
Distrib. Comput. (2010) 22:249–267
DOI 10.1007/s00446-010-0099-z

Towards worst-case churn resistant peer-to-peer systems

Fabian Kuhn · Stefan Schmid · Roger Wattenhofer

Received: 24 March 2009 / Accepted: 23 February 2010 / Published online: 19 March 2010
© Springer-Verlag 2010

Abstract Until now, the analysis of fault tolerance of peer-
to-peer systems usually only covers random faults of some
kind. Contrary to traditional algorithmic research, faults as
well as joins and leaves occurring in a worst-case manner
are hardly considered. In this article, we devise techniques
to build dynamic peer-to-peer systems which remain fully
functional in spite of an adversary who continuously adds
and removes peers. We exemplify our algorithms on hyper-
cube and pancake topologies and present a system which
maintains small peer degree and network diameter.

Keywords Churn · Dynamic networks · Fault-tolerance ·
Overlay network · Peer-to-peer

1 Introduction

Due to the rise of peer-to-peer (p2p) systems, sensor
networks, and mobile ad hoc networks, logical networks, or

A preliminary version of this work has been presented at the 4th
International Workshop on Peer-To-Peer Systems (IPTPS 2005)
[28] and the 14th IEEE International Workshop on Quality of Service
(IWQoS 2006) [27].

F. Kuhn
Faculty of Informatics, University of Lugano,
6904 Lugano, Switzerland
e-mail: fabian.kuhn@usi.ch

S. Schmid (B)
Deutsche Telekom Laboratories (T-Labs),
Technische Universität Berlin, 10587 Berlin, Germany
e-mail: stefan@net.t-labs.tu-berlin.de

R. Wattenhofer
Computer Engineering an Networks Laboratory,
ETH Zurich, 8092 Zurich, Switzerland
e-mail: wattenhofer@tik.ee.ethz.ch

overlay networks, are becoming more and more wide spread.
A major complication in these networks is that they can
be highly dynamic, which requires fast and robust recovery
mechanisms.

Today, the analysis of fault tolerance of p2p systems usu-
ally only covers random faults of some kind. Contrary to
traditional algorithmic research, faults as well as joins and
leaves occurring in a worst-case manner in p2p systems are
hardly considered. Moreover, most fault tolerance analyses
are static in the sense that only a functionally bounded num-
ber of random peers can be crashed. After removing a few
peers the system is given sufficient time to recover again.
The much more realistic dynamic case where faults steadily
occur has not found much attention.

This article studies dynamic worst-case joins and leaves.
We think of an adversary who, in contrast to related litera-
ture, cannot be fooled by any kind of randomness, that is, our
guarantees not only hold probabilistically (e.g., given that the
adversary does not know the current random bits) but deter-
ministically. Henceforth, we will use the term “adversarial”
to denote such worst-case behavior.

The adversary can choose which peers to crash and how
peers join. Moreover, the adversary does not have to wait
until the system is recovered before crashing the next batch of
peers. Instead, the adversary can constantly crash peers while
the system is trying to stay alive. Indeed, the (structured) peer-
to-peer system presented in this article is never fully repaired
but always fully functional. Our system is resilient against
an adversary who continuously attacks the “weakest part”
of the system. Such an adversary could for example insert
a crawler into the p2p system, learn the topology, and then
repeatedly crash selected peers, in an attempt to partition the
network. Our system counters such an adversary by continu-
ously moving the remaining or newly joining peers towards
the sparse areas.

123

250 F. Kuhn et al.

Of course, we cannot allow our adversary to have
unbounded capabilities. In any constant time interval, the
adversary can at most add and/or remove O(Δ) peers, Δ

being the current peer degree in the system. Clearly, other-
wise network partitions cannot be avoided. This model covers
an adversary who repeatedly takes down machines by a dis-
tributed denial of service attack, however only a Θ(Δ) many
machines at each point in time.

We present techniques to design peer-to-peer systems that
are provably worst-case resilient against such an adversary.
Concretely, in this article, we develop two different systems
achieving an optimal robustness of Θ(Δ) using these tech-
niques, one based on a hypercube graph and one based on a
pancake graph. The basic structure of the hypercube p2p sys-
tem is a simulated hypercube: each peer is part of a distinct
hypercube node; each hypercube node consists of Θ(log n)

peers. Peers have connections to other peers of their hyper-
cube node and to peers of the neighboring hypercube nodes.
After a number of joins and leaves, some peers may have to
change to another hypercube node such that up to constant
factors, all hypercube nodes have the same cardinality at all
times. If the total number of peers grows or shrinks above or
below a certain threshold, the dimension of the hypercube is
increased or decreased by one, respectively. The balancing
of peers among the nodes can be seen as a dynamic token
distribution problem on the hypercube. Each node of a graph
(hypercube) has a certain number of tokens, and the goal is
to distribute the tokens along the edges of the graph such
that all nodes end up with the same or almost the same num-
ber of tokens. While tokens are moved around, an adversary
constantly inserts and deletes tokens.

Our p2p system builds on two basic components: (i) an
algorithm which performs the described dynamic token dis-
tribution and (ii) an information aggregation algorithm which
is used to estimate the number of peers in the system and to
adapt the hypercube’s dimension accordingly.

As a second example, we will also show how to adopt
these techniques in a pancake graph. Again, we simulate the
nodes in the pancake graph by multiple peers, and devise cor-
responding token distribution and information aggregation
algorithms. It turns out that our basic ideas also work here,
although some additional reasoning regarding the topologi-
cal simulation is required.

1.1 Model

This article considers a setting where a maintenance algo-
rithm has to ensure certain topological properties despite con-
current joins and leaves orchestrated by an adversary. We
assume that all peers act according to our protocol, that is,
they are for example not selfish. The adversary only decides
when and where (in the network) peers join and leave. We

focus on the more common fail-stop fault model here, and
leave the study of Byzantine faults for future research.

