
Stabilization Time in Minority Processes1

Pál András Papp2

ETH Zürich, Switzerland3

apapp@ethz.ch4

Roger Wattenhofer5

ETH Zürich, Switzerland6

wattenhofer@ethz.ch7

Abstract8

We analyze the stabilization time of minority processes in graphs. A minority process is a dynamically9

changing coloring, where each node repeatedly changes its color to the color which is least frequent10

in its neighborhood. First, we present a simple Ω(n2) stabilization time lower bound in the11

sequential adversarial model. Our main contribution is a graph construction which proves a Ω(n2−ε)12

stabilization time lower bound for any ε > 0. This lower bound holds even if the order of nodes is13

chosen benevolently, not only in the sequential model, but also in any reasonable concurrent model14

of the process.15

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Theory of compu-16

tation → Self-organization; Theory of computation → Distributed computing models17

Keywords and phrases Minority process, Benevolent model18

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.4619

Related Version An archive version is available at https://arxiv.org/abs/1907.02131.20

© Pál András Papp and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 46; pp. 46:1–46:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:apapp@ethz.ch
mailto:wattenhofer@ethz.ch
https://doi.org/10.4230/LIPIcs.ISAAC.2019.46
https://arxiv.org/abs/1907.02131
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

P.A. Papp and R. Wattenhofer 46:1

1 Introduction21

If you google “bad wifi”, one advice you will get for sure is to choose the least crowded22

frequency in order to minimize interference with your neighbors. Unfortunately, this least23

crowded frequency may change again if some of your neighbors do the same.24

Frequency allocation is a familiar example of minority processes in graphs: given a graph,25

a set of colors, and an initial coloring of the nodes with these colors, a minority process is a26

process where each node, when given the chance to act, modifies its color to a color that27

has the smallest number of occurrences in its neighborhood. This results in a dynamically28

changing coloring, which is essentially a form of distributed automata. Minority processes29

arise in various fields of economics [12] or social science [3] when players are motivated to30

differentiate from each other, but they also emerge in cellular biology [4] or crystallization31

mechanics [2].32

A minority process is said to stabilize when no node has an incentive to change its color33

anymore. The aim of the paper is to understand how long it takes until such a minority34

process reaches a stable state. We study the process in several different models, some of35

them sequential, some concurrent. In sequential models, when only one node at a time can36

change its color, stabilization time depends on the choice of the order of nodes. Hence, the37

model can further be subdivided into three cases, depending on whether the order of acting38

nodes is specified benevolently (trying to minimize stabilization time), adversarially (trying39

to maximize stabilization time), or randomly.40

On the other hand, in concurrent models, multiple nodes are allowed to switch their color41

at the same time. However, if two (or more) neighboring nodes continuously keep on forcing42

each other to switch their color, the system may never stabilize. The simplest such example43

is a graph of two connected nodes that have the same initial color, and keep on switching44

to the same new color in every step. We also study concurrent models that exclude this45

behavior, as it is unrealistic in many application areas where neighbors are unlikely to switch46

at the exact same time.47

In any model where simultaneous neighboring switches are excluded, it is easy to prove a48

O(n2) upper bound on stabilization time for minority processes. Initially, some (maybe even49

all) of the at most O(n2) edges in the graph are monochromatic (i.e., they have a conflict).50

When a node switches its color to the minority color in its neighborhood (but its neighbors51

do not change color in the same step), then the number of conflicts on the adjacent edges52

strictly decrease. Since the original number of conflicts is O(n2) and the overall number of53

conflicts decreases by 1 at least in each step, the number of steps is limited to O(n2).54

However, this raises a natural question: are there example graphs that exhibit this naive55

upper bound? Or is there a significantly lower (e.g. linear) upper bound on stabilization56

time in some models? While these questions are already answered for the “dual” problem of57

majority processes (when nodes switch to the most frequent color in their neighborhood), for58

the case of minority processes, they have remained open so far.59

The main contributions of the paper are constructions that prove lower bounds on60

stabilization time of minority processes. As a warm-up, we present a simple example in61

Section 4 which shows that in the sequential adversarial model, stabilization may take Θ(n2)62

steps. Our main result is a construction proving that stabilization can also take superlinear63

time in the sequential benevolent case. We first present a graph and an initial coloring64

in Section 5 where any selectable sequence lasts for Ω(n3/2) steps. Then in Section 6, we65

outline how a recursive application of this technique leads to a stabilization time of Ω(n2−ε)66

for any ε > 0, almost matching the upper bound of O(n2). This is an interesting contrast67

ISAAC 2019

46:2 Stabilization Time in Minority Processes

to majority processes, where stabilization time is bounded by O(n) in the benevolent case.68

Furthermore, our construction shows that this almost-quadratic lower bound holds not only69

in the sequential model, but also in any reasonable concurrent setting.70

2 Related work71

While there is a wide variety of results on both minority and majority processes, majority72

processes have been studied much more extensively. Recently, [5] has shown that stabilization73

time in majority processes can be superlinear both in the synchronous model, and in the74

sequential model if the order is chosen by an adversary. However, [5] has also shown that75

stabilization always happens in O(n) time in the sequential benevolent model. In case of76

majority processes in weighted graphs, a 2Θ(n) lower bound on stabilization time was also77

shown in [11].78

Other aspects of majority processes have also been studied thoroughly, especially in the79

synchronous model. Results on majority processes include basic properties [8], their behavior80

on random graphs [6], complexity results on determining stabilization time [10], minimal sets81

of nodes that dominate the process [7], and the existence of stable states in the process [1].82

In contrast to this, the dynamics of minority processes has received less attention. The83

stabilization of minority processes has only been studied in special classes of graphs, including84

tori, cycles, trees and cliques [14, 15, 16]. These studies are mostly conducted only in the85

synchronous or the sequential random model. More importantly, these results study a86

different variant of the minority process, which considers the closed neighborhood of nodes,87

and thus can result in significantly larger (possibly exponential) stabilization time, even in88

the unweighted case. An experimental study of the processes on grids is also available in [14].89

