+3).
Since uS is not protected, it follows that um+2 = um+3 = 0. Therefore τ(uS−j′) = τp(uS−j′) = 1 + O(µ−4/5), and
π(S) ≥ τ−1(uS−j′) = 1 − o(1). �

Proposition 2.5. Let S, S ′
⊆ N be two contracts such that uS is protected and τ(uS) > τ(uS′

). Then π(S ′) − π(S) = Ω(µ−3).

Proof. If uS′

is not protected, then Proposition 2.4 guarantees that π(S ′) − π(S) = Ω(1). Assume that uS′

is protected.
Since coordinate m + 2 is set in both uS and uS′

, we have τ(uS−β )

τ (uS′−β )
=

τp(uS )
τp(uS

′
)

≥ 1 + µ−1. By Proposition 2.4, we have

π(S ′) ≥ τ−1(uS′
−β) and π(S) ≤ (1 + O(µ−3))τ−1(uS−β). Therefore π(S ′) − π(S) ≥ τ−1(uS−β)(1 + µ−1

− 1 − O(µ−3)).
As τ−1(uS−β) = Θ(µ−2), it follows that π(S ′) − π(S) = Ω(µ−3). �

Geometric interpretation. Consider the collection F of all continuous functions g : R → R. Let H be a finite subset of F and
let g be a function in F . We say that g is dominated by the functions in H if for every v ∈ R, there exists a function g ′

∈ H
such that g(v) ≤ g ′(v). Suppose that g and the functions in H are linear. Following some standard geometric arguments,
one can show that if g is not dominated by any two functions in H , then g is not dominated by all functions in H . Given a
contract S ⊆ N and a subset of contracts H ⊆ 2N , we say that S is dominated by the contracts in H if US(·) is dominated by
the functions in {UT (·) | T ∈ H}.

We now turn to state the main lemma of this section, namely, that a contract assigned with a protected vector cannot be
dominated by any two contracts assigned with different vectors.

Lemma 2.6. Let S ⊆ N be a contract such that uS is protected and let k = |S|. Consider two contracts R, T /∈ Ψk(uS). Then there
exists a payoff v for which US(v) > max{UR(v),UT (v)}.

Proof. Assume without loss of generality that f (R) ≤ f (T ). Proposition 2.2 implies that f (S) ≠ f (R) and f (S) ≠ f (T ), hence
it is sufficient to consider the case f (R) < f (S) < f (T ) (otherwise, S cannot be dominated by R and T ). We prove that
v[R, S] < v[S, T ]. This establishes the lemma as it implies that US(v) > max{UR(v),UT (v)} for all v[R, S] < v < v[S, T ].

Let kR = |R| and kT = |T |. We know, due to Proposition 2.2, that kR ≤ k ≤ kT . Lemma 2.3 is employed in order
to show that it is sufficient to consider the case kR = kT = k. First if kR < k < kT , then v[R, S] = O(ϵ(3/4)−kR−k) and
v[S, T ] = Ω(ϵ(5/4)−k−kT ), thus v[S,T ]

v[R,S] = Ω(ϵ(1/2)−kT+kR) ≫ 1, so the assertion holds. If kR < k = kT , then, by Proposition 2.2,
we have τ(uS) > τ(uT ). By taking ϵ ≪ µ−12, Proposition 2.5 implies that v[S, T ] = ϵ1−2kΩ(µ−11). Hence, taking ϵ < µ−22

guarantees that v[S, T ] = Ω(ϵ(3/2)−2k). As v[R, S] = O(ϵ(3/4)−kR−k), we have v[S,T ]

v[R,S] = Ω(ϵ(3/4)−k+kR) ≫ 1, so the assertion
holds. If kR = k < kT , then, by Proposition 2.2, we have τ(uR) > τ(uS). By Propositions 2.4 and 2.1, it follows that
v[R, S] = O(ϵ1−2k). As v[S, T ] = Ω(ϵ(5/4)−k−kT ), we have v[S,T ]

v[R,S] = Ω(ϵ(1/4)−kT+k) ≫ 1, so the assertion holds.

In what follows we assume that kR = kT = k and τ(uR) > τ(uS) > τ(uT ). We have to show that π(S)−π(R)±O(ϵ1/4)
τ (uR)−τ(uS )±O(ϵ1/2)

<

π(T )−π(S)±O(ϵ1/4)
τ (uS )−τ(uT )±O(ϵ1/2)

. By taking ϵ < χ−4, it is sufficient to prove that (π(T ) − π(S))(τ (uR) − τ(uS)) − (π(S) − π(R))(τ (uS) −

τ(uT )) > ϵ1/8. Instead, we take ϵ ≪ µ−8 and establish the stronger bound

π(T )

τ(uR) − τ(uS)


+ π(R)


τ(uS) − τ(uT )


− π(S)


τ(uR) − τ(uT )


= Ω(µ−1) . (7)

SinceuS is protected, and since τ(uR) > τ(uS), we conclude thatuR must beprotected too. As foruT , wehave to consider both
cases (protected or not). If uT is not protected, thenwe establish Eq. (7) by proving thatπ(T )(τ (uR)−τ(uS))−π(S)τ (uR) =

Ω(µ6). Propositions 2.4 and 2.1 guarantee that π(T )(τ (uR)− τ(uS)) = Ω(µ6) and π(S)τ (uR) = O(µ5), thus the assertion
holds. In the remainder of this proof we assume that uR, uS and uT are all protected.



64 Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74

We will soon show that

τp(uR) − τp(uS)

τp(uT )
+

τp(uS) − τp(uT )

τp(uR)
−

τp(uR) − τp(uT )

τp(uS)
= Ω(µ−3), (8)

thus, by the definition of full evaluation, it follows that

τ−1(uT−β)(τ (uR) − τ(uS)) + τ−1(uR−β)(τ (uS) − τ(uT )) − τ−1(uS−β)(τ (uR) − τ(uT )) = Ω(µ2).

As Proposition 2.1 guarantees that τ−1(uS−β)(τ (uR) − τ(uT )) = o(µ5), we conclude that

τ−1(uT−β)(τ (uR) − τ(uS)) + τ−1(uR−β)(τ (uS) − τ(uT )) − (1 + O(µ−3))τ−1(uS−β)(τ (uR) − τ(uT )) = Ω(µ2).

Eq. (7) follows due to Proposition 2.4 and the assertion holds.
To establish Eq. (8), let a = σ(uR) − σ(uS) and b = σ(uS) − σ(uT ). Eq. (8) can be rewritten as

(1 + µ−1)a+b
+ (1 + µ−1)−a

+ (1 + µ−1)−b
− (1 + µ−1)−a−b

− (1 + µ−1)a − (1 + µ−1)b = Ω(µ−3) ,

which is equivalent to
a+b
j=0


a + b

j


µ−j

+

∞
j=0

(−1)j

a + j − 1

j


µ−j

+

∞
j=0

(−1)j

b + j − 1

j


µ−j

−

∞
j=0

(−1)j

a + b + j − 1

j


µ−j

−

a
j=0


a
j


µ−j

−

b
j=0


b
j


µ−j

= Ω(µ−3), (9)

due to the Taylor expansions

(1 + z)q =

q
j=0


q
j


z j and (1 + z)−q

=

∞
j=0

(−1)j

q + j − 1

j


z j.

It is easy to verify that the jth terms of the six sums on the left hand side of Eq. (9) cancel each other for j = 0, 1, 2. For j = 3,
the terms on the left hand side of Eq. (9) sums up to

a + b
3


−


a + 2
3


−


b + 2
3


+


a + b + 2

3


−


a
3


−


b
3


µ−3

= (a2b + ab2)µ−3
= Ω(µ−3).