Our maintenance algorithm relies on messages being
delivered timely, in at most constant time between any pair
of operational peers. In distributed computing, such a sys-
tem is called synchronous. Note that if nodes are synchro-
nized locally, our algorithm also runs in an asynchronous
environment. In this case, the propagation delay of the slow-
est message defines the notion of time which is needed for
the adversary model. In our synchronous message passing
model, each peer can send a message to all its neighbors in
each round. In the following, we will refer to an adversary
who can perform J arbitrary joins and and L arbitrary leaves
(crashes) in each interval of λ rounds by A(J, L , λ).

Note that throughout this article—in contrast to other lit-
erature which often uses the terms “nodes” and “peers” inter-
changeably—we will refer to the vertices of a to be simulated
graph as nodes, and to the machines simulating these nodes
as peers.

1.2 Related work

On the one hand, p2p systems are potentially more resilient
compared to alternative systems as they do not rely on cen-
tral servers which constitute a single point of failure. On the
other hand, in p2p networks, there are frequent joins and
leaves, and hence failures are more common. When design-
ing robust p2p applications, it is beneficial to have an idea of
the dynamic nature of transient and permanent failures the
system will be confronted with in order to optimize system
performance and to include appropriate levels of redundancy.

Unfortunately, measuring the dynamics of existing p2p
systems is not always simple [20]; moreover, in this emerg-
ing area where the space of possible applications is still not
well understood, it is difficult to generalize a given measure-
ment result to entire application classes [54]. Nevertheless,
there have been several measurement studies of p2p churn.
Already in 2002, Saroiu et al. [47] reported on the dynamic
nature of Napster and Gnutella, and Sen et al. [50] analyzed
flow-level data of a large ISP to estimate churn. The availabil-
ity of the Overnet system has been studied in [8] by probing
crawled hosts; the authors showed that previous works had
underestimated host availability due to a methodological lim-
itation. Qiao et al. [41] reported a similar level of dynamics in
Gnutella and Overnet. Based on Maze [57] measurements—
one of the largest p2p systems over the China education and
research network—Tian and Dai [54] pointed out that our
understanding of peer dynamics is far from adequate, and that
previous crawler based measurements can only yield inaccu-
rate results. Moreover, their data reveals that newly registered
peers generally have a higher turnover rate than elder ones.
This observation has been confirmed by measurements on the
Kad network [52,53]: peer arrivals do not follow a Poisson

123

Towards worst-case churn resistant peer-to-peer systems 251

distribution and session times are typically not distributed
exponentially. It has also been discovered that the levels of
churn vary depending on the application. For instance, Guha
et al. [19] showed that Skype has a higher host availability
than other p2p systems. In this article, we assume a worst-
case perspective and our results do not depend on any specific
churn distribution. This is rather conservative when thinking
of “normal” churn, but is justified in context of DoS attacks or
topological viruses. Moreover, it gives the strongest possible
guarantees in theory.

The effects of churn have been reported in several papers.
The price of churn manifests itself in terms of dropped mes-
sages, data inconsistency, increased user-experienced laten-
cies or increased bandwidth use [18,29,44]. It has been
shown that even in stable and managed infrastructures like
PlanetLab, there can be a significant rate of node failure due
to nodes becoming extremely slow suddenly and unpredict-
ably [43].

Scant attention is devoted to theoretic questions on the
dynamics of p2p networks. Protocols such as Pastry [45]
and CAN [42] allow for unexpected failures, and it is shown
that they remain well-structured after failures occur. How-
ever, for this analysis, an ideal initial state is assumed, and
it is not shown how a system can return to the initial state
after the membership changes [31]. Moreover, maintenance
costs can be unnecessarily high. For example, in CAN, a
background stabilization process is used which introduces a
constant overhead [1].

In the last few years, Awerbuch and Scheideler have pro-
posed several interesting algorithms to render today’s peer-
to-peer systems more robust. For example, in Awerbuch
and Scheideler [5], searchable concurrent data structures are
studied where data elements can be stored on a dynamic set of
nodes, e.g., in a peer-to-peer network. Their Hyperring data
structure has degree O(log n) and requires O(log3 n) work
for insert and delete operations; search time and congestion is
bounded by O(log n) with high probability, which improves
on alternative structures, e.g., the deterministic Skipnet by
Harvey and Munro [21]. The PAGODA [9] system allows
heterogeneous nodes to join and leave in polylogarithmic
work, which is improved by the recent SHELL [49] system.

The lack of admission control in p2p networks has trig-
gered researchers to investigate robust join mechanisms [15].
In Scheideler [48], considers a game between a join algorithm
and an adversary. The join algorithm includes both n “good”
and εn (for some fixed constant ε < 1) “bad” peers in a ring
structure, and seeks to ensure that there is no sequence of
size Θ(log n) of consecutive peers in which at least half of
the peers are malicious. The k-rotation strategy is presented
which wins with high probability as long as ε < 1/3. The
scalable solution to join-leave attacks presented in Awer-
buch and Scheideler [7] requires a robust random number
generator described in Awerbuch and Scheideler, [6]. Finally,

Scheideler et al. [8] have studied robust data replication strat-
egies for distributed (but completely connected) information
systems that are under a past-insider DoS attack, and pro-
posed the so-called Chameleon network.

A promising class of novel p2p architectures is due to Naor
and Wieder [35]. The authors describe a dynamic decom-
position of a 1-dimensional continuous ID space into cells
corresponding to processors, and show how to approximate
de Bruijn graphs or hypercubes. In particular, their distance
halving DHT yields an optimal tradeoff in the sense that peer
degree d implies a network diameter of O(logd n). Besides
achieving a low congestion of O((logd n)/n), their system
is also provably robust against random faults. Finally, a con-
struction for dynamic expanders is proposed which is based
on the tessellation of the plane. This continuous-discrete
approach has also been used in SHELL [49], an oblivious dis-
tributed heap network that allows for rapid joins and leaves,
and which in addition to tolerating a high degree of dynamics,
features robustness guarantees against certain attacks (e.g.,
Sybil attacks). The randomized nature of SHELL may fail
however in the presence of the deterministic adversary con-
sidered in this work.