In weighted graphs, it has recently been shown in [13] that stabilization of minority90

processes can take 2Θ(n) steps in various models, matching a straightforward exponential91

upper bound in the weighted case. However, the constructions of [13] use exponentially large92

node or edge weights to obtain these results; as such, the same techniques are not applicable93

in the unweighted case.94

Besides these studies on the dynamics of the process, there are also numerous theoretical95

results on stable states in minority processes. These include complexity results on deciding96

the existence of different stable state variants [12], characterization of infinite graphs with a97

stable state [17], and analysis of price of anarchy in such states as local minima [12]. In the98

work of [9], it is also shown that slightly modified minority processes, based on distance-299

neighborhood of nodes, can provide better local minima at the cost of larger (but still100

polynomial) stabilization time.101

However, in contrast to majority processes, the stabilization time of minority processes in102

general unweighted graphs has remained unresolved so far.103

3 Definitions and background104

3.1 Models105

In the paper, we primarily focus on the following models:106

A. Sequential adversarial: In every step, only one node switches. The order of nodes is107

specified by an adversary who maximizes stabilization time.108

B. Sequential benevolent: In every step, only one node switches. The order is specified109

by a benevolent player who minimizes stabilization time.110

P.A. Papp and R. Wattenhofer 46:3

sequential

concurrent

adversarial benevolent
A B

C

DE

G

F

Figure 1 Properties of the listed models

C. Independent benevolent: In every step, the benevolent player is allowed to choose111

any independent set of switchable nodes, and switch them simultaneously.112

D. Free benevolent: In each step, the benevolent player is allowed to choose any set of113

switchable nodes, and switch them simultaneously.114

However, our lower bounds extend to a range of other popular models:115

E. Concurrent synchronous: In every step, all switchable nodes switch simultaneously.116

F. Sequential random: In every step, only one node switches, chosen uniformly at random117

among the switchable nodes.118

G. Concurrent random: In every step, every switchable node switches with probability p,119

independently from other nodes.120

An intuitive illustration of these models is shown in Figure 1. The vertical axis shows121

how concurrent a model is, the horizontal shows how wide is the set of opportunities it grants122

the player to speed up / slow down stabilization. In the case of majority processes, models A123

and E are shown to take superlinear time to stabilize for some graphs, but model B always124

stabilizes in linear time [5]. However, we prove that for minority processes, even model B125

can take superlinear time. Models C and D grant even wider sets of possible (concurrent)126

moves for the benevolent player, which may drastically reduce the number of steps in some127

cases; however, we show that the same lower bound holds even if such moves are available.128

Note that models A, B, C and F exhibit a natural O(n2) upper bound on stabilization129

time, as the overall number of conflicts decreases in each step by at least 1. On the other130

hand, models D, E or G may allow neighboring nodes to switch at the same time, and thus in131

these models, some nodes may keep on endlessly changing colors. However, our constructions132

specifically ensure that connected nodes are never switchable at the same time, and thus for133

these particular graphs, the process stabilizes in any of the models.134

Through most of the analysis in the paper, we focus on the sequential models. We first135

show a simple construction with Θ(n2) stabilization time in model A. We then present a more136

complex construction to first show Ω(n3/2), and then Ω(n2−ε) stabilization time in model B.137

It then follows from a few observations that these latter constructions also have the same138

stabilization time in models C and D. Since model D provides the widest set of opportunities139

from all models, this implies the same lower bound for each of the listed models.140

3.2 Preliminaries141

Throughout the paper, we consider simple, unweighted, undirected graphs. Graphs are142

denoted by G, their number of nodes by n, and the maximum degree in the graph by ∆.143

ISAAC 2019

46:4 Stabilization Time in Minority Processes

Given a graph G on the vertex set V , an independent set is a subset of V such that no two144

nodes in this subset are connected. A coloring of the graph with k colors is the assignment145

of one of the colors (numbers) from {1, 2, ..., k} to each of the nodes. If two nodes share an146

edge and are assigned the same color, then the nodes have a conflict on this edge.147

Our process consists of discrete time steps (states), where we have a current coloring of148

the graph in every state. When a node v is currently colored c1, but there exists a color c2149

such that the neighborhood of v contains strictly less nodes colored c2 than nodes colored c1,150

then the node is switchable (since the node could reduce its number of conflicts by changing151

its color). The process of v changing its color is switching. Nodes always make locally optimal152

solutions, that is, they switch to the color which is least frequent in their neighborhood.153

In case of multiple optimal colors, related work on majority processes considers different154

tie-breaking rules. However, our constructions ensure that a tie can never occur, and thus155

our bounds hold for any tie-breaking strategy.156

The minority process is a sequence of steps, where each step is described by a set of nodes157

that switch. Note that we only consider valid steps, where every chosen node is switchable.158

A state is stable when no node in the graph is switchable; a system stabilizes if it reaches159

a stable state. Stabilization time is the number of steps until the process stabilizes. Note160

that in case of model E, papers studying majority processes often use a different definition of161

stabilization, based on periodicity. However, our constructions ensure that the process always162

ends in a stable state, thus for the graphs in the paper, the two definitions of stabilization163

are equivalent.164

In our examples, we will consider the case of having only two available colors, black and165

white. However, as discussed in Section 3.3, our lower bounds are easy to generalize to any166

number of colors.167

The restriction to two colors allows us to introduce some helpful terminology. Consider a168

node v at a given state of the process. If v has vs neighbors with the same color as v, and vo169

neighbors with the opposite color, the number vo − vs is called the balance of v. Note that170

if one of the neighbors of v switches, then the balance of v either increases or decreases by171

2 (which shows that the parity of the balance of v can never change). The definition also172

implies that v is switchable if and only if its balance is negative. Switching v changes the173

sign of its balance.174

3.3 General tools in the constructions175

Groups. We use the notion group to refer to a set of nodes that have the same initial color176

and the exact same set of neighbors (hence, groups are independent sets). Groups are, in177

fact, only a tool to consider certain nodesets together as one entity for simpler presentation.178

They will be shown as only one node with double borders in the figures, with the size of the179

group indicated in brackets.180

In the adversarial case, we will only consider sequences that switch groups together (i.e181

consecutively in any order). In the benevolent case, groups will be switched together in the182

sense that if a node in the group switches, then all other nodes in the group will also switch183

before any neighbor of the group becomes switchable; this property is enforced by the graph184

construction. The more complicated definition in the benevolent case is due to the fact that185

we have to consider every possible sequence that the player can choose. Technically, in some186

sequences, a group might not be switched consecutively (it might be interrupted by switches187

in other, distant parts of the graph), but the outcome will still be equivalent to switching188

them consecutively.189

P.A. Papp and R. Wattenhofer 46:5

Fixed nodes. Given a graph G, let us add two more set of nodes Fw, Fb to the graph such190

that |Fw| = |Fb| = n + 1, and vw and vb are connected for all vw ∈ Fw, vb ∈ Fb. Let the191

color of Fw and Fb initially be white and black, respectively. The nodes in Fw and Fb will192

be referred to as fixed nodes, and we will connect them to some of the nodes in our original193

graph. Note that these fixed nodes already have n+ 1 neighbors of the opposite color, and194

can never have more neighbors of the same color (as they can have at most n neighbors G),195

so their color is indeed fixed and they can never switch.196

Such fixed nodes are widely used in our construction; we can allow any node in G to197

have up to ∆ + 1 fixed neighbors of either color. The introduction of fixed nodes increases198

the graph size only by a constant factor (to 3n + 2), so all lower bounds expressed as a199

function of n will still be of the same magnitude as a function of 3n+ 2. Therefore, for ease200

of presentation, we still use n to denote the number of nodes in the graph without the extra201

fixed nodes, and express our bounds as a function of n.202

Fixed node neighbors are denoted by squares in the figures, with the multiplicity written203

beside the square (if more than 1). We always draw separate squares for distinct nodes, even204

though the corresponding fixed node sets might overlap. This is because fix node connections205

are thought of as a “property” of the node, introducing an offset into its initial balance.206