It remains to show that the absolute value of the sums on the left hand side of Eq. (9) for j = 4, 5, . . . is o(µ−3). Instead
we bound the larger expression

a+b
j=4


a + b

j


µ−j

+

∞
j=4


a + j − 1

j


µ−j

+

∞
j=4


b + j − 1

j


µ−j

+

∞
j=4


a + b + j − 1

j


µ−j

+

a
j=4


a
j


µ−j

+

b
j=4


b
j


µ−j

≤ 6 ·

∞
j=4


a + b + j − 1

j


µ−j.

As
a+b+j

j+1


/
a+b+j−1

j


≤ a + b for every positive j, we have

∞
j=4


a + b + j − 1

j


µ−j

≤


a + b + 3

4


µ−4

∞
j=0


a + b

µ

j

= O

µ

4
5 −4


· O(1) = o(µ−3),

where the equality in the middle follows from µ = Ω

(a + b)5


. Therefore Eq. (9) is satisfied and the assertion holds. �

The next corollary follows.

Corollary 2.7. If x is a protected vector in W , then for every 0 ≤ k ≤ n+ 5, either Ψk(x) = ∅ or there exist a contract S ∈ Ψk(x)
and a payoff v such that S is optimal for v.

Consider the vector x = (1, . . . , 1) ∈ W . Recall that our goal is to decide whether there exists a contract S with uS
= x.

Note that S is of size at least 4 as it must contain agents α, β , B and at least one more agent. For every 4 ≤ k ≤ n + 5,
Corollary 2.7 guarantees that if Ψk(x) is not empty, then such a contract S is optimal for some payoff v∗

k . If we know the
payoffs v∗

k for all 4 ≤ k ≤ n + 5, then we can query all of them, thus deciding whether or not there exists a contract S with
uS

= x.



Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74 65

Fig. 2. The contracts X1
∈ Ψk(x) andW ∈ Ψk(w) realize λ

w,x
k ; the contracts X2

∈ Ψk(x) and Y ∈ Ψk(y) realize λ
x,y
k . For every payoff λw,x

k ≤ v ≤ λ
x,y
k , there

exists a contract in Ψk(x) which is optimal for v (bold lines).

Consider some 4 ≤ k ≤ n + 5 and assume that Ψk(x) is not empty. Recall that uA
= (0, . . . , 0, 1, 0, 0), uB

=

(1, 0, 0, . . . , 0, 1, 0, 0) and uC
= (2, 0, 0, . . . , 0, 1, 0, 0). Let w = (2, 1, 1, . . . , 1) ∈ W and let y = (0, 1, 1, . . . , 1) ∈ W .

Since uA, uB and uC determine the value of coordinates 0 andm + 1 in W without affecting any other coordinate, and since
B ∈ S and A, C /∈ S for every contract S such that uS

= x, it follows that Ψk(w) ≠ ∅ and Ψk(y) ≠ ∅ (as Ψk(x) ≠ ∅ and agent
B can be replaced by agent A or C in S).

Let λ
w,x
k = max{v[S, T ] | S ∈ Ψk(w) and T ∈ Ψk(x)} and let λ

x,y
k = min{v[S, T ] | S ∈ Ψk(x) and T ∈ Ψk(y)} (see

Fig. 2). Note that λ
w,x
k and λ

x,y
k are well defined as Ψk(w), Ψk(x) and Ψk(y) are not empty. Define v∗

k =
ϵ1−2k

(1+ξµ−1)µ9 , where

ξ = 2 ·
m+1

j=0 4j. Observe that the binary representation of v∗

k is polynomial inm.

Lemma 2.8. The payoff v∗

k satisfies λ
w,x
k < v∗

k < λ
x,y
k .

Proof. Define w′
= (2, 1, 1, . . . , 1, 0) ∈ W , x′

= (1, . . . , 1, 0) ∈ W and y′
= (0, 1, 1, . . . , 1, 0) ∈ W . By Lemma 2.3

and by Proposition 2.4, we have λ
w,x
k ≤ ϵ1−2k (1+O(µ−3))τ−1(x′)−τ−1(w′)+O(ϵ1/4)

τ (w)−τ(x)−O(ϵ1/2)
and λ

x,y
k ≥ ϵ1−2k τ−1(y′)−(1+O(µ−3))τ−1(x′)−O(ϵ1/4)

τ (x)−τ(y)+O(ϵ1/2)
.

Propositions 2.1 and 2.5 imply that

λ
w,x
k ≤ ϵ1−2k


(1 + O(µ−3))τ−1(x′) − τ−1(w′)

τ (w) − τ(x)
+ o(ϵ1/4)


and

λ
x,y
k ≥ ϵ1−2k


τ−1(y′) − (1 + O(µ−3))τ−1(x′)

τ (x) − τ(y)
− o(ϵ1/4)


.

As τ−1(y′)

τ−1(x′)
=

τ−1(x′)

τ−1(w′)
=

τ(x)
τ (y) =

τ(w)

τ (x) = 1 + µ−1, it follows that

λ
w,x
k ≤ ϵ1−2k


τ−1(w′)

τ (x)
(1 + O(µ−2)) + o(ϵ1/4)


and

λ
x,y
k ≥ ϵ1−2k


τ−1(x′)

τ (y)
(1 − O(µ−2)) − o(ϵ1/4)


.

By the definition of full evaluation, we have τ−1(w′)

τ (x) = (1+µ−1)−(ξ+1)µ−9 and τ−1(x′)

τ (y) = (1+µ−1)−(ξ−1)µ−9, thus taking
ϵ < µ−44 guarantees that λw,x

k ≤ ϵ1−2k(1+µ−1)−(ξ+1)µ−9(1+O(µ−2)) and λ
x,y
k ≥ ϵ1−2k(1+µ−1)−(ξ−1)µ−9(1−O(µ−2)).

Since µ > ξ 5, it follows that (1 + µ−1)ξ+1
= (1 + µ−1)(1 + ξµ−1

+ O(µ−8/5)) ≥ (1 + µ−1)(1 + ξµ−1) and
(1 + µ−1)ξ−1

= 1 + (ξ − 1)µ−1
+ O(µ−8/5) ≤ 1 + ξµ−1

− µ−1/2, hence

λ
w,x
k

v∗

k
≤

(1 + ξµ−1)(1 + O(µ−2))

(1 + µ−1)ξ+1
≤

1 + O(µ−2)

1 + µ−1
< 1

and

λ
x,y
k

v∗

k
≥

(1 + ξµ−1)(1 − O(µ−2))

(1 + µ−1)ξ−1
≥

1 + ξµ−1
− O(µ−2)

1 + ξµ−1 − µ−1/2
> 1.

The assertion follows. �

The analysis is completed with the following lemma, which together with Lemma 2.8 derives Theorem 1.

Lemma 2.9. The optimal contract for the payoff v is in Ψk(x) for every λ
w,x
k < v < λ

x,y
k .



66 Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74

Fig. 3. A scale of precision 1 + η.

Proof. Consider an arbitrary payoff λw,x
k < v̄ < λ

x,y
k and suppose toward deriving contradiction that there exists a contract

T /∈ Ψk(x) such that T is optimal for v̄. Recall that Proposition 2.2 implies that f (Sw) < f (Sx) < f (Sy) for every three
contracts Sw

∈ Ψk(w), Sx ∈ Ψk(x) and Sy ∈ Ψk(y). Therefore by the definition of λ
w,x
k and λ

x,y
k , it follows that T /∈ Ψk(w)

and T /∈ Ψk(y). Let Rw
∈ Ψk(w) and Rx

∈ Ψk(x) be the contracts that realize λ
w,x
k and let Sx ∈ Ψk(x) and Sy ∈ Ψk(y) be the

contracts that realize λ
x,y
k , i.e., v[Rw, Rx

] = λ
w,x
k and v[Sx, Sy] = λ

x,y
k .