Liben-Nowell et al. [31] have analyzed the evolution of
p2p systems in the face of concurrent joins and unexpected
departures. They give a lower bound for the rate at which
peers in the Chord system must participate to maintain the
system’s distributed state. For instance, they prove that if
churn can be described by a Poisson distribution, a peer which
receives fewer than k notifications per half-life will be dis-
connected from the network with probability at least (1 −
1/(e − 1))k . The half-life time period is defined as the time
which elapses in a network of n live peers before n addi-
tional peers arrive, or before half of the peers depart. Their
result implies that a successor list of length Θ(log n) per
peer is sufficient to ensure that a graph stays connected with
high probability, as long as Ω(log n) rounds pass before n/2
peers fail. It is also shown in Liben-Nowell et al. [31] that a
modified version of Chord is within a logarithmic factor of the
optimal rate. The authors assume that the half-life is known,
and the question of how to learn the correct maintenance rate
of the behavior of neighbors is left for future research. In
Pandurangan et al. [36], a model similar to the one proposed
in Liben-Nowell et al. [31] is considered; however, in this
paper, it is assumed that a central server can direct joins to
specific locations in the network, and can update old peers’
neighbors when a peer leaves. In this scenario, they are able
to maintain connectivity with a constant amount of space per
peer. In contrast to these works, we assume a sequence of
worst-case membership changes rather than a Poisson distri-
bution. Also, we focus on feasibility of maintaining certain
properties in the network; although we believe that the mes-
sage complexity of our construction is good in the presence of
our adversary, corresponding bandwidth lower bounds have

123

252 F. Kuhn et al.

not been derived yet and are an interesting subject for future
research.

A paper by Godfrey et al. [18] has studied—using real-
world traces—how to manage churn through the judicious
selection of nodes are likely to remain up for a long time.
By comparing different algorithms, the authors found that a
uniform-random replacement strategy performs quite well.
In [33], an analytical framework based on percolation theory
is proposed to assess the robustness of p2p systems. Besides
a probabilistic churn model, they also consider a targeted
attack where nodes having high degrees are progressively
removed. In the harsh model considered in our article, such a
strategy is not beneficial as the adversary can always remove
those peers that are believed to be “likely to remain up for a
long time”.

Resilience to worst-case failures (for the more challenging
Byzantine fault model) has been studied by Fiat, Saia et al.
[14,46]. The authors introduce a system where a (1 − ε)-
fraction of peers and data survives the adversarial removal
of up to half of all nodes with high probability. However, in
contrast to our work, the failure model is static. Moreover,
the whole structure is designed with a rough a-priori knowl-
edge of the total number of participants, and has to be rebuilt
from scratch if the number of peers changes by a constant
factor. Abraham et al. [1] address scalability and resilience
to worst-case joins and leaves, and propose a generic overlay
emulation approach for graph families such as hypercubes,
butterflies, or de Bruijn networks. They focus on maintaining
a balanced network rather than on fault-tolerance in the pres-
ence of concurrent faults. In contrast to our system, whenever
a join or leave takes place, the network is given some time to
adapt. To the best of our knowledge, the first paper treating
concurrent worst-case joins and leaves is by Li et al. [30]. In
contrast to our work, Li et al. consider a completely asynchro-
nous model where messages can be arbitrarily delayed. The
stronger communication model is compensated by a weaker
failure model where leaving peers execute an “exit” protocol
which does not allow for sudden crashes.

There is also work on robust supervised overlay networks
[25], where the p2p topology is managed by one or more spe-
cial machines. In these systems, the goal is to minimize infor-
mation and computational overhead at the central servers
while ensuring good network degree, diameter, and expan-
sion. While such an approach can be interesting in centralized
environments such as grid computing systems or games, this
solution does not scale and the network entry point consti-
tutes a single point of failure.

Finally, our work is also related to the field of topological
self-stabilization where topologies are guaranteed to recover
from arbitrary states. Topological self-stabilization is a rela-
tively young field, and researchers have only started to exam-
ine the most simple networks such as line or ring graphs (e.g.,
[10,16]). Recently, a 2-dimensional graph has been made

self-stabilizing, namely the Delaunay graph (using cubic
distributed runtime) [23], and there is now even a polylog-
arithmic time construction for skip graphs [22]. In some
sense, these results are complementary to our work: there
is no bound on the adversarial power and hence the sys-
tem can become arbitrarily bad at some times; however,
it is always possible to repair a connected component.
Unfortunately, the constructions (e.g., [22]) often do not
scale as they yield very high peer degrees (up to linear).
On the other hand, making our construction self-stabilizing
remains an open challenge that needs to be tackled in future
research.

1.3 Our contributions

This article introduces techniques to design and provably
maintain robust peer-to-peer systems resilient to ongoing and
dynamic membership changes that are orchestrated by an
adversary. In particular, we use our approach to construct a
system based on a hypercube that tolerates Θ(log n) worst-
case joins and/or crashes per constant time interval, where
n is the total number of peers currently in the system. As in
other p2p systems, peers have O(log n) neighbors, implying
that the achieved fault-tolerance is asymptotically optimal.
The usual operations (e.g. search) take time O(log n). As
another, more challenging example, we consider the pan-
cake graph with degree and diameter O(log n/ log log n)

which tolerates O(log n/ log log n) worst-case joins and/or
crashes per constant time interval (i.e., is resilient against
A(O(log n/log log n), O(log n/log log n), O(1))); this fault-
tolerance is again asymptotically optimal. To the best of our
knowledge, these are the first two networks with optimal
robustness to churn in the worst-case. Besides these two sys-
tems, we believe that our token distribution and information
aggregation techniques are of independent interest.