Generalization to more colors. While the paper discusses the case of two colors, a simple207

idea allows a generalization to any constant number of colors k. Assume we have a construction208

G on n nodes, showing a lower bound on stabilization time with two colors; we can simply209

add sets of nodes F3, F4, ..., Fk of size ∆ + 1 such that they form a complete multipartite210

graph, and connect all these new nodes to all nodes in G. Let us color the nodes in Fi with211

color i.212

None of the original nodes in G will ever assume any of the colors 3, 4, ..., k, since213

they always have ∆ + 1 neighbors of these colors, while they have strictly less (at most ∆)214

neighbors of colors 1 and 2. Nodes in Fi will never have any incentive to switch, since they215

have no conflicts at all. Thus the process will behave as if the graph only consisted of G216

with colors 1 and 2. As the new nodes only increase the graph size by a constant factor, we217

receive an example with the same magnitude of running time, but with k colors.218

With the same technique, our lower bound of Ω(n3/2) can also be generalized to the case219

of up to Θ(
√
n) colors; details of this are discussed in Appendix B.220

4 Sequential adversarial model221

We first present a simple example where model A takes Ω(n2) steps. Our construction, shown222

in Figure 2, consist of a group P of size m (for some parameter m), initially colored white,223

and 2m distinct nodes A1, A2, ..., A2m, such that Ai is initially colored black for odd values224

of i and white for even i. Let us connect all nodes Ai to P , and add one more fixed black225

node that is connected only to P . Finally, let us connect each Ai to m+ 1 fixed nodes of the226

same color as Ai. Recall that although the figure shows multiple squares, there are in fact227

only n+ 1 fixed black and n+ 1 fixed white nodes in the graph altogether.228

In this graph, P has a balance of 1 initially, while black Ai have a balance of −1 and229

white Ai have a balance of −(2m + 1). Note that even after execution begins, until Ai is230

switched for the first time, it will have m+ 1 fixed neighbors of the same color and at most231

m neighbors of the opposite color (depending on the current color of P), and thus a negative232

balance. Therefore, each Ai is switchable anytime if it has not been switched before.233

Consider the following sequence of adversarial moves in this graph: the player first decides234

ISAAC 2019

46:6 Stabilization Time in Minority Processes

. . .

m+1 m+1 m+1 m+1 m+1

A1 A2 A3 A4 A2m

P (m)

Figure 2 Construction with an adversarial sequence of Θ(n2) switches

to switch A1, then P , then A2, then P again, then A3, P , ..., A2m, and finally P again. As235

each Ai is used only once, they are clearly all switchable. As for P , its balance first changes236

from 1 to −1, when changing A1 to white, but increases back to 1 when we switch P itself.237

Then it changes to −1 once again after changing A2, so it is switchable again, and so on:238

each time we switch an Ai, we change it to the same color that P currently has, decreasing239

P ’s balance to −1, which increases back to 1 again as we switch P . Therefore, this strategy240

is indeed a sequence of valid switches.241

Since P containsm nodes and is switched 2m times in this sequence, this alone contributes242

to 2m2 switches. Altogether, we have 3m nodes in the graph (without fixed nodes), allowing243

us a choice of m = n
3 . This gives us a sequence with at least 2

9n
2 steps.244

I Theorem 1. There exists a graph construction with Ω(n2) stabilization time in model A.245

5 Construction for benevolent models246

We now presents a construction with Ω(n3/2) stabilization time in benevolent models. Note247

that it is much more involved to find an example where benevolent models take ω(n) steps,248

since in such a construction, we have to ensure that any possible sequence lasts for a long249

time. In order to have an easy-to-analyze construction, our graph will, at any point in250

time, contain only one, or a small set of nodes that are switchable, and switching this or251

these nodes enables the next such set of nodes (i.e., makes them switchable). This way, the252

switchable point “propagates” through the graph, and the benevolent player has no other253

valid move than to follow this path of propagation that has been designed into the graph.254

The general idea behind the construction is to have a linearly long chain of nodes which is255

propagated through multiple times. After each such round, the propagation enters a different256

branch of further nodes; this branch resets the chain for the following round, and then also257

triggers the following round of propagation (as outlined later in Figure 11).258

Due to the complexity of the construction, we do not describe it directly; instead, we259

define smaller functional elements (gadgets) that execute a certain task. We then use these260

gadgets as building blocks to put our example graph together. This section outlines the tasks261

and main properties of the gadgets; a detailed description and analysis of each gadget can be262

found in Appendix B. While the concrete gadget designs are specific to minority processes,263

they are built on general ideas and techniques for benevolent models; as such, we hope they264

may inspire similar solutions in the analysis of related processes or cellular automata.265

When describing a gadget, the edges connecting the gadget to other nodes in the graphs266

are drawn as dashed lines in the figures, with the external node usually denoted by v (possibly267

P.A. Papp and R. Wattenhofer 46:7

BvL vR

(a) (b) (c)

Figure 3 Simple relay gadget (a), the steps of its operation (b), and a chain of relays (c)

with some subscript). Although our graph is undirected, we often refer to such edges as input268

or output edges of the gadget, and also show this direction in the figures. This will refer to269

the role that the external node plays in the functionality of the gadget. That is, whenever270

the gadget is used in our constructions, it is triggered by (some of) its input nodes switching,271

and upon completing its task, the gadget makes (some of) its output nodes switchable.272

Naturally, as in the entire graph, the role of the two colors is always interchangeable273

within the gadgets. Therefore, we only present each such gadget in one color variant.274

Due to the complexity of the construction, we have also verified its correctness through275

implementing the process. A discussion of these simulations is available in Appendix C.276

Simple relay. As our most basic tool to propagate the only possible point of switching, we277

use the simple relay shown in Figure 3a. A simple relay consists of a base node B, connected278

to a fixed node of the same color, and two further nodes outside of the gadget, which initially279

have the opposite color as B. Until neither of vL and vR switch, B has positive balance280

and cannot switch either. However, as soon as vL switches to the color of B, B becomes281

switchable, and as B switches, this propagates the point of change to its other neighbor vR282

(as shown in Figure 3b).283

Note that connecting alternating-colored relays into a chain already gives a simple284

example of linear stabilization time (see Figure 3c). If the leftmost (white) relay’s base node285

is connected to a fixed white node, then the only available sequence of moves is to switch the286

base nodes in the relays one by one from left to right, resulting in a sequence of n steps.287