We argue that T must satisfy f (Rw) ≤ f (T ) ≤ f (Sy). This can be justified as follows. If f (T ) < f (Rw), then since
UT (v̄) > URw (v̄), we have UT (v) > URw (v) for every v < v̄. As URx(v) > URw (v) for every v > λ

w,x
k , and since v̄ > λ

w,x
k ,

it follows that Rw is dominated by T and Rx, in contradiction to Lemma 2.6. The case where f (T ) > f (Sy) is analogous.
Proposition 2.2 implies that |T | = k and τ(y) < τ(uT ) < τ(w) as otherwise, we get f (T ) < f (Rw) or f (T ) > f (Sy). But this
implies that uT

= x, in contradiction to the assumption, as x is the only vector in W which is lexicographically smaller than
w and greater than y. The assertion follows. �

3. Approximations

In this section we provide approximation results for the optimal contract problem. The section begins with Section 3.1,
which provides a general approximation scheme for arbitrary SP technologies. This scheme is carried through Algorithm
Calibrate, presented in this section. Based on the general scheme presented in Section 3.1, in Section 3.2, we construct
an FPTAS for arbitraryOR technologies. Another use of Algorithm Calibrate is presented in Section 3.3, where we provide
a scheme that approximates all but a small fraction of the relevant payoffs for any SP technology. Finally, Section 3.4 deals
with the most general case, and shows that every technology admits a polynomial size collection that approximates the
optimal contract.

3.1. A general scheme

Consider some technology t = ⟨N, {γi}
n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩ and let S ⊆ N be an arbitrary contract. We first observe

that if ϕ is the AND function, then the effectiveness of S is given by f (S) =


i∈S δi


i∈N−S γi. For the OR function, we have
f (S) = 1 −


i∈S(1 − δi)


i∈N−S(1 − γi). Therefore if all agents shirk, then the effectiveness under an AND technology is

i∈N γi. On the other hand, if all agents exert effort, then the effectiveness under an OR technology is 1 −


i∈N(1 − δi).
Fix ∆ = min


i∈N γi,


i∈N(1 − δi)


. It is easy to verify that if t is an AND technology or an OR technology, then

f (S) ∈ [∆, 1 − ∆]. The following lemma generalizes this property to the whole range of technologies.

Lemma 3.1. The effectiveness f (S) satisfies f (S) ∈ [∆, 1 − ∆] regardless of the choice of the monotone Boolean function
ϕ : {0, 1}n → {0, 1}.

Proof. Consider the underlying n-variables truth table of the Boolean function ϕ(x1, . . . , xn). Since ϕ is not a function of
any n − 1 variables, it cannot assign 0 to all rows of the table. Therefore, the minimum possible effectiveness is achieved
when ϕ assigns 1 to exactly one row (otherwise, it can achieve a lower value by replacing a single 1 value with 0). By the
monotonicity of ϕ, this single row must correspond to x1 = · · · = xn = 1. (This is exactly the truth table of the AND
function.) Clearly, the minimum possible effectiveness is achieved when all agents shirk. Combined together, the minimum
possible effectiveness is simply IP (x1 = 1 ∧ · · · ∧ xn = 1 | a = (0, . . . , 0)) =


i∈N γi. The proof that themaximumpossible

effectiveness is IP (x1 = 1 ∨ · · · ∨ xn = 1 | a = (1, . . . , 1)) = 1 −


i∈N(1 − δi) is analogous. �

Our scheme is executed by an algorithm, referred to as Algorithm Calibrate, which we shall soon present. The
description of Algorithm Calibrate requires some preparation.

Consider an SP technology t = ⟨N, {γi}
n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩ input to Algorithm Calibrate and let 0 < ρ ≤ 1 be the

performance parameter of the algorithm. Algorithm Calibrate generates a collectionC of contracts in timeO


n3 log2(1/∆)

ρ2


.

(Note that the binary representation of {γi}
n
i=1 and {δi}

n
i=1 requires Ω(log(1/∆)) bits.) We will soon prove that for every

contract T ⊆ N , there exists a contract S ∈ C such that f (S) ≥
f (T )

(1+ρ)
, and p(S) ≤ (1 + ρ)p(T ).

Let η =
ρ ln 2
2n−1 , and let r = max


k ∈ Z≥0 | ∆(1 + η)k < 1

2


. Since r < log1+η

 1
2∆


= log 1

2∆ · log1+η(2), and since
log1+η(2) ≤

1
η
, we conclude that r < 1

η
log 1

∆
. We partition the interval [∆, 1 − ∆] into 2r + 3 smaller intervals

[∆, ∆(1 + η)), [∆(1 + η), ∆(1 + η)2), . . . , [∆(1 + η)r−1, ∆(1 + η)r), [∆(1 + η)r , 1
2 ), [

1
2 ,

1
2 ], (

1
2 , 1 − ∆(1 + η)r ], (1 −

∆(1 + η)r , 1 − ∆(1 + η)r−1
], . . . , (1 − ∆(1 + η)2, 1 − ∆(1 + η)], (1 − ∆(1 + η), 1 − ∆]. The collection of these smaller

intervals is called the scale. Refer to Fig. 3 for an illustration of the scale. The precision of the scale is defined as 1 + η. We
say that contract S is calibrated to interval I in the scale if f (S) ∈ I. (Recall that Lemma 3.1 implies that every contract is
calibrated to some interval in the scale.)



Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74 67

X1 X2 X3 X4

X5

Fig. 4. The composition tree of the SP Boolean function ϕ(x1, x2, x3, x4, x5) = ((x1 ∨ x2) ∧ (x3 ∨ x4)) ∨ x5 .

Observation 3.2. Let S, S ′
∈ N be two contracts. The scale is designed to ensure that if S and S ′ are calibrated to the same interval,

then f (S′)

1+η
≤ f (S) ≤ (1 + η)f (S ′) and 1−f (S′)

1+η
≤ 1 − f (S) ≤ (1 + η)(1 − f (S ′)).

Throughout the execution, Algorithm Calibrate maintains a collection C of contracts. The algorithm guarantees that
no two contracts in C are calibrated to the same interval, thus |C| ≤ 2r + 3 at any given moment.

Every SP function ϕ is constructed inductively from two simpler SP functions by either a series composition or by a
parallel composition. Therefore the function ϕ can be represented by a full binary tree T , referred to as the composition tree
ofϕ. The leaves ofT represents the identity functions ofϕ’s arguments. An internal node is said to be an∧-node (respectively,
an ∨-node) if it represents a series (resp., parallel) composition of the functions represented by its children. (Refer to Fig. 4
for an illustration.)

Consider the SP technology t = ⟨N, {γi}
n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩ and let T be the tree that represents the Boolean function

ϕ. Let x be some node in T and consider the subtree Tx of T rooted at x. The subtree Tx corresponds to some (SP)
subtechnology tx of t . Let Nx denote the set of agents in tx (corresponding to the leaves of Tx) and letmx denote the number
of nodes in Tx (as T is a full binary tree, we havemx = 2|Nx| − 1). Given some contract S ⊆ Nx, we denote the effectiveness
and payment of S under tx by fx(S) and px(S), respectively.