1.4 Paper organization

The remainder of this article is organized as follows. We
first describe the peer-to-peer system based on a hypercube.
Section 2 introduces the algorithmic components of our con-
struction. In Sect. 3 we use these components to build the
system which is analyzed subsequently. We then extend our
investigations to the pancake graph in Sect. 4. Finally, we
conclude in Sect. 5.

2 Algorithmic components

In our system, peers are organized to simulate a d-dimen-
sional hypercube, where the hypercube’s nodes are repre-
sented by a group of peers. A data item with identifier I D
is stored at the node (i.e., its peers) whose identifier matches

123

Towards worst-case churn resistant peer-to-peer systems 253

the first d bits of the hash-value of I D. Our maintenance
algorithm for the simulated hypercube system ensures that
each node always contains at least one peer which stores the
node’s data. Further, it adapts the hypercube dimension to
the total number of peers in the system. This is achieved
by a dynamic peer (token) distribution algorithm on the
hypercube and an information aggregation scheme which
allows the nodes to change the dimension of the hypercube.
These two components—the token distribution algorithm
and the information aggregation—are described in turn in this
section.

Concretely, we have the following plan: We first introduce
an algorithm that distributes peers evenly among the hyper-
cube nodes and derive a bound of φ ≤ 2J +2L +d (where d
is the hypercube’s dimension) on the maximal discrepancy φ

of the number of peers per node at any time against an adver-
sary A(J, L , 1). Subsequently, we describe how peers can
estimate the current system size well enough such that the
hypercube dimension can be adapted quickly if the adversary
removes or adds a large number of peers. Both these results
together imply that there are never too few peers per hyper-
cube node (threat of data loss) but also not too many (threat
of scalability loss and high degree). In combination, we will
derive the following main theorem:

Theorem 1 Given an adversary who inserts and removes at
most O(log n) peers per round, there is an algorithm which
ensures that (1) every node always has at least one peer and
hence no data is lost; (2) each node has degree Θ(log n); (3)
the network diameter is logarithmic as well; and (4) unnec-
essary copying of data is avoided.

2.1 Dynamic token distribution

The problem of distributing peers uniformly throughout a
hypercube is a special instance of a token distribution prob-
lem, first introduced by Peleg and Upfal [39] and subse-
quently studied in various contexts (for a general randomized
scheme, see e.g., the work by Rabani et al. [42], and the recent
work by Friedrich and Sauerwald [17]). The problem has its
origins in the area of load balancing, where the workload is
modeled by a number of tokens or jobs of unit size; the main
objective is to distribute the total load equally among the pro-
cessors. Such load balancing problems arise in a number of
parallel and distributed applications including job scheduling
in operating systems, packet routing, large-scale differential
equations and parallel finite element methods. More applica-
tions can be found in Shirazi et al. [51].

Formally, the goal of a token distribution algorithm is
to minimize the maximum difference of tokens at any two
nodes, denoted by the discrepancy φ. This problem has been
studied intensively; however, most of the research is about the

static variant of the problem, where given an arbitrary initial
token distribution, the goal is to redistribute these tokens uni-
formly. In the dynamic variant on the other hand, the load
is dynamic, that is, tokens can arrive and depart during the
execution of the token distribution algorithm. In our case,
peers may join and leave the hypercube at arbitrary times, so
the emphasis lies on the dynamic token distribution problem
on a d-dimensional hypercube topology.

We study two types of token distribution problems: in the
fractional token distribution, tokens are arbitrarily divisible,
whereas in the integer token distribution, tokens can only
move as a whole. In our case, tokens represent peers and
are inherently integer. However, it turns out that the study of
the fractional model is useful for the analysis of the integer
model.

Our token distribution algorithm is based on the dimension
exchange method [11,40]. Basically, the algorithm “cycles”
continuously over the d dimensions of the hypercube, distrib-
uting the tokens in one dimension i after the other: In step s,
where i = s mod d, every node u = β0 . . . βi . . . βd−1 having
a tokens balances its tokens with its adjacent node in dimen-
sion i , v = β0 · · ·βi · · · βd−1, having b tokens, such that both
nodes end up with a+b

2 tokens in the fractional token distribu-
tion. On the other hand, if the tokens are integer, one node is
assigned � a+b

2 � tokens and the other one gets � a+b
2 � tokens.

It has been pointed out in Cybenko [11] that the described
algorithm yields a perfect discrepancy φ = 0 after d steps
for the static fractional token distribution. In Plaxton [40], it
has been shown that in the worst case, φ = d after d steps in
the static integer token distribution.

In the following, the dynamic integer token distribution
problem is studied, where a “token adversary” A(J, L , 1)

adds at most J and removes at most L tokens at the begin-
ning of each step. In particular, we will show that if the initial
distribution is perfect, i.e., φ = 0, our algorithm maintains
the invariant φ ≤ 2J + 2L + d at every moment of time.

For the dynamic fractional token distribution, the tokens
inserted and deleted at different times can be treated indepen-
dently and can be “superposed”, i.e., added up in the analysis
at the nodes. Therefore, the following lemma holds.

Lemma 1 For the dynamic fractional token distribution, the
number of tokens at a node depends only on the token inser-
tions and deletions of the last d steps and on the total number
of tokens currently in the system.

Proof Assume that a total amount of T tokens are distributed
in two different but otherwise arbitrary ways on the d-dimen-
sional hypercube. According to Cybenko [11], in the absence
of the adversary, each node has exactly T/2d tokens after d
steps. On the other hand, the token insertions and removals
of the adversary that happen in-between can be treated as an
independent superposition, as the corresponding operations

123

254 F. Kuhn et al.

are all linear. Thus, the number of tokens at a node only
depends on the insertions and deletions of the last d rounds.