Through the concept of input and output nodes, relays essentially allow us to connect288

other, more sophisticated gadgets in our constructions. If some gadget has an output node289

v1 and another gadget has an input node v2, we can add a chain of relays between v1 and v2,290

ensuring that once v1 switches, it will be followed by v2 eventually. Due to this role, relays291

are not shown explicitly in our final overview figure of the construction, but only represented292

by arrows, indicating the direction of propagation between more complex gadgets.293

Rechargeable relay. A more sophisticated version of a relay is the rechargeable relay shown294

in Figure 4a. In such a relay, node B is extended by an upper node U , a control group C of295

size 2, and two recharge nodes R1, R2, the role of which are interchangeable. Besides vL296

and vR, the nodes R1 and R2 also have edges to some external nodes. It is always ensured297

that the initial balance of R1 and R2 from these upper neighbors (that is, with C ignored) is298

exactly 3.299

As in case of a simple relay, if vL switches, then B itself can switch, followed by vR. Now300

assume that in this “used” phase of the relay, some outside circumstance changes 3 neighbors301

of node R2 from black to white, and thus its balance changes from the current value of 5 to302

−1 (the relay is recharged). Then R2 can switch to black, making C and in turn U switch,303

too. Finally, assume that some other outside circumstance then changes the balance of R2304

from 5 to −1 again (known as resetting the relay); then R2 will switch back to white (with a305

new balance of 1), and we end up in the initial state of a rechargeable relay of the opposite306

ISAAC 2019

46:8 Stabilization Time in Minority Processes

B

U

C(2)

R1 R2

vL vR

(a)

(2)

3 switches
to white

(2) (2) (2)

3 switches
to black

(2)

(b)

Figure 4 Rechargeable relay gadget (a) and the steps of its operation (b)

√
m nodes

Set X of m nodes

... Li (
√
m nodes)

M(
√
m+1)

U v√
m + 1

√
m

Figure 5 Basic recharging system

Set X, with a balance to be
decreased by 2·χ altogether

... Li (√χ nodes)

M(√χ+1)

U v√
χ + 1

√
χ

Figure 6 Generalized recharging system

color. The steps of the process are shown in Figure 4b.307

This is exactly the essence of this gadget: it is a relay which can be used the same way308

multiple times. Connecting such gadgets into a chain in the same fashion as Figure 3c, we309

get a chain that can propagate the point of change not only once, but multiple times if310

“recharged” through their upper connections between two such propagations.311

Recharging system. The rechargeable relay suggests that it is useful to have a tool to312

“recharge” some nodes, i.e. to decrease their balance by switching some of their neighbors to313

the color they currently have. To execute this task efficiently on many nodes, we present a314

recharging system.315

For the first version of this gadget, assume a setting where there is a set X of m black316

nodes, and we want to decrease the balance of each of these nodes by 2 (i.e., change exactly317

one white neighbor of each of them to black). A basic recharging system, shown in Figure 5,318

can execute this task while using only O(
√
m) nodes. The gadget is organized into 3 levels:319

a single node U in the upper level, a group M of
√
m + 1 nodes in the middle level, and320 √

m distinct nodes Li in the lower level. Each lower level node is connected to
√
m different321

nodes in X, thus exactly covering the nodes of X. The gadget operates in a top-to-bottom322

fashion: once v switches, U turns black, followed by M turning white. Once all nodes in M323

are switched, the nodes Li all decide to switch, too.324

The key idea in the design of the gadget is that each node Li has strictly more neighbors325

in M than in X. This ensures that as long as M is black, the nodes Li always have a positive326

balance, regardless of the current color of their neighbors in X. Therefore, no node in the327

gadget can ever switch before the node U is triggered.328

We can use this insight to create a similar gadget for a more general setting. Assume329

that we similarly have a set X of m black nodes, but instead of decreasing their balance by330

2, we want to decrease the balance of each node in X by some specific (possibly different)331

P.A. Papp and R. Wattenhofer 46:9

4
3

x+ 1

A

B1

B2
C(3)

D v
x input
nodes

Figure 7 and gate

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

4
3

x+ 1
x A

B1

B2
C(3)

D v

Figure 8 Operation of an and gate. In the end, node D switches to black, making v switchable.

even value, denoted by 2x1, 2x2, ..., 2xm (i.e., for the jth node in X, we want to change xj332

of its white neighbors to black). Let us denote the sum
∑m
j=1 xj of these values by χ.333

We can achieve this using a similar construction, shown in Figure 6. In this generalized334

recharging system, we allow multiple nodes Li to be connected to the same node in X: if a335

node in X has a corresponding value 2xj , then it has exactly xj neighbors in the lower level336

of the system. This ensures that once all the nodes Li switch, the new balance of each node337

in X is exactly as desired. The number of nodes in the gadget can be minimized by placing338 √
χ nodes Li in the lower level, each with √χ neighbors in X; this way, the overall number339

of edges going into the set X from the gadget is exactly χ as required. To ensure that the340

neighborhood of each Li is dominated by M , we choose the size of group M to be √χ+ 1.341

AND gate. Another ingredient we use is an and gate. As its name suggests, this gadget342

has x input edges from a set of nodes X, and once all nodes in X have switched to the same343

color (say, white), the gadget triggers a change in another part of the graph.344

Note that we could achieve this functionality with a single node, by carefully setting its345

initial balance such that it switches exactly when all inputs have the desired color. However,346

and gates are used to “check” the state of specific nodes in the construction, and as such, it347

is unfortunate that this check also affects the nodes that are being checked: once the node348

in this simple and gate switches, the balance of all input nodes in X will increase by 2. It349

would be much better to have a gadget that can perform this task without having any effect350

on the nodes in X.351

For this purpose, consider the gadget in Figure 7, which is connected to the nodes in X352

on the input side and a black node v on the output side. Once all nodes in X are white, node353

A switches, followed by B1 and B2, and then by C. With C switched, A decides to switch354

back to its original color white. However, since now both A and B1 are white, this finally355

ISAAC 2019

46:10 Stabilization Time in Minority Processes

...

v1

v2

vp

A1(2) B1(2)

A2(2) B2(2)

Ap(2) Bp(2)

C v

2

2

2

2

Figure 9 Join gadget

...
v

F1

F2

F3

Fq−1

Fq

v1

v2

v3

vq−1

vq

Figure 10 Fork gadget

switches D to black, triggering a change in the output node v (Figure 8). The usefulness of356

the gadget lies in the fact that by the end of this sequence, A is switched back to its original357

color, and thus the balance of nodes in X is again the same as it was in the beginning.358

Join and fork gadgets. Finally, we need two small gadgets in the construction to fork and359

join the control sequence at the ends of our main relay chain.360

A join gadget, shown in Figure 9, connects a specific number of input nodes vi to an361

output node v. When an input node vi switches, then so does Ai and then Bi in the362

corresponding input branch, which also switches C and triggers node v. Then when vi+1363

later switches at some point, the same thing happens to the next input branch and C again,364

only with the two colors swapping roles. Thus if the nodes v1, v2, ... are switched one after365

another in this order, then each of these input switches make the output node v switch again.366