Suppose that x is an internal node in T with left child l and right child r . Let S = L∪R be some contract in tx, where L ⊆ Nl
and R ⊆ Nr . Clearly, if x is an ∧-node, then fx(S) = fl(L) · fr(R), and if x is an ∨-node, then fx(S) = 1 − (1 − fl(L))(1 − fr(R)).
It is simple to verify that if x is an ∧-node, then px(S) =

pl(L)
fr (R)

+
pr (R)
fl(L)

, and if x is an ∨-node, then px(S) =
pl(L)

1−fr (R)
+

pr (R)
1−fl(L)

.
With this we are ready to present Algorithm Calibrate.
Algorithm Calibrate traverses the composition tree T in a postorder fashion. Consider some leaf x in T that

corresponds to agent i ∈ N . The algorithm calibrates the contracts ∅ and {i} to a (fresh) scale according to their effectiveness
under the technology tx, that is, fx(∅) = γi and fx({i}) = δi. If both ∅ and {i} are calibrated to the same interval I, then {i} is
removed from the scale. The resulting contract(s) in the scale constitutes the collection Cx.

Now, consider some internal node x in T with left child l and right child r and suppose that the algorithm has already
constructed the collections Cl and Cr for the technologies tl and tr , respectively. The collection Cx for the technology tx is
constructed as follows. Let S = {L ∪ R | L ∈ Cl and R ∈ Cr}. (Note that S contains |Cl| · |Cr | = O(r2) contracts of the
technology tx.) The contracts in S are calibrated to a (fresh) scale according to the effectiveness function fx(·). Consequently,
there may exist some interval in the new scale to which two (or more) contracts are calibrated (a conflict).

Let I be an interval in the scale and suppose that S1, . . . , Sk ∈ S were all calibrated to I (k > 1), that is, fx(Si) ∈ I for
every 1 ≤ i ≤ k. Assume without loss of generality that Sk admits a minimum payment under tx, i.e., px(Sk) ≤ px(Si) for
every 1 ≤ i < k. The algorithm then resolves the conflict by removing the contracts S1, . . . , Sk−1 from the scale so that
Sk remains the only contract calibrated to I. In that case we say that the contracts S1, . . . , Sk−1 were compensated by the
contract Sk. The contracts that remain in the scale constitutes the collection Cx. Thus the new collection Cx contains at most
one contract for every interval andwemay proceedwith the next stage of the algorithm. At the end of this postorder process,
when Algorithm Calibrate reaches the root z of T , it returns the collection C = Cz .

We turn to the analysis of Algorithm Calibrate. The running time of the algorithm is determined by the number of
nodes in T (which is 2n − 1) and by the size of the collection Cx for every node x in the tree. The latter cannot exceed the
number of intervals in the scale which is O


1
η
log 1

∆


. In order to analyze the performance guarantee of the algorithm, we

first define the following notion. Given two contracts S, S ′
⊆ N and some real α > 1, we say that S is an α-estimation of S ′

under the technology t if the following three conditions hold:

f (S ′)

α
≤ f (S) ≤ αf (S ′); (10)



68 Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74

1 − f (S ′)

α
≤ 1 − f (S) ≤ α(1 − f (S ′)); and (11)

p(S) ≤ αp(S ′). (12)

We say that a collection S of contracts is an α-estimation of the technology t if for every contract S ′
⊆ N there exists a

contract S ∈ S such that S is an α-estimation of S ′ under t . The following observation serves as a key ingredient in the proof
of Lemma 3.4, which is the main lemma in this section.

Observation 3.3. For any choice of reals 0 < a, b, a′, b′ < 1 and α, β > 1, if a′
α

≤ a ≤ αa′ and b′

β
≤ b ≤ βb′, then

1−(1−a′)(1−b′)

αβ
≤ 1 − (1 − a)(1 − b) ≤ αβ(1 − (1 − a′)(1 − b′)).

We are now ready to establish Lemma 3.4.

Lemma 3.4. The collection Cx is a (1 + η)mx-estimation of the technology tx for every node x in the composition tree T .

Proof. The proof is by induction on the height of x in T . The assertion trivially holds if x is a leaf. (Recall that Observation 3.2
guarantees that if the contracts ∅ and {i} are calibrated to the same interval under tx, then ∅ is a (1 + η)-estimation of {i}.)
Consider some internal node x in T and assume that the assertion holds for x’s left child l and right child r . Let S ′

= L′
∪ R′

be some contract in tx, where L′
⊆ Nl and R′

⊆ Nr . By the inductive hypothesis, there exist some contracts L ∈ Cl and R ∈ Cr
such that L is a (1 + η)ml-estimation of L′ under tl and R is a (1 + η)mr -estimation of R′ under tr .

We argue that the contract L ∪ R is a (1 + η)ml+mr -estimation of S ′
= L′

∪ R′ under the technology tx. If x is an ∧-node,
then fx(L∪ R) = fl(L) · fr(R) and Condition (10) holds trivially. Condition (11) holds by plugging a = 1− fl(L), b = 1− fr(R),
a′

= 1 − fl(L′), and b′
= 1 − fr(R′) into Observation 3.3 with α = (1 + η)ml and β = (1 + η)mr . If x is an ∨-node, then

fx(L∪R) = 1− (1− fl(L))(1− fr(R)) and Condition (11) holds trivially. Condition (10) holds by plugging a = fl(L), b = fr(R),
a′

= fl(L′), and b′
= fr(R′) into Observation 3.3 with α = (1 + η)ml and β = (1 + η)mr .

It remains to prove that Condition (12) holds. If x is an ∧-node, then

px(L ∪ R) =
1

fr(R)
pl(L) +

1
fl(L)

pr(R)

≤
(1 + η)mr

fr(R′)
(1 + η)mlpl(L′) +

(1 + η)ml

fl(L′)
(1 + η)mr pr(R′)

= (1 + η)ml+mr px(L′
∪ R′) .

On the other hand, if x is an ∨-node, then

px(L ∪ R) =
1

1 − fr(R)
pl(L) +

1
1 − fl(L)

pr(R)

≤
(1 + η)mr

1 − fr(R′)
(1 + η)mlpl(L′) +

(1 + η)ml

1 − fl(L′)
(1 + η)mr pr(R′)

= (1 + η)ml+mr px(L′
∪ R′) .

The argument follows.
The contract L ∪ R is considered by the algorithm in the scale that corresponds to node x. If L ∪ R survives and finds its

way to Cx, then the proof is completed. Assume that L ∪ R is compensated by some contract S ∈ Cx. We prove that S is a
(1 + η)mx-estimation of S ′. Condition (12) holds as px(S) ≤ px(L ∪ R). Conditions (10) and (11) follow from Observation 3.2
since L ∪ R is a (1 + η)ml+mr -estimation of S ′, and sincemx = ml + mr + 1. �

Lemma 3.4 implies that C serves as a (1 + η)2n−1-estimation of t . By the definition of η =
ρ ln 2
2n−1 , we have (1 + η)2n−1

≤

eρ ln 2
= 2ρ

≤ 1 + ρ, which establishes the following corollary.

Corollary 3.5. Given an SP technology t = ⟨N, {γi}
n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩ and a performance parameter 0 < ρ ≤ 1, it

is guaranteed that Algorithm Calibrate generates a collection C ⊆ 2N that serves as a (1 + ρ)-estimation of t in time
O


n3 log2(1/∆)

ρ2


.

3.2. An FPTAS for OR technologies

In this section we establish an FPTAS for OR technologies.

Theorem 2. The problem of computing the optimal contract in OR technologies admits a fully polynomial-time approximation
scheme (FPTAS).



Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74 69

The proof of Theorem 2 requires several preparations. We first establish several properties ofOR technologies which will
be used to present the desired FPTAS startingwith the sub-modularity ofOR technologies.We say that a function h : 2N

→ R
is strictly sub-modular if h(S) + h(T ) ≥ h(S ∪ T ) + h(S ∩ T ) for every S, T ⊆ N , where equality holds (if and) only if S ⊆ T
or T ⊆ S.

Lemma 3.6. The effectiveness function of every OR technology is strictly sub-modular.