��
We can now bound the discrepancy of the integer token

distribution algorithm by comparing it with the fractional
problem.

Lemma 2 Let v be a node of the hypercube. Let τv(t) and
τv, f (t) denote the number of tokens at v for the integer and
the fractional token distribution algorithm at time t, respec-
tively. We have ∀t : |τv(t) − τv, f (t)| ≤ d/2.

Proof For t = 0, we have τv(t) = τv, f (t). For sym-
metry reasons, it is sufficient to show the upper bound
τv(t) ≤ τv, f (t) + d/2. We first prove by induction that
τv(t) ≤ τv, f (t) + t/2 at time t .

For the induction step, we consider two neighbors u and
v which exchange tokens. We have

τv(t + 1)≤
⌈

τv(t) + τu(t)

2

⌉

≤
⌈⌊

τv, f (t) + t
2

⌋ + ⌊
τu, f (t) + t

2

⌋
2

⌉

≤
⌊
τv, f (t) + t

2

⌋ + ⌊
τu, f (t) + t

2

⌋
2

+ 1

2

≤ τv, f (t + 1) + t + 1

2
.

The second inequality follows from the induction hypoth-
esis and the fact that τv(t) and τu(t) are integers. Note that
adding or removing tokens has no influence on the difference
between τv and τv, f because it modifies τv and τv, f in the
same way.

So far, we have seen that the number of integer tokens can
deviate from the number of fractional tokens by at most d/2
after the first d steps. In order to show that this holds for all
times t , we consider a fractional token distribution problem
τ̂v, f for which τ̂v, f (t − d) = τv(t − d). Using the above
argument, we have τv(t) ≤ τ̂v, f (t) + d/2 and by Lemma 1,
we get τ̂v, f (t) = τv, f (t). This concludes the proof. ��
Lemma 3 In the presence of an adversary A(J, L , 1), for
the integer discrepancy, it always holds that φ ≤ 2J+2L+d.

Proof We show that the fractional discrepancyφ f is bounded
by 2J + 2L . Since Lemma 2 implies that for the integer dis-
crepancy φi it holds that φi − φ f ≤ d (the fractional value
at a node can be d/2 larger or d/2 smaller than the inte-
ger value), the claim follows. Let Jt ≤ J and Lt ≤ L
be the insertions and deletions that happen at the begin-
ning of step t . First, we consider the case of joins only,
i.e., Lt = 0. Assume that all Jt tokens are inserted at node
v = β0 . . . βi . . . βd−1 where i = t mod d. In what follows,
all indices are implicitly modulo d. In step t , according to the

token distribution algorithm, v keeps Jt/2 tokens and sends
Jt/2 to node u = β0 . . . βi . . . βd−1. In the following step
t+1, Jt/4 tokens are sent to nodes β0 . . . βiβi+1 . . . βd−1 and
β0 . . . βiβi+1 . . . βd−1, and so on. Thus, after step t + d − 1,
every node in the d-dimensional hypercube has the same
share of Jt/2d tokens from that insertion. We conclude that
a node can have at most all insertions of this step, half of the
insertions of the last step, a quarter of all insertions two steps
ago, and so on:

Jt + Jt−1

2
+ Jt−2

4
+ · · · + Jt−(d−1)

2d−1︸ ︷︷ ︸
< 2J

+

Jt−d

2d
+ Jt−(d+1)

2d
+ Jt−(d+2)

2d
+ · · ·︸ ︷︷ ︸

shared by all nodes

Since Jt−i ≤ J for i = 0, 1, 2, . . ., we have φ f ≤ 2J .
For the case of only token deletions, the same argument can
be applied, yielding a discrepancy of at most 2L . Finally, if
there are both insertions and deletions which do not cancel
out each other, we have φ f ≤ 2J + 2L . ��

2.2 Remark on random token distribution

Next, we show that if the decision to which node to assign
� a+b

2 � tokens and to which node to assign � a+b
2 � tokens is

made uniformly at random with probability 1/2, the final
(static) integer discrepancy of our algorithm is even constant
in expectation.

Theorem 2 Let X be the random variable for the final dis-
crepancy in a d-dimensional hypercube. It holds that E[X]
< 3.

Proof In our randomized rounding scheme, the rounding
direction of each edge it determined by a perfect coin flip. Let
Xi be the random variable denoting the number of incom-
ing edges of a (d − 1 − i)-dimensional sub-cube. Since
there are 2d−1−i edges connecting two (d − 1 − i)-dimen-
sional sub-cubes H0 and H1, Xi is binomially distributed:
Xi ∼ Bin(2d−1−i , 1/2). If rounding happens on every edge,
the sub-cubes H0 and H1 differ by δi tokens after balancing,
where δi = 2 · |Xi − E[Xi]|, and the random variables δi are
mutually independent.

Assume that in the final distribution, the maximum node
v has a tokens. We show that the average number of tokens
in the system is at least a − ∑d−1

i=0 2i
E[δi]/2d , by counting

the average number of tokens in the biggest i-dimensional
sub-cubes which contain v for i ∈ [0, d]. Obviously, the 0-
dimensional sub-cube consists only of v and has a tokens in
total. In the next step, this sub-cube is combined with another
0-dimensional sub-cube having a − δd−1 tokens. The result-
ing 2-dimensional hypercube having 2a − δd−1 tokens is

123

Towards worst-case churn resistant peer-to-peer systems 255

combined with a hypercube having δd−2 tokens less, hence
there are 4a − 2δd−1 − δd−2 tokens in total, and so forth.
After d steps, we have a2d −∑d−1

i=0 2iδi tokens in the whole
d-dimensional hypercube, a − ∑d−1

i=0 2iδi/2d on average.
It remains to calculate E[δi], which is twice the mean

deviation of the binomial distributed random variable Xi .
In the following, we will first give a proof using a Cher-
noff argument, and then derive a better bound by a Stirling
approximation.