The fork gadget of Figure 10, on the other hand, is responsible for receiving triggers from367

a given input node v, and directing the propagation to a new branch (a new output node vi)368

every time. When v first switches, only v1 becomes switchable. Similarly, after v is switched369

for the ith time, only vi becomes switchable, and thus the gadget triggers the ith branch of370

output.371

Assembling the pieces. Our final graph construction (shown in Figure 11) has two defining372

parameters m and r. The base of the construction is a chain of m rechargeable relays,373

connected to a join gadget of r branches and a fork gadget of r−1 branches. For each374

i ∈ {1, ..., r−1}, we add a sequence of gadgets (a branch) to connect the ith output of the fork375

to the i+ 1th input of the join gadget, which is responsible for recharging the relay chain.376

Each branch consists of recharging systems connected to our main chain. First let us377

consider the rechargeable relays where node U is currently white (either the even or the378

odd ones; relays at positions of the same parity are all in the same state). We first need a379

recharging system to recharge all these relays, and then we need another system to reset the380

relays. We need similarly 2 recharging systems for the other half of the relays which are in381

the opposite color phase.382

Finally, we need to force the player to indeed execute these changes on the relays. For383

that, we insert an and gate after each recharging system, which checks if all switchable nodes384

have indeed been switched before moving on. The output of the and gate is then used to385

enable the next recharging systems (or the next input of the join gadget).386

This construction ensures that the player has no other choice than to go through the387

relay chain, follow the next branch from the fork, recharge and reset all the relays, and start388

P.A. Papp and R. Wattenhofer 46:11

RS

A

RS

A

RS

A

RS

A

F
RRRR

J
RR RR RR

. . .

chain of m relays

relays
reset black

relays
reset white

black relays
recharge

white relays
recharge

Figure 11 Overview of the whole construction, with one branch shown in detail. Rechargeable
relays (RR), Recharging systems (RS), and gates (A), Joins (J) and Forks (F) are explicitly shown.

going through the relay chain again. Since the chain consists of m relays and it is traversed389

r times in this process, the switches in the chain add up to m · r steps altogether.390

Of course, one also needs to introduce a starting point (initially switchable node) into391

the construction. This can be done by replacing v1 in the join gadget by a fixed white node.392

Let us consider the number of nodes in the construction. Since rechargeable relays consist393

of constantly many nodes, the size of the relay chain is O(m). The size of the join and394

fork gadgets is O(r). Finally, each of the r−1 recharging branches consist of constantly395

many recharging systems, and gates and simple relays; since the latter two have constant396

size, branch size is dominated by the size of the recharging systems. Each such system is397

connected to m
2 relays, and thus needs to reduce the balance of O(m) nodes by a constant398

value of 6. This implies that each recharging system needs O(
√
m) nodes.399

This shows that we can choose r = Θ(
√
m) and m = Θ(n) for our parameters. Our graph400

then contains O(m) +O(r) + r ·O(
√
m) = O(n) nodes, so it is indeed a valid setting with401

the proper choice of constants.402

To investigate runtime, it is enough to consider the switches in the main relay chain.403

Each of the Θ(n) relays has a base node that is switched Θ(
√
n) times, adding up to a total404

of Ω(n3/2) switches.405

I Theorem 2. There exists a graph construction with Ω(n3/2) stabilization time in model B.406

Note that in the previous construction, whenever any of the base nodes of the relay chain407

are switchable, there is no other switchable node in the entire graph. This implies that408

even in the independent benevolent case, the player has no other option than to select this409

single node, so the number of minimal switches is Ω(n3/2) even if we assume the independent410

benevolent model.411

In fact, one can observe that the construction also ensures that regardless of the choices412

of the player, the set of switchable nodes is always an independent set at any point in the413

process. Hence models C and D are in fact the same in this graph, and thus the lower bound414

also holds for model D. This then implies the same bound for all the remaining models.415

I Corollary 3. There is a graph construction with Ω(n3/2) stabilization time in models C–G.416

ISAAC 2019

46:12 Stabilization Time in Minority Processes

...

Θ(m
1
2)

Θ(m
1
2)

Θ(m
1
2)

...

Θ(m
3
4)

Θ(m
3
4)

Θ(m
3
4)

first-level
systems

second-level
system

Figure 12 Connection of a second-level recharging system to first-level recharging systems. For
simplicity, only the recharging of group M is shown (node U also has to be recharged).

6 Recursive construction417

We now briefly outline the modification idea that provides the almost tight lower bound of418

Ω(n2−ε). A more detailed discussion of the construction can be found in Appendix A.419

The key idea is to make the recharging systems themselves also rechargeable, so that420

they can recharge the same output nodes repeatedly. Note that once a recharging system421

has been used, the color of its nodes is exactly that of a recharging system of the opposite422

color. Thus, if we reset the balance of each node in the system to its initial value, we can423

use the system again to recharge the same output nodes again. More specifically, given a424

used recharging system, we need to restore the balance of M and U to 1 in order to obtain a425

recharging system of the opposite color; then by triggering U again, we can use the system426

to recharge the nodes in X once more.427

Therefore, we can add a layer of second-level recharging systems to recharge all the original428

(first-level) systems in the graph after all first-level system have been used, as illustrated429

in Figure 12. Recall that decreasing the sum of balances in a set of nodes by χ requires a430

recharging system of O(√χ) nodes. We have Θ(
√
m) first-level systems in our graph, each431

consisting of Θ(
√
m) nodes, with a balance of Θ(

√
m) after use; to reset each node in these432

systems to their default balance of 1, with χ = Θ(m3/2), a second-level system requires433 √
χ = Θ(m3/4) nodes.434

In order to keep the overall number of nodes in second-level systems in O(m), we add435

Θ(m1/4) distinct second-level systems to our graph. When used, each of these second-level436

systems recharges all systems on the first level, which in turn allows us to propagate through437

the main relay chain Θ(m1/2) times again. Therefore, with Θ(m1/4) second-level systems438

in the construction, the first two levels already allow us to traverse the main relay chain439

Θ(m1/2) ·Θ(m1/4) times.440

We can continue this technique in a recursive manner. Assume that we have Θ(m1/(2i))441

distinct ith-level systems in the construction, each consisting of Θ(m1−1/(2i)) nodes (which,442

therefore, all have a balance of Θ(m1−1/(2i)) after they have been used). We can then use an443

(i+ 1)th-level recharging system to recharge all of these ith-level systems; since we now have444

χ = Θ(m1/(2i)) ·Θ(m1−1/(2i)) ·Θ(m1−1/(2i)) = Θ(m(2i+1−1)/(2i)), this requires a next level445

system of √χ = Θ(m(2i+1−1)/(2i+1)) = Θ(m1−1/(2i+1)) nodes. In order to keep the nodes in446