Proof. Consider an arbitrary OR technology t = ⟨N, {γi}
n
i=1, {δi}

n
i=1, c, ϕ⟩. We need to show that f (S) + f (T ) > f (S ∪ T ) +

f (S ∩ T ) for every two contracts S, T ⊆ N such that S − T ≠ ∅ and T − S ≠ ∅. By definition, we have

f (S) + f (T ) = 2 −


i∈S

(1 − δi)


i∈N−S

(1 − γi) −


i∈T

(1 − δi)


i∈N−T

(1 − γi)

and

f (S ∪ T ) + f (S ∩ T ) = 2 −


i∈S∪T

(1 − δi)


i∈N−(S∪T )

(1 − γi) −


i∈S∩T

(1 − δi)


i∈N−(S∩T )

(1 − γi).

Dividing both equations by


i∈S∩T (1 − δi)


i∈N−(S∪T )(1 − γi), we conclude that it is sufficient to prove that
i∈S−T

(1 − δi)


i∈T−S

(1 − γi) +


i∈T−S

(1 − δi)


i∈S−T

(1 − γi)

−


i∈S−T

(1 − δi)


i∈T−S

(1 − δi) −


i∈S−T

(1 − γi)


i∈T−S

(1 − γi) < 0.

The last inequality holds if and only if
i∈S−T

(1 − δi)

 
i∈T−S

(1 − γi) −


i∈T−S

(1 − δi)



+


i∈S−T

(1 − γi)

 
i∈T−S

(1 − δi) −


i∈T−S

(1 − γi)


< 0,

which in turn, can be rewritten as 
i∈T−S

(1 − γi) −


i∈T−S

(1 − δi)

 
i∈S−T

(1 − δi) −


i∈S−T

(1 − γi)


< 0.

The assertion follows as δi > γi for every i ∈ N . �

Consider an arbitrary OR technology t = ⟨N, {γi}
n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩. Let T ⊆ N be some contract, |T | ≥ 2, and

consider some partition T = R1 ∪ R2, R1 ∩ R2 = ∅, such that |R1|, |R2| ≥ 1. A direct consequence of Lemma 3.6 is that
f (R1)+ f (R2) > f (T ). Another consequence is that pj(Ri) < pj(T ) for every i = 1, 2 and every agent j ∈ Ri (this consequence
is derived by considering the sets Ri and T − j), thus p(R1) + p(R2) < p(T ). These consequences of Lemma 3.6 are employed
to establish the following key property.

Lemma 3.7. Let v > 0 be some payoff and let T be an optimal contract for v under the OR technology t. If v < (1 + σ̂ )p(T ) for
some positive real σ̂ ≤ 1/n, then there exists some agent j ∈ T such that f ({ j}) > (1 − σ̂ )f (T ).

Proof. The assertion trivially holds if |T | = 1. Assume that |T | ≥ 2 and consider some partition T = R1 ∪ R2, R1 ∩ R2 = ∅,
such that |R1|, |R2| ≥ 1. As T is optimal for v, we have f (T )(v − p(T )) ≥ f (Ri)(v − p(Ri)), which can be rewritten as

(f (T ) − f (Ri))v + f (Ri)p(Ri) ≥ f (T )p(T ).

Since v
p(T )

< 1 + σ̂ , it follows that

(f (T ) − f (Ri))p(T )(1 + σ̂ ) + f (Ri)p(Ri) > f (T )p(T ),

hence

σ̂p(T )(f (T ) − f (Ri)) + f (Ri)p(Ri) > f (T )p(T ).

By summing the last inequality for i = 1, 2, we obtain

σ̂p(T )(2f (T ) − (f (R1) + f (R2))) + f (R1)p(R1) + f (R2)p(R2) > (f (R1) + f (R2))p(T ).

Since f (T ) < f (R1) + f (R2), it follows that

σ̂ f (T )p(T ) + f (R1)p(R1) + f (R2)p(R2) > (f (R1) + f (R2))p(T ).



70 Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74

Suppose toward deriving contradiction that p(Ri) ≤ (1 − σ̂ )p(T ) for both i = 1, 2. Therefore

σ̂ f (T )p(T ) + (f (R1) + f (R2))(1 − σ̂ )p(T ) > (f (R1) + f (R2))p(T )

and f (T ) > f (R1) + f (R2), in contradiction to Lemma 3.6. We conclude that for every j ∈ T , either

p({ j}) > (1 − σ̂ )p(T ) or p(T − { j}) > (1 − σ̂ )p(T ).

Assume by way of contradiction that p(T − { j}) > (1 − σ̂ )p(T ) for every j ∈ T . Summing the last inequality for all j ∈ T
yields

j∈T

p(T − { j}) > m(1 − σ̂ )p(T ),

where m = |T |. Substituting for p(T − { j}), we get
j∈T


k∈T−{ j}

ck
f (T − { j}) − f (T − { j} − {k})

> m(1 − σ̂ )p(T ).

By Lemma 3.6, we obtain
j∈T


k∈T−{ j}

ck
f (T ) − f (T − {k})

> m(1 − σ̂ )p(T ),

which can be rewritten as

(m − 1)

k∈T

ck
f (T ) − f (T − {k})

= (m − 1)p(T ) > m(1 − σ̂ )p(T ).

Therefore m − 1 > m(1 − σ̂ ), in contradiction to σ̂ ≤ 1/n ≤ 1/m. It follows that there exists some agent j ∈ T such that
p({ j}) > (1 − σ̂ )p(T ).

As T is optimal for v, we have

f (T )(v − p(T )) > f (T − { j})(v − p(T − { j}))

and since f (T ) < f ({ j}) + f (T − { j}), it follows that

f ({ j})(v − p(T )) > f (T − { j})(p(T ) − p(T − { j})).

By the assumption that v − p(T ) < σ̂p(T ), we conclude that

σ̂ f ({ j})p(T ) > f (T − { j})(p(T ) − p(T − { j})).

Lemma 3.6 implies that p({ j}) < p(T ) − p(T − { j}), thus

σ̂ f ({ j})p(T ) > f (T − { j})p({ j}).

By the choice of j, we have

σ̂ f ({ j}) > (1 − σ̂ )f (T − { j}).

Another application of Lemma 3.6 deduces that

σ̂ f ({ j}) > (1 − σ̂ )(f (T ) − f ({ j})),

and hence f ({ j}) > (1 − σ̂ )f (T ), which completes the proof. �

We are now ready to establish an FPTAS for the optimal contract problem on OR technologies. Let ϵ > 0 be the
performance parameter of the FPTAS. (Recall that for every ϵ > 0, the FPTAS returns a solution which is at most 1+ ϵ times
worse than the optimal solution in time poly(|t|, 1/ϵ).) Subsequently, we assume that ϵ ≤ 1/n at the price of incurring an
extra additive poly(|t|) term on the running time.

Fix σ = ϵ and σ̂ =
ϵ

1+ϵ
, and let C be the collection generated by Algorithm Calibrate when invoked on t with

performance parameter ρ =
σ σ̂

1+2σ̂ . The FPTAS will consider the contracts in C ∪ {{ j} | j ∈ N}, namely, the contracts in C
and all the singleton contracts. Consider an arbitrary payoff v > 0 and let T ⊆ N be an optimal contract for v. In order to
establish Theorem 2, we have to prove that there exists a contract S ∈ C ∪ {{ j} | j ∈ N} such that UT (v)/US(v) ≤ 1 + ϵ.

Assume first that v < (1 + σ̂ )p(T ). Since σ̂ < σ ≤ 1/n, we may apply Lemma 3.7 and conclude that there exists some
agent j ∈ N such that f ({ j}) > (1 − σ̂ )f (T ). By Lemma 3.6, we have p({ j}) ≤ p(T ), hence UT (v)

U{ j}(v)
=

f (T )(v−p(T ))

f ({ j})(v−p({ j})) ≤
f (T )

f ({ j}) <

1
1−σ̂

. The assertion follows by the choice of σ̂ =
ϵ

1+ϵ
.



Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74 71

ρ ρ+ +

Fig. 5. Two lines in K and their shadows.

Now, assume that v ≥ (1 + σ̂ )p(T ). Let S be the contract in C that serves as a (1 + ρ)-estimation of T . Since
f (S) ≥ f (T )/(1 + ρ) and p(S) ≤ (1 + ρ)p(T ), we have

UT (v)

US(v)
=

f (T )(v − p(T ))

f (S)(v − p(S))

≤ (1 + ρ)
v − p(T )

v − (1 + ρ)p(T )

≤ (1 + ρ)
(1 + σ̂ )p(T ) − p(T )

(1 + σ̂ )p(T ) − (1 + ρ)p(T )
=

(1 + ρ)σ̂

σ̂ − ρ
.

The requirement (1+ρ)σ̂

σ̂−ρ
≤ 1 + ϵ = 1 + σ is guaranteed by the choice of the performance parameter ρ =

σ σ̂
1+2σ̂ as

(1+ρ)σ̂

σ̂−ρ
≤ 1 + σ ⇐⇒ σ̂ + ρσ̂ ≤ σ̂ + σ σ̂ − ρ − ρσ̂ ⇐⇒ ρ(1 + 2σ̂ ) ≤ σ σ̂ .

3.3. Approximation for almost all relevant instances of SP technologies

Our goal in this section is to establish Theorem 3.
Theorem 3. Given an SP technology t and two real parameters 0 < ϵ, ϵ̂ ≤ 1, there exists a scheme that on input payoff v > 0,
either returns a (1 + ϵ)-approximate solution for v or outputs a failure message, in time poly(|t|, 1/ϵ, 1/ϵ̂). Assuming that
F ⊆ R>0 is the set of reals on which the scheme outputs a failure message, it is guaranteed that


∞

0 1F (v)dv ≤ ϵ̂v∗, where 1F is
the characteristic function of F .

In order to prove Theorem 3, we shall develop some (general purpose) insights regarding the geometric representation of
combinatorial agency. Recall that the principal’s expected utility for contract S is an increasing linear function of the payoff
v ∈ R>0. In the scope of this section wewill often represent it as such by considering a linear function (or line) L that assigns
a real L(v) to every real v. We denote the (positive) slope of L by s(L) and the (unique) root of L by r(L). (Under combinatorial
agency terms, we have s(L) = f (S) and r(L) = p(S). Since p(S) ≥ 0 for every contract S, our attention is restricted to lines
with non-negative roots).

Consider some (finite) line collection L. We denote the maximum real to which v is assigned under L by L(v) =

max{L(v) | L ∈ L}. A minimal subset L′ of L that satisfies L′(v) = L(v) for every v ∈ R is called an orbit of L. Clearly, the
upper envelope of L′ is identical to that of L. Moreover, a line L ∈ L that minimizes r(L) and a line L ∈ L that maximizes
s(L) must be in the orbit. A typical real v ∈ R>0 admits a unique line L ∈ L that satisfies L(v) = L(v), but there is a finite
number of reals v ∈ R>0 that admit two such lines, and we refer to these reals as the transition numbers of L. (Actually, L
has exactly |L′

| − 1 transition numbers.) The largest transition number of L is denoted by v∗(L).
Consider some SP technology t = ⟨N, {γi}

n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩. Let L be the line collection which contains the line

corresponding to US for every S ⊆ N . Fix ∆ = min{


i∈N γi,


i∈N(1 − δi)} and recall that Lemma 3.1 guarantees that
∆ ≤ s(L) ≤ 1 − ∆ for every line L ∈ L.

Let 0 < ϵ, ϵ̂ ≤ 1 be the (real) parameters of Theorem 3. Fix σ = ϵ/3 and σ̂ = ϵ̂/(4n ln(1/∆)+ 6). We invoke Algorithm
Calibrate on t with performance parameter ρ =

σ σ̂
1+σ

to generate the contract collection C and append the contracts ∅

and N to C (if they are not already there). Consider the line collection K which contains the line corresponding to US for
every S ∈ C. Given some line K ∈ K , we define its shadow line K̄ by setting s(K̄) = s(K) and r(K̄) = r(K)/(1 + ρ) (see
Fig. 5). The shadow line collection is defined to be K̄ = {K̄ | K ∈ K}.

Corollary 3.5 guarantees that for every line L ∈ L, there exists some line K ∈ K such that s(K) ≥ s(L)/(1 + ρ)
and r(K) ≤ r(L)(1 + ρ). By the definition of K̄ , we conclude that for every line L ∈ L, there exists some line K̄ ∈ K̄
such that s(K̄) ≥ s(L)/(1 + ρ) and r(K̄) ≤ r(L). It follows that K̄(v) ≥ L(v)/(1 + ρ) for every v ∈ R>0. Given
some v ∈ R>0, if K(v) ≥ K̄(v)/(1 + σ), then K(v) ≥ L(v)/((1 + ρ)(1 + σ)). Since ρ ≤ σ = ϵ/3, we have
(1 + ρ)(1 + σ) = 1 + ρ + σ + ρσ ≤ 1 + ϵ, which gives rise to the following corollary.



72 Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74

Fig. 6. The lines J0 , J1 , and J2 .

Corollary 3.8. For every v ∈ R>0, if K provides a (1 + σ)-approximation for v with respect to K̄ , then K provides a (1 + ϵ)-
approximation for v with respect to L.

On payoff v ∈ R>0 given as input, our algorithm works as follows. We first test whether K(v) ≥ K̄(v)/(1 + σ) (both
K and K̄ are computed in time poly(|t|, 1/ϵ, 1/ϵ̂) and are available whenever we wish to perform this test). If this test is
positive, then we return the contract S ∈ C which corresponds to a line K ∈ K that realizes K(v). Corollary 3.8 guarantees
that US(v) ≥ UT (v)/(1 + ϵ) for any contract T ⊆ N as promised by Theorem 3. Otherwise (if the above test is negative),
we output a failure message. It remains to bound the fraction of payoffs v out of all relevant payoffs for which K does
not provide a (1 + σ)-approximation with respect to K̄ . Note that there may be some non-relevant payoffs on which our
algorithm outputs a failure message and we will account for them as well.

Let J be an orbit of K̄ . Let J0, . . . , Jk+1 be the lines in J ordered such that ∆ ≤ s(J0) < · · · < s(Jk+1) < 1 (recall
that s(K̄) = s(K) for every K̄ ∈ K̄ , hence the slopes in J are bounded between ∆ and 1 − ∆). It is easy to verify that
0 = r(J0) < · · · < r(Jk+1). Fix vi = inf{v > 0 | Ji realizes J(v)} for every 0 ≤ i ≤ k + 1 (this is well defined since J is an
orbit). Refer to Fig. 6 for illustration. Clearly, v0 = 0. For 1 ≤ i ≤ k + 1, vi is actually the ith transition real of J and it is easy
to verify that

vi =
s(Ji)r(Ji) − s(Ji−1)r(Ji−1)

s(Ji) − s(Ji−1)
. (13)

Consider some v ∈ R>0 and let Ji, 0 ≤ i ≤ k + 1, be a line that realizes J(v) = K̄(v). If v is not a transition real (which
means that v is neither vi nor vi+1), then we say that Ji is optimal for v. If i = 0 (i.e., if r(Ji) = 0), then K(v) = J(v) since by
definition, there exists some line K ∈ K such that s(K) = s(J0) and r(K) = r(J0) = 0 (K corresponds to the contract∅). Now,
consider some v ∈ R>0 and let Ji, 1 ≤ i ≤ k + 1, be an optimal line for v. We say that v is a bad real if v ∈ (vi, r(Ji)(1 + σ̂ ));
otherwise, v is said to be a good real. The following proposition covers the good reals.