We will first derive this upper bound on the mean of δi :

E[δi] = 2 · 1

22d−1−i ·
2d−1−i∑

j=0

(
2d−1−i

j

)
·
∣∣∣∣ j − 2d−1−i

2

∣∣∣∣
(1)≤ 2

√
π2d−1−i

Inequality (1) is a Chernoff approximation. In fact, we
need the following two facts, Fact 3 and Fact 4, as well as
Lemma 4.

Fact 3 (Chernoff Lower Tail) Let X1, . . . , X N be indepen-
dent Bernoulli variables with P[Xi = 1] = pi . Let X =∑

i Xi denote the sum of the Xi and let μ = E[X] = ∑
i pi

be the expected value for X . For ε ∈ (0, 1],

P[X < (1 − ε)μ] <

(
e−ε

(1 − ε)(1−ε)

)μ

< e−με2/2.

Fact 4

∞∫
0

e−x2
dx =

√
π

2
.

Lemma 4 Let X ∼ Bin(n, 1/2) be binomially distributed
with parameters n and p = 1/2. The expectation of the devi-
ation from the mean n/2 is upper bounded by

E[|X − n/2|] ≤ √
πn.

Proof Let pδ denote the probability that the deviation from
the mean is at least δ, that is, pδ = P[|X − n/2|] ≥ δ. By
symmetry, we have pδ = 2·P[X ≤ n/2−δ]. For the expected
deviation of the mean, we have

E[|X − n/2|] =
n/2∑
δ=1

δ · P[|X − n/2| = δ] =
n/2∑
δ=1

pδ. (1)

We can bound pδ using Chernoff:

pδ = 2 · P[X ≤ n/2 − δ] ≤ 2e−δ2/n . (2)

Combining (1) and (2), we can bound the mean deviation
by

E[|X − n/2|]=
n/2∑
δ=1

pδ ≤ 2 ·
n/2∑
δ=1

e−δ2/n

<2 ·
∞∑

δ=1

e−δ2/n

<2 ·
∞∫

δ=1

e−δ2/ndδ

=√
πn.

The integral after the last inequality can be calculated using
Fact 4 and the substitution t = δ

√
n and dδ = √

ndt . This
concludes the proof.

Remark There are two minor details which are neglected for
readability of the above proof. First, although the Chernoff
inequality gives an upper bound only for P[X < (1 − ε)μ],
we use it for P[X ≤ (1 − ε)μ]. Second, the first equation in
the proof holds for even n. For odd n, the deviation from the
mean is not integral. Both issues can easily be solved. ��

Given the bound on E[δi], we can compute the token sum

d−1∑
i=0

2i
E[δi] = 2

√
π

d−1∑
i=0

2i 2
d−1−i

2

= 2
√

π2
d−1

2

d−1∑
i=0

2
i
2

= 2
√

π2
d−1

2

d−1∑
i=0

(√
2
)i

= 2
√

π2
d−1

2

(√
2
)d − 1

√
2 − 1

≤
√

π√
2 − 1

2d .

Thus, having a node with a tokens, the average number of

tokens is at least a −
√

π√
2−1

, and by symmetry, the expected
final discrepancy is twice as much.

We obtain an even better bound by using Stirling’s approx-
imation rather than applying Chernoff. In the following, we
show that we overestimated by a factor of at least π , and

therefore the total discrepancy is 2 · 1
π

·
√

π√
2−1

.= 2.73.
The mean deviation MD of the symmetrical binomial dis-

tribution is given by:

MD = 2−n
n∑

k=0

(
n

k

) ∣∣∣k − n

2

∣∣∣ =
{

n!!
2(n−1)!! , if n odd
(n−1)!!

2(n−2)!! , if n even

123

256 F. Kuhn et al.

where n!! is a double factorial, i.e.

n!! ≡

⎧⎪⎪⎨
⎪⎪⎩

n · (n − 2) · · · 3 · 1 = (n+1)!
2

n+1
2 (n+1

2)!
(n > 0, odd)

n · (n − 2) · · · 4 · 2 = 2
n
2 (n

2)! (n > 0, even)

1 (n ∈ {−1, 0})
According to (an extended version of) Stirling’s approxi-

mation we have
√

2πnn+1/2e−n+1/(12n+1) < n!
<

√
2πnn+1/2e−n+1/(12n).

Applying this leads to the following inequality which can
easily be verified:

MD = 2−n
n∑

k=0

(
n

k

) ∣∣∣k − n

2

∣∣∣ ≤
√

n

π
.

��
Note that these results do not influence our asymptotic

bounds. Hence, in the following, we will not consider random
rounding.

2.3 Information aggregation

Our second component is an information aggregation algo-
rithm. Distributed aggregation is an interesting field of
research, and there exist many papers on the subject [24,
26,34,37] (cf also the excellent introductory book by Peleg
[38]). In the following, we concentrate on aggregation on
hypercubes.

When the total number of peers in the d-dimensional
hypercube system exceeds a certain threshold, all nodes
β0 . . . βd−1 have to split into two new nodes β0 . . . βd−10
and β0 . . . βd−11, yielding a (d + 1)-dimensional hyper-
cube. Analogously, if the number of peers falls beyond a
certain threshold, nodes β0 . . . βd−20 and β0 . . . βd−21 have
to merge their peers into a single node β0 . . . βd−2, yielding a
(d − 1)-dimensional hypercube. Based on ideas also used in
[3,55,56], we present an algorithm which provides the same
estimated number of peers in the system to all nodes in every
step allowing all nodes to split or merge synchronously, that
is, in the same step. The description is again made in terms
of tokens rather than peers.