P.A. Papp and R. Wattenhofer 46:13

this new level also in O(m), we only add Θ(m1/(2i+1)) systems to the (i+ 1)th-level.447

Generally, these higher-level recharging systems fit into our construction in the following448

way. Every time when first-level systems have all been used, an extra branch is added to449

the construction, which uses one of the second-level systems to recharge the entire first450

level (and does not influence the relay chain). Similarly, whenever we would need such a451

second-level branch but all of them has been used, a third-level branch is added to recharge452

all second-level systems, and the required second-level branch is only visited after traversing453

this third-level branch.454

Following the recursive pattern, we obtain a construction that allows us to traverse the455

main relay chain Θ(m1/2) ·Θ(m1/4) ·Θ(m1/8) · ... times altogether. If the number of levels456

go to infinity with m increasing, then for any ε > 0, there is an m large enough that the457

number of relay chain traversals is at least Θ(m1−ε). Since the relay chain consists of Θ(m)458

nodes, this leads to a stabilization time of Θ(m2−ε).459

If we have Θ(m1/(2i)) recharging systems on the ith level, this setting allows us to add460

Θ(log logm) levels until the number of systems on a level decreases to a constant value.461

Now let us analyze the number of nodes in the graph. On each level, the systems462

contain Θ(m) nodes altogether, so the number of nodes in recharging systems adds up to463

Θ(m log logm) over all levels. One can easily show that the size of the graph is dominated by464

these nodes. The number of branches controlling first-level systems is Θ(m1/2·m1/4·m1/8·...) =465

O(m), the number of branches controlling second-level systems is only Θ(m1/4 ·m1/8 · ...) =466

O(m1/2), and so on, the number of ith-level branches is O(m1/2i−1). Summing these up, the467

number of branches altogether is still O(m). Apart from recharging systems, each branch468

contains constantly many nodes only (in the form of simple relays, and gates, and the469

corresponding parts of the fork and join gadgets). This shows that the number of nodes470

outside of the recharging system is only O(m) altogether, thus the number of nodes in the471

entire graph is indeed Θ(m log logm).472

This allows for a choice ofm = Θ(n
log logn), leading to a stabilization time of Ω(n2−ε

(log logn)2−ε).473

Since this bound holds for any ε > 0, we can easily remove the logarithmic factors: a lower474

bound of Ω(n2−ε) follows from the same construction for any ε̂ < ε. Thus the construction475

shows that the number of steps is Ω(n2−ε).476

Similarly to the non-recursive case, this lower bound holds in all of our models, since477

propagations over the relay chain are still only possible sequentially.478

I Theorem 4. For any ε > 0, there exists a graph construction with Ω(n2−ε) stabilization479

time in models B–G.480

ISAAC 2019

46:14 Stabilization Time in Minority Processes

References481

1 Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. Satisfactory graph partition, variants,482

and generalizations. European Journal of Operational Research, 206(2):271–280, 2010.483

2 Olivier Bodini, Thomas Fernique, and Damien Regnault. Crystallization by stochastic flips.484

In Journal of Physics: Conference Series, volume 226, page 012022. IOP Publishing, 2010.485

3 Zhigang Cao and Xiaoguang Yang. The fashion game: Network extension of matching pennies.486

Theoretical Computer Science, 540:169–181, 2014.487

4 Jacques Demongeot, Julio Aracena, Florence Thuderoz, Thierry-Pascal Baum, and Olivier488

Cohen. Genetic regulation networks: circuits, regulons and attractors. Comptes Rendus489

Biologies, 326(2):171–188, 2003.490

5 Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Convergence in (social) influence491

networks. In International Symposium on Distributed Computing, pages 433–446. Springer,492

2013.493

6 Bernd Gärtner and Ahad N Zehmakan. Color war: Cellular automata with majority-rule. In494

International Conference on Language and Automata Theory and Applications, pages 393–404.495

Springer, 2017.496

7 Bernd Gärtner and Ahad N Zehmakan. Majority model on random regular graphs. In Latin497

American Symposium on Theoretical Informatics, pages 572–583. Springer, 2018.498

8 Eric Goles and Jorge Olivos. Periodic behaviour of generalized threshold functions. Discrete499

Mathematics, 30(2):187–189, 1980.500

9 Sandra M Hedetniemi, Stephen T Hedetniemi, KE Kennedy, and Alice A Mcrae. Self-stabilizing501

algorithms for unfriendly partitions into two disjoint dominating sets. Parallel Processing502

Letters, 23(01):1350001, 2013.503

10 Dominik Kaaser, Frederik Mallmann-Trenn, and Emanuele Natale. Brief announcement: On504

the voting time of the deterministic majority process. Distributed, page 647, 2015.505

11 Barbara Keller, David Peleg, and Roger Wattenhofer. How even tiny influence can have a big506

impact! In International Conference on Fun with Algorithms, pages 252–263. Springer, 2014.507

12 Jeremy Kun, Brian Powers, and Lev Reyzin. Anti-coordination games and stable graph508

colorings. In International Symposium on Algorithmic Game Theory, pages 122–133. Springer,509

2013.510

13 Pál András Papp and Roger Wattenhofer. Stabilization time in weighted minority processes.511

In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).512

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.513

14 Damien Regnault, Nicolas Schabanel, and Éric Thierry. Progresses in the analysis of stochastic514

2d cellular automata: A study of asynchronous 2d minority. In Luděk Kučera and Antonín515

Kučera, editors, Mathematical Foundations of Computer Science 2007, pages 320–332. Springer516

Berlin Heidelberg, 2007.517

15 Damien Regnault, Nicolas Schabanel, and Éric Thierry. On the analysis of “simple” 2d518

stochastic cellular automata. In International Conference on Language and Automata Theory519

and Applications, pages 452–463. Springer, 2008.520

16 Jean-Baptiste Rouquier, Damien Regnault, and Éric Thierry. Stochastic minority on graphs.521

Theoretical Computer Science, 412(30):3947–3963, 2011.522

17 Saharon Shelah and Eric C Milner. Graphs with no unfriendly partitions. A tribute to Paul523

Erdös, pages 373–384, 1990.524

46:15

Appendices525

A Further discussion of the recursive construction526

While the main idea of the recursive construction has been outlined above, there are some527

details worth discussing for completeness.528

Since a second-level system can only be used to recharge nodes of the same color, every529

time we recharge all the first-level systems, we in fact need two second-level recharging530

systems, one of each color.531

Recall that in addition to the groupM , the balance of node U also has to be reset between532

two uses of a recharging system; however, we did not point this out when calculating the533

necessary size of systems, since besides M , a single extra node does not affect the magnitude.534

Earlier, we have noted that the recharging systems on a certain level consist of two classes535

of systems of different color; observe that the next level systems that recharge the groups536

M in one class can simultaneously be used to also recharge the nodes U in the other class.537