Proposition 3.9. Consider some line Ji, 1 ≤ i ≤ k + 1, and let v ≥ r(Ji)(1 + σ̂ ) be some real such that Ji is optimal for v. Then
K(v) ≥ K̄(v)/(1 + σ).

Proof. By definition, there exists some line K ∈ K such that s(K) = s(Ji) and r(K) = r(Ji)(1 + ρ). We have

J(v)

K(v)
≤

Ji(v)

K(v)

=
s(Ji)(v − r(Ji))
s(K)(v − r(K))

=
v − r(Ji)

v − r(Ji)(1 + ρ)

≤
r(Ji)(1 + σ̂ ) − r(Ji)

r(Ji)(1 + σ̂ ) − r(Ji)(1 + ρ)

=
σ̂

σ̂ − ρ
.

By the choice of ρ =
σ σ̂
1+σ

, we conclude thatJ(v)/K(v) ≤ (1+σ) σ̂
σ̂ (1+σ)−σ σ̂

= 1+σ , thus establishing the proposition. �

We define the bad interval exhibited by the line Ji to be Bi = (vi,min{r(Ji)(1 + σ̂ ), vi+1}) for every 1 ≤ i ≤ k
and (vi, r(Ji)(1 + σ̂ )) for i = k + 1. By Corollary 3.8 and Proposition 3.9, it is sufficient to bound (from above) the ratio
Φ =

k+1
i=1 |Bi|/v∗. This is carried out in two stages: (1) bounding the ratio Φ1 =

k
i=1 |Bi|/vk+1 >

k
i=1 |Bi|/v∗ (this

inequality holds as vk+1 = v∗(J) = v∗(K̄) < v∗(K) ≤ v∗(L) = v∗), and (2) bounding the ratioΦ2 = |Bk+1|/v∗. Eventually,
we will show that Φi ≤ ϵ̂/2 for i = 1, 2, thus establishing Theorem 3.

Bounding Φ2 is easy: we have Φ2 <
|Bk+1|
r(Jk+1)

<
r(Jk+1)(1+σ̂ )−r(Jk+1)

r(Jk+1)
= σ̂ . By the choice of σ̂ , it follows that Φ2 ≤ ϵ̂/2.

The bound on Φ1 is more involved and depends on the geometric insight established in Lemma 3.10. In the scope of this
lemma, we ignore the combinatorial agency interpretation of J0, . . . , Jk+1 and consider them merely as lines with slopes



Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74 73

∆ ≤ s(J0) < · · · < s(Jk+1) < 1 and roots 0 = r(J0) < · · · < r(Jk+1). We write in short s(Ji) = si and r(Ji) = ri for every
0 ≤ i ≤ k + 1. Observe that if k = 0 or if the bad intervals Bi are empty for all 1 ≤ i ≤ k, then the bound Φ1 ≤ ϵ̂/2 holds
by definition. Therefore in what follows we assume that k > 0 and that there exist some 1 ≤ i ≤ k such that |Bi| > 0.

Lemma 3.10. The lines J0, . . . , Jk+1 must satisfy Φ1 ≤ 1 − e−σ̂ (2 log k ln(1/∆)+3).

Proof. For the sake of the analysis, we modify the line collection {J0, . . . , Jk+1} in a manner that can only increase Φ1. First,
if the line Ji, 1 ≤ i ≤ k, exhibits an empty bad interval, i.e., if vi ≥ ri(1 + σ̂ ), then we remove it from the collection
{J0, . . . , Jk+1}. This is repeated until every remaining line Ji, 1 ≤ i ≤ k, exhibits a non-empty bad interval. In attempt to
avoid cumbersome notation, we assume that the remaining lines are renamed J0, . . . , Jk+1 from scratch with si, ri, and vi
defined as before, after this step. (The parameter k may have decreased as a result of the above step, but this causes the
required bound 1 − e−σ̂ (2 log k ln(1/∆)+3) to decrease, hence it is sufficient to prove the assertion for a smaller k.) By removing
those lines, we cannot decrease the ratio Φ1 since good reals may have turned bad, but not vice versa. Note that vk+1 may
have decreased due to the removals, which causes the ratio Φ1 to increase.

Next, we fix s0, . . . , sk+1 and modify r1, . . . , rk+1 so that eventually we have vi+1 ≤ ri(1 + σ̂ ) for every 1 ≤ i ≤ k.
While doing so, we will ensure (in a manner specified below) that the ratio Φ1 does not decrease. First, if vk+1 > rk(1 + σ̂ ),
then we fix r0, . . . , rk and multiply rk+1 by a factor of 1 − d for sufficiently small positive d. Consequently, the bad intervals
B1, . . . , Bk remain intact and vk+1 is multiplied by a (positive) factor no greater than 1 − d (see Eq. (13)), hence the ratio
Φ1 can only increase. We choose d so that the newly obtained vk+1 coincides with rk(1 + σ̂ ).

The following step is repeated for i = k − 1, . . . , 1. Assume by induction that vj+1 ≤ rj(1 + σ̂ ) for every i < j ≤ k. If
vi+1 > ri(1 + σ̂ ), then we fix r0, . . . , ri and multiply all rjs, i < j ≤ k + 1, by a factor of 1 − d for sufficiently small positive
d. Consequently, we get (i) the bad intervals B1, . . . , Bi remain intact, (ii) the size of the bad interval Bj is multiplied by
a factor of 1 − d for every i < j ≤ k (see Eq. (13)), (iii) vk+1 is multiplied by a factor of 1 − d, and (iv) the assumption
vj+1 ≤ rj(1 + σ̂ ) for every i < j ≤ k is not violated. By (i) and (ii), we conclude that the numerator in the ratio Φ1 is
multiplied by a factor no smaller than 1− d, thus, combined with (iii), the ratio Φ1 can only increase. Once again, we choose
d so that the newly obtained vi+1 coincides with ri(1 + σ̂ ).

So, in what follows, wemay assumewithout loss of generality that ri < vi < vi+1 ≤ ri(1+ σ̂ ) for every 1 ≤ i ≤ k, which
means that Bi = (vi, vi+1) for every 1 ≤ i ≤ k and it remains to bound the ratio Φ1 = (vk+1 − v1)/vk+1. Instead, we will
bound the larger ratio (vk+1 − r1)/vk+1.

By Eq. (13), the assumption vi+1 ≤ ri(1 + σ̂ ) implies that ri ≥ ri+1
si+1

si+1(1+σ̂ )−σ̂ si
. Consider some integer 0 ≤ q ≤ log k. If

si ≥ (1 − 2−q)si+1, then ri ≥ ri+1
1

1+σ̂ /2q . How many indices 1 ≤ i ≤ k can satisfy the inequality si < (1 − 2−q)si+1? Since

s1 > s0 ≥ ∆ and sk+1 < 1, it follows that if there exists m such indices i, then (1 − 2−q)m > ∆. Thus e−m/2q > ∆ and
m < 2q ln(1/∆).

We shall partition the indices 1, . . . , k into ⌊log k⌋+1 categories, denoted by C1, . . . , C⌊log k⌋+1. For every 1 ≤ q ≤ ⌊log k⌋,
the category Cq consists of all indices 1 ≤ i ≤ k such that (1− 21−q)si+1 ≤ si < (1− 2−q)si+1. Recall that |Cq| < 2q ln(1/∆).
The category C⌊log k⌋+1 consists of all indices 1 ≤ i ≤ k such that (1 − 2−⌊log k⌋)si+1 ≤ si. Clearly, |C⌊log k⌋+1| ≤ k. Therefore

r1 ≥

⌊log k⌋+1
q=1


1

1 + σ̂ /2q−1

|Cq|

· rk+1

>

⌊log k⌋
q=1


1

1 + σ̂ /2q−1

2q ln(1/∆)

·


1

1 + σ̂ /2⌊log k⌋

k

· rk+1

>

⌊log k⌋
q=1

e−2σ̂ ln(1/∆)
· e−2σ̂

· rk+1

≥ e−2σ̂ (log k ln(1/∆)+1)
· rk+1.