Assume that in order to compute the total number of tokens
in a d-dimensional hypercube, each node v = β0 . . . βd−1

maintains an array Γv[0 . . . d], where �v[i] for i ∈ [0, d]
stores the estimated number of tokens in the sub-cube
consisting of the nodes sharing v’s prefix β0 . . . βd−1−i . Fur-
ther, assume that at the beginning of each step, an adver-
sary inserts and removes an arbitrary number of tokens
at arbitrary nodes. Each node v = β0 . . . βd−1−i . . . βd−1

then calculates the new array Γ ′
v[0 . . . d]. For this, v sends

Γv[i] to its adjacent node u = β0 . . . βd−1−i . . . βd−1, for

i ∈ [0, d − 1]. Then, Γ ′
v[0] is set to the new number of

tokens at v which is the only node with prefix β0 . . . βd−1.
For i ∈ [1, d], the new estimated number of tokens in the
prefix domain β0 . . . βd−1−(i+1) is given by the total number
of tokens in the domain β0 . . . βd−1−i plus the total number
of tokens in domain β0 . . . βd−1−i provided by node u, that
is, Γ ′

v[i + 1] = Γv[i] + Γu[i].
Lemma 5 Consider two arbitrary nodes v1 and v2 of the
d-dimensional hypercube. The algorithm guarantees that
Γv1[d] = Γv2 [d] at all times t. Moreover, it holds that this
value is the correct total number of tokens in the system at
time t − d.

Proof We prove by induction that at time t + k, all nodes
v sharing the prefix β0 . . . βd−1−k for k ∈ [0, d] store the
same value Γv[k] which represents the correct state of that
sub-domain in step t .

k = 0: There is only one node having the prefix
β0 . . . βd−1, so the claim trivially holds.

k → k+1: By the induction hypothesis, nodes v with pre-
fix β0 . . . βd−1−(k+1) βd−1−k share the same value Γv[k] cor-
responding to the state of the system k steps earlier; the same
holds for all nodes u with prefix β0 . . . βd−1−(k+1)βd−1−k .
In step k + 1, all these nodes having the same prefix
β0 . . . βd−1−(k+1) obviously store the value Γ ′

v[k + 1] =
Γ ′

u[k + 1] = Γv[k] + Γu[k]. ��

3 The dynamic hypercube system

Based on the components presented in the previous sections,
both the topology and the maintenance algorithm are now
described in detail. In particular, we show that, given an
adversary A(d + 1, d + 1, 6) who inserts and removes at
most d +1 peers in any time interval of 6 rounds, (1) the out-
degree of every peer is bounded by Θ(log2 n) where n is the
total number of peers in the system, (2) the network diameter
is bounded by Θ(log n), and (3) every node of the simulated
hypercube has always at least one peer which stores its data
items, and hence no data item will ever be lost.

3.1 Topology

We start with a description of the overlay topology. As
already mentioned, the peers are organized to simulate a
d-dimensional hypercube, where the hypercube’s nodes are
represented by a group of peers. A data item with identifier
I D is stored at the node whose identifier matches the first d
bits of the hash-value of I D.

The peers of each node v are divided into a core Cv of
at most 2d + 3 peers and a periphery Pv consisting of the
remaining peers; all peers within the same node are com-
pletely connected (intra-connections). Moreover, every peer

123

Towards worst-case churn resistant peer-to-peer systems 257

Fig. 1 A simulated 2-dimensional hypercube with four nodes, each
consisting of a core and a periphery. All peers within the same node
are completely connected to each other, and additionally, all peers of a
node are connected to all core peers of the neighboring nodes. Only the
core peers store data items, while the peripheral peers move between
the nodes to balance biased adversarial changes

is connected to all core peers of the neighboring nodes (inter-
connections). Figure 1 shows an example for d = 2.

The data items belonging to node v are replicated on all
core peers, while the peripheral peers are used for the bal-
ancing between the nodes according to the peer distribution
algorithm and do not store any data items. The partition into
core and periphery has the advantage that the peers which
move between nodes do not have to replace the data of the
old node by the data of the new node in most cases.

3.2 6-Round (maintenance) algorithm

The 6-round (maintenance) algorithm maintains the sim-
ulated hypercube topology described in the previous sec-
tion given an adversary A(d + 1, d + 1, 6). In particular, it
ensures that (1) every node has at least one core peer all the
time, and hence no data is lost; (2) each node has between
3d + 10 and 45d + 86 peers; (3) only peripheral peers are
moved between nodes, thus the unnecessary copying of data
is avoided.

In the following, we refer to a complete execution of the
six rounds (Round 1–Round 6) of the maintenance algorithm
as a phase. Basically, the 6-round algorithm balances the
peers across one dimension in every phase according to the
token distribution algorithm as described in Sect. 2.1; addi-
tionally, the total number of peers in the system is computed
with respect to an earlier state of the system by the informa-
tion aggregation algorithm of Sect. 2.3 to expand or shrink
the hypercube if the total number of peers exceeds or falls
below a certain threshold. In our system, we use the lower
threshold LT = 8d + 16 and the upper threshold UT =
40d + 80 for the total number of peers per node on aver-
age. (Note that since we consider the threshold on average,
and since these values are provided with a delay of d phases
in a d-dimensional hypercube (see Lemma 5), the number
of peers at an individual node can lie outside the threshold
interval.)

While peers join and leave the system at arbitrary times,
the 6-round algorithm considers the (accumulated) changes
only once per phase. That is, a snapshot of the system is made
in Round 1; Rounds 2–6 then ignore the changes that might
have happened in the meantime and depend solely on the
snapshot at the beginning of the phase.

Round 1

Outline: Each node v makes a snapshot of the currently active
peers, denoted by the ID set Sv . The later rounds will only
be based on these sets.