Alternatively (for simpler analysis), we can add an extra recharging system (of the same size)538

on each branch in order to separately recharge the nodes U on the level below.539

Note that the number of total relay chain traversals, which is Θ(m1/2 ·m1/4 ·m1/8 · ...),540

is in fact only guaranteed to be at least Θ(m1−ε) if the coefficients in these factors are541

sufficiently large. With an analysis of the constants in the process, one can show that the542

coefficient in each factor can indeed be chosen as 1, and thus these constant do not add up543

to dividing logarithmic factors when taking the product. However, this is in fact unnecessary,544

as any such logarithmic factor could also be removed simply by a smaller choice of ε.545

Finally, note that in this recursive setting, recharging systems are slightly modified in the546

sense that they have multiple input nodes from multiple different branches, each connected547

to node U . However, this does not modify the behavior of U as long as its initial balance is548

readjusted to 1. This also requires a minor modification in the simple relays that are used as549

input nodes, since relays generally assume that their output node never switches before the550

relays themselves are triggered. This can be resolved by using a modified relay where the551

base node has an initial balance of 3, and thus it is enabled by two distinct simple relays on552

the branch.553

B Detailed analysis of gadgets554

Here we provide a more detailed description of the gadgets, and also comment on their555

behavior and their use in the construction.556

Simple relay. The construction and behavior of the simple relay has already been described557

above. One thing to note is that in our construction, simple relays are always used only once:558

after node B switches, propagation never returns to the same part of the graph again, and559

thus node B will remain unswitchable for the rest of the process.560

While we mostly use this original version of the gadget, we occasionally need relays with561

multiple output nodes instead of just one. This only requires a simple modification: besides562

connecting x extra (black) output nodes to node B, we also need to add x fixed (white)563

nodes in order to keep the initial balance of B unchanged.564

Chains of simple relays are mostly used to connect more complex gadgets in our con-565

struction. Note that depending on whether the input and output nodes in these gadgets are566

ISAAC 2019

46:16

supposed to have the same or different initial colors, we only need a chain of length 1 or 2567

for this, respectively.568

Rechargeable relay. In a rechargeable relay, node B is connected to an upper node U569

instead of a fixed node. Node U is connected to a group C of two nodes, which is further570

connected to nodes R1, R2. Initially, C has the opposite color as B and U , and one of R1571

and R2 is white, the other is black. Node B has the same external neighbors as a simple572

relay. The recharge nodes can both have any set of external neighbors as long as their initial573

balance is 3 with C ignored (so with C included, the initial balance of R1 and R2 is then 1574

and 5, respectively).575

Note that since R1 and R2 have opposite colors, this recharging process can always be576

executed on a used relay through either R1 or R2, depending on the current color of the577

nodes. We only need to select the recharge node that has the current color of U , and switch578

3 of its neighbors (to U ’s current color) for the recharging step, and then switch 3 of its579

neighbors (to the opposite color) for the resetting step.580

Recharging system. In a basic recharging system, the node U is connected to the input581

node v, the group M , and to
√
n+ 1 fixed white nodes. The middle level group M has a582

further edge to all nodes Li, and is balanced by
√
m fixed black nodes. Finally, each node583

Li has
√
m distinct neighbors in X, and thus each node in X is connected to exactly one584

lower-level node. For convenience, we assume that m is a square number.585

A generalized recharging system is almost identical to this, except for the nodes Li586

occasionally being connected to the same node. The connections between the lower level587

and X are not directly specified: we are free to choose which of the nodes Li to connect588

to a specific node in X. Note, however, that the gadget design implicitly assumes that589

xj ≤
√
χ for all nodes in X. This is naturally satisfied whenever we use the gadget in our590

constructions, since we always have x1 = x2 = ... = xm with |X| > xj . Also note that for591

convenience, we assume χ to be a square number.592

Nodes in the upper and lower levels are initially white, while M and the input node v593

are initially black. The nodes X may assume any color, and also may switch multiple times594

before the recharging system is activated. However, the graph construction ensures that at595

the time when the gadget is activated (that is, when v switches), all nodes in X are currently596

colored black (i.e., we indeed use the system on rechargeable relays that can currently be597

recharged). The gadget design ensures that U and M have an initial balance of 1, while the598

nodes Li have a balance of 1 at least, depending on the current color of their neighbors in X.599

AND gate. The and gate consist of 7 nodes. The input nodes of X are connected to node600

A, which is further connected to all other nodes in the gadget (B1, B2, D and the group C601

on 3 nodes). Nodes B1 and B2 are also connected to group C, node B1 has an edge to node602

D, and node D is connected to some external black node v on the output side. Furthermore,603

A, B1 and B2 have x+ 1, 4 and 3 fixed black neighbors, respectively.604

One can check that each node has a positive balance as long as there exists a black node605

in X. Node A gets a balance of x−1 from the nodes within the gadget, so it is not switchable606

unless all nodes in X are white. Nodes B1, B2, C and D all have an initial balance of 1.607

After the gadget reaches its final stage (see Figure 8), no node in the gadget can ever608

change again, regardless of the states of X or v.609

Note that for the described behavior of the gadget, we also need the fact that none of610

the nodes in X switch between the first and second switching of A. The switching of A only611

46:17

increases their balance (temporarily), so this is guaranteed if other neighbors of nodes in612

X do not interfere with the process. In the construction, we only use and gates this way:613

whenever a node A becomes switchable in a gate, then that is the only switchable node in614

the entire graph, so no other nodes will switch until the propagation reaches v.615

As long as this condition is fulfilled, we can connect any number of and gates to a given616

node of the graph without affecting its behavior; we only have to make sure that we also add617

fixed node neighbors to restore the node’s balance to the original value.618

Join gadget. The join gadget consists of a central node C, and of p distinct 2-group starter619

gadgets of alternating color (we assume p to be even). Each starter gadget consists of two620

groups Ai and Bi, both of size 2 (with i ∈ {1, 2, ..., p}). The two groups are connected to621

each other, and Ai has a further edge to the input node vi, and two fixed nodes of the same622

color as its own. Finally, all Bi are connected to a central node C, which is in turn connected623

to an output node v. Node C also has two further fixed black connections.624

Initially, Ai for odd i values, Bi for even i values, vi for even i and node C are colored625

white; the remaining nodes are colored black. Nodes Ai have an initial balance of 1, nodes626

Bi have an initial balance of 1 or 3 (depending on parity), and C has an initial balance of 3.627