Since vk+1 ≤ rk(1+ σ̂ ) < rk+1(1+ σ̂ ) < eσ̂ rk+1, we have r1 > e−σ̂ (2 log k ln(1/∆)+3)
· vk+1. Therefore

vk+1−r1
vk+1

= 1− r1/vk+1 <

1 − e−σ̂ (2 log k ln(1/∆)+3).
The proof is completed by showing that 1 − e−σ̂ (2 log k ln(1/∆)+3)

≤ ϵ̂/2. This holds by the choice of σ̂ since

1 − ϵ̂/2 ≤ e−σ̂ (2 log k ln(1/∆)+3)

⇐H e−ϵ̂/2
≤ e−σ̂ (2 log k ln(1/∆)+3)

⇐⇒ σ̂ ≤ ϵ̂/(4 log k ln(1/∆) + 6)

and since log k ≤ n. �



74 Y. Emek, M. Feldman / Theoretical Computer Science 452 (2012) 56–74

3.4. A note on arbitrary technologies

We conclude the paperwith a note on arbitrary technologies. The following theorem shows that every technology admits
a collection of polynomial size that gives a (1 + ϵ)-approximation to the optimal contract.
Theorem 4. For every technology t = ⟨N, {γi}

n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩ and for any ϵ > 0, the orbit of t admits a (1 + ϵ)-

approximation of size poly(|t|, 1/ϵ).
Proof. Consider an arbitrary technology t = ⟨N, {γi}

n
i=1, {δi}

n
i=1, {ci}

n
i=1, ϕ⟩ and some ϵ > 0. The contract collection C is

constructed in a single stage of Algorithm Calibrate: we first calibrate all contracts in 2N into a scale of precision 1 + ϵ
and then remove from each interval all contracts excluding the one with minimum payment (under t). More formally, the
collection C contains at most one contract S that is calibrated to the interval I, in this case p(S) ≤ p(S ′) for every contract
S ′

⊆ N such that S ′ is calibrated to I. Following the line of arguments presented earlier in this section, we show that
|C| = O

 1
ϵ
log 1

∆


. Moreover, if an arbitrary contract T ⊆ N is not in C, then it was compensated by some contract S ∈ C

such that S and T are calibrated to the same interval. Therefore f (S) ≥
f (T )

1+ϵ
and since p(S) ≤ p(T ), it follows that UT (v)

US (v)
≤ 1+ϵ

for every payoff v > 0. �

4. Conclusions

The hidden action problem lies at the heart of economic theory and has been recently studied from an algorithmic
perspective. In this article, we continue the study initiated by Babaioff et al. [1] of the computational complexity of optimal
team incentives under hidden actions. Our contribution focuses on the OR technology, whose computational complexity
was raised as an open question in [1]. The importance of our results comes from the observation that OR technologies are
very common in real life since agents’ actions quite often serve as substitutions for each other. Indeed, the OR technology
is one of the most fundamental and common interrelations between agents’ tasks. We establish the NP-hardness of the
problem of computing an optimal contract in an OR technology, and we also show that there exist OR technologies with
exponentially large orbits (thus disproving a conjecture of [1]). On the positive side, we devise an FPTAS forOR technologies.

In addition, we consider the more general family of series–parallel (SP) technologies, which are constructed inductively
from AND and OR technologies. For SP technologies, we establish a scheme that provides a (1 + ϵ)-approximation for all
but an ϵ̂-fraction of the relevant instances in time polynomial in the size of the technology and in the reciprocals of ϵ and
ϵ̂. It remains as an open problem whether there exists an approximation scheme for SP technologies. This article makes a
significant step in understanding the computational complexity of the combinatorial agency model, which is an example of
the important interaction between game theory, economic theory, and computer science.

Acknowledgments

The authors are indebted to NoamNisan for his help on various parts of the paper. The second author’s workwas partially
supported by the Israel Science Foundation (grant number 1219/09), by the Leon Recanati Fund of the Jerusalem school of
business administration and by the Google Inter-university center for Electronic Markets and Auctions.

References

[1] Moshe Babaioff, Michal Feldman, Noam Nisan, Combinatorial agency, in: ACM EC’06, 2006.
[2] Moshe Babaioff, Michal Feldman, Noam Nisan, Mixed strategies in combinatorial agency, in: 2nd International Workshop on Internet and Network

Economics, WINE, 2006.
[3] Moshe Babaioff, Michal Feldman, NoamNisan, Free-riding and free-labor in combinatorial agency, in: Symposium on Algorithmic Game Theory, SAGT,

2009.
[4] Moshe Babaioff, Michal Feldman, Noam Nisan, Eyal Winter, Combinatorial agency, Journal of Economic Theory 147 (3) (2012) 999–1034.
[5] Felipe Balmaceda, Santiago R. Balseiro, Jose R. Correa, Nicolas E. Stier-Moses, Cost of moral hazard and limited liability in the principal-agent problem,

in: Workshop on Internet and Network Economics, WINE, 2010.
[6] Raphael Eidenbenz, Stefan Schmid, Combinatorial agency with audits, in: IEEE International Conference on Game Theory for Networks, GameNets,

2009.
[7] Yuval Emek, Iftach Heitner, Combinatorial agency: the observable-action model. 2006. A manuscript.
[8] Joan Feigenbaum, Scott Shenker, Distributed algorithmic mechanism design: recent results and future directions, in: Proceedings of the International

Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, 2002.
[9] Michal Feldman, John Chuang, Ion Stoica, Scott Shenker, Hidden-action in multi-hop routing, in: ACM Conference on Electronic Commerce, 2005,

pp. 117–126.
[10] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.
[11] Bengt Holmstrom, Moral hazard in teams, Bell Journal of Economics 13 (1982) 324–340.
[12] Patrick Legeros, Steven Matthews, Efficient and nearly-efficient partnerships, Review of Economic Studies 60 (3) (1993) 599–611.
[13] Shaili Jain, David Parkes, Combinatorial agency of threshold functions, in: Symposium on Algorithmic Game Theory, SAGT, 2011.
[14] Dilip Mookherjee, Optimal incentive schemes with many agents, Review of Economic Studies 51 (3) (1984) 433–446.
[15] Noam Nisan, Algorithms for selfish agents, in: Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science, 1999,

pp. 1–15.
[16] Noam Nisan, Amir Ronen, Algorithmic mechanism design, in: Proceedings of the 31st Symposium on Theory of Computing, 1999.
[17] Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay V. Vazirani, Algorithmic Game Theory, Cambridge University Press, 2007.
[18] Christos Papadimitriou, Algorithms, games, and the internet, in: Proceedings of 33rd STOC, 2001, pp. 749–753.
[19] E. Rasmusen, Moral hazard in risk-averse teams, Rand Journal of Economics 18 (1987) 428–435.
[20] Ronald Strausz, Moral hazard in sequential teams, in: Departmental Working Paper. Free University of Berlin, 1996.
[21] Eyal Winter, Incentives and Discrimination, American Economic Review 94 (2004) 764–773.


	Computing optimal contracts in combinatorial agencies
	Introduction
	NP-hardness of OR technologies
	Approximations
	A general scheme
	An FPTAS for OR technologies
	Approximation for almost all relevant instances of SP technologies
	A note on arbitrary technologies

	Conclusions
	Acknowledgments
	References