Every time after v switches, the balance of C returns to its initial value of 3, so the628

switching of the next input node will trigger the same process through the next starter629

gadget.630

Fork gadget. The fork gadget consists of q nodes F1, ..., Fq of alternating color, where we631

assume q to be an odd number. All Fi are connected to the same input node v, and each to632

a distinct output node vi. They are also linked to each other, with Fi connected to Fi+1 for633

all i ∈ {1, 2, ..., q − 1}. Also, node F1 and Fq have a fixed neighbor colored black and white,634

respectively (imitating the role of the nonexistent nodes F0 and Fq+1). Finally, each Fi has635

a further fixed neighbor of its original color. Initially, Fi is colored black for odd i and white636

for even i values.637

The balance of F1 and all white Fi-s is originally 1 in this setting, while the balance of638

black Fi-s (except for F1) is 3. Hence when v first switches, only F1 will become switchable639

(and switching it will propagate on through v1). The next time v switches, it switches back640

to white; with v and F1 both white, F2 can now switch too. The pattern continues all the641

way to Fq: as Fi−1 has already been switched before, as soon as v switches back to the642

color of Fi, Fi becomes switchable, too, enabling propagation on the next branch. After vi643

switches (and remains that way), Fi is not switchable anymore, since vi, Fi−1 and its fixed644

neighbor all have the opposite color.645

Note that since each switching Fi increases the current balance of v from 1 to 3, we646

need to switch two neighbors of v in each turn to make v switchable again. This is exactly647

what happens when v is the base node of the rightmost relay in the chain: between every648

consecutive switches of v, we switch both node U (by the recharging step) and node vL (by649

propagation through the chain) in the relay, and thus v becomes switchable again.650

Note that since it is connected to the fork gadget, the rightmost rechargeable relay in the651

chain is a modified one in the sense that its base node has not one, but q right-side neighbors,652

colored in alternating fashion. However, this fact does not change its behavior at all. The653

initial balance of the base node is still 1, and every time after v switches, it has one of its654

neighbors Fi switching in the opposite direction. That has exactly the same effect as if the655

right neighbor was simply a subsequent relay in the chain, triggered by v.656

ISAAC 2019

46:18

On the whole construction. For convenience, we assume in the construction that both m657

and r are even numbers.658

Recharging systems and and gates, as all other gadgets, are available in two color variants;659

in the overview of the construction, we did not discuss which variant is used in which case.660

However, the current state of each relay in each round is straightforward to calculate, so the661

necessary color of all recharging systems and and gates can easily be determined.662

Also, we have seen that and gates are used to ensure that the given recharging or resetting663

operations have completely been executed. In order to achieve this, in case of the first systems664

(which recharge relays), the input edges of the gates can be connected to the upper nodes of665

the corresponding relays, since that is the last node to switch in the sequence. In case of the666

systems that reset relays, the aim is only to switch the corresponding recharge node of the667

relay, so we can connect the gates to the recharge nodes.668

However, as each and gate belongs to a certain branch of the construction, we also have669

to ensure that the and gate is only activated when the propagation reaches this branch,670

and stays inactive as long as previous branches are being processed. Therefore, besides the671

specified nodes in the relays, the final input node of the and gate is the node which was672

used to enable the recharging system in question (node v of Figure 5). This way, the gates673

ensure that after the recharging system is activated, propagation only continues if all the674

resulting switches were executed.675

Generalization to ω(1) colors676

One can observe that in the construction of Section 5, except for nodes A in the and gates,677

all nodes in the graph have a degree of O(
√
n). We can slightly modify the construction and678

replace each of these and gates with two levels of such gates, with Θ(
√
n) distinct gates on679

the first level (each with Θ(
√
n) input nodes), and a final gate that connects the outputs of680

these first-level gates. This gives us a construction with the same properties, but a maximum681

degree of O(
√
n).682

This allows us to generalize the lower bound of Ω(n 3
2) to the case of not only O(1), but683

up to O(
√
n) colors. The technique for this is the same as in the case of O(1) colors: we684

add a multipartite graph colored with the additional colors, and connect each of its nodes to685

each original node. With ∆ = O(
√
n) established, it suffices to have Θ(

√
n) nodes in each of686

the color classes. Therefore, using only Θ(n) additional nodes, we can extend the graph by a687

multipartite graph on Θ(
√
n) color classes, each consisting of only Θ(

√
n) nodes.688

C Notes on simulations689

Due to its complexity, we have also verified the correctness of the non-recursive construction690

of Section 5 through implementing it and running a simulation of the minority process. Note691

that in general, it is difficult to simulate a minority process in a benevolent model, since all692

possible switching sequences would have to be examined to find the one with the smallest693

number of steps.694

Fortunately, the task is significantly simpler in our case, due to the properties of the695

construction. The key observation in our graph is that whenever propagation is split into696

multiple parallel threads (that is, when there are multiple switchable nodes at the same697

time), then propagation on any of these threads does not influence propagation on other698

threads at all. Specifically, the nodes on separate threads do not have common neighbors699

except for the beginning and end of such threads; i.e. when a switching node splits the700

propagation to multiple threads, or when threads are joined in an and-like fashion, meaning701

46:19

that a common neighbor only becomes switchable when propagation has been finished in702

all of the threads. This implies that throughout the process, these threads can be handled703

completely independently from each other, and the order in which they are processed is704

irrelevant. Note that this is also the property of the construction which ensures that the set705

of switchable nodes is an independent set in any state.706

If we exploit this property, the process can be simulated easily by always choosing an707

arbitrary one of the switchable nodes in the graph, knowing that the choice of nodes will not708

influence the outcome. To verify correctness in such a simulation, we only have to check that709

in each step of the process, the set of nodes that become switchable is exactly the set of nodes710

determined by the analysis. Note that the opposite does not happen in our construction:711

the switching of a node never makes another switchable node unswitchable (this would also712

contradict the property that switchable nodes form an independent step in any state).713

When examining concrete instances of our construction, we used the parameter r as the714

input to determine the size of the instance. For a given input value of r (always an even715

number), we have chosen m = 2 · (r − 1)2, which fits our preconditions on both magnitudes716

and parity. All other details of the construction are already determined above; the only717

additional thing to note is that whenever different gadgets are connected through a chain of718

simple relays, we always use the smallest possible such chain in the implementation.719

The simulations verified that the analysis of the construction is correct, and thus stabiliz-720

ation time is indeed Ω(n3/2) in model B. Table 1 illustrates the number of steps for some721

choices r, along with the resulting number of nodes in the construction. One can observe722

that the number of steps indeed grows superlinearly in n.723

Input (r) Nodes (n) Steps

2 99 112
4 469 772
8 1 929 5 884

16 7 729 47 404
24 17 369 161 372
30 27 119 316 568
40 48 169 754 108
60 108 269 2 559 188
80 192 369 6 084 268

100 300 469 11 905 348
120 432 569 20 598 428

Table 1 Number of steps on some specific graphs

ISAAC 2019

	Introduction
	Related work
	Definitions and background
	Models
	Preliminaries
	General tools in the constructions

	Sequential adversarial model
	Construction for benevolent models
	Recursive construction
	Appendices
	Further discussion of the recursive construction
	Detailed analysis of gadgets
	Notes on simulations