Sent messages: Each peer of a node v sends a packet with its
own ID and the (potentially empty) ID set of its joiners to all
adjacent peers within v.

Round 2

Outline: Based on the snapshot of Round 1, the core peers
of a node v know the total number of peers in the node,
si ze(v) = |Sv|. This information is needed for the peer dis-
tribution algorithm and for the estimation of the total number
of peers in the system.

Local computations: The core peers compute si ze(v) = |Sv|.
Sent messages: Each peer informs its joiners about Sv . The
core peers Cv additionally send the number si ze(v) to their
neighboring core Cu , where node u is v’s neighbor in dimen-
sion i—the node with which v has to balance its peers in
this phase. The core also exchanges the new estimated total
number of peers in its prefix domains with the corresponding
adjacent cores (depending on the prefix).

Round 3

Outline: At the beginning of this round, every peer within
a node v knows Sv , and the transfer for the peer distribu-
tion algorithm can be prepared. Let v again be an arbitrary
node and u its adjacent node in dimension i . We assume
that si ze(v) > si ze(u); the case where si ze(v) ≤ si ze(u)

is analogous and not described further here. The ID set
T of peers that have to move from node v to node u are
the (si ze(v) − si ze(u))/2 (arbitrarily rounded) peers in the
periphery Pv having the smallest identifiers.
Local computations: The peers in each node v compute the
new periphery Pv = Sv\Cv . The core remains the same.

Sent messages: All cores forward the information about
the new estimated total number of peers in the system to
their peripheral peers. Moreover, the core of the larger node
Cv sends the identifiers of the to be transferred peers T
to Cu , and the number (si ze(v) − si ze(u))/2 to the new
periphery Pv .

123

258 F. Kuhn et al.

Round 4

Outline: The transfer for the peer distribution algorithm
is continued. Moreover, this round prepares the dimension
reduction if necessary.

Sent messages: The core Cu informs the peers in T about
all neighboring cores Cu j , where u j is the neighbor of u in
dimension j for j ∈ [0, d − 1], about Cu itself, about Su

and about its peripheral peers Pu . Additionally, Cu informs
its own periphery Pu about the newcomers T .

If the estimated total number of peers in the system is
beyond the threshold, the core peers of a node v which will
be reduced send their data items plus the identifiers of all
their peripheral peers (with respect to the situation after the
transfer) to the core of their adjacent node v.

Round 5

Outline: This round finishes the peer distribution, establishes
the new peripheries, and prepares the building of a new core.
If the hypercube has to grow in this phase, the nodes start to
split, and vice versa if the hypercube is going to shrink.

Local computations: Given the number (si ze(v) −
si ze(u))/2, the peripheral peers Pv can compute the set T
selecting the (si ze(v)− si ze(u))/2 smallest elements in Pv .
From this, the new periphery Pv = Pv\T is computed. Anal-
ogously, the peers in node u (including T) can compute the
new periphery Pu = Pu ∪ T .

Then, all peers of each node v calculate the new core
Cnew

v : it consists of the peers of the old core which have
still been alive in Round 1, i.e., Cold

v = Cv ∩ Sv , plus the
2d + 3 − |Cv ∩ Sv| smallest IDs in the new periphery Pv ,
denoted by C�

v . Hence, the new core is given by Cnew
v =

Cold
v ∪ C�

v , and the new periphery by Pnew
v = Pv\C�

v .
If the hypercube has to grow in this phase, the smallest

2d + 3 peers in the new periphery Pnew
v become the new

core of the expanded node, Cv . Half of the remaining periph-
eral peers, the ones with the smaller identifiers, build the
new periphery Pv , and the other half becomes Pv . All these
operations can be computed locally by every peer.

Sent Messages: The old core Cold
v informs all its neighboring

nodes (i.e., their old cores) about the new core Cnew
v . More-

over, Cold
v sends its data items to the peers in C�

v .
If the hypercube is about to grow, Cold

v sends the necessary
data items to the core peers of the new node, Cv . Moreover,
Cold

v informs its neighboring (old) cores about the IDs of its
expanded core Cv .

If the hypercube is about to shrink, all cores Cold
v inform

their periphery about the peers arriving from the expanded
node and the peers in the expanded node about the new core
Cnew

v and its periphery. Cold
v also copies the data items of Cold

v

to the peers CΔ
v .

Round 6

Outline: The new cores are built and the dimension change
is accomplished if necessary.

Local computations: If the hypercube has been reduced,
every peer can now compute the new periphery Pv .

Sent messages: The old core Cold
v forwards the information

about the new neighboring cores to the peers CΔ
v ∪ Pv .

If the hypercube has grown, Cold
v forwards the expanded

cores of its neighboring nodes to all peers in its expanded
node v. Note that this requires that Cold

v remembers the
peripheral peers that have been transferred to v in Round 5.

Theorem 5 Given an adversary A(d + 1, d + 1, 6) who
inserts and removes at most d + 1 peers per phase, the
described 6-round algorithm ensures that (1) every node
always has at least one core peer and hence no data is lost;
(2) each node has between 3d + 10 and 45d + 86 peers,
yielding a logarithmic network diameter; (3) only periph-
eral peers are moved between nodes, thus the unnecessary
copying of data is avoided.

Proof We first consider a simpler system without the sepa-
ration into core and periphery, where the maintenance algo-
rithm simply runs the peer distribution algorithm and the
information aggregation algorithm to count the total number
of peers in the system, and expands or reduces the hypercube
with respect to the thresholds LT = 8d + 16 and UT =
40d + 80. Moreover, we assume that these operations are
performed in quiet phases, where the adversary removes at
most d + 1 and adds at most d + 1 peers only in-between.

For this simpler system, it holds that every node in the
simulated d-dimensional hypercube has at least 3d + 10 and
at most 45d + 86 peers at every moment of time. Moreover,
after the hypercube has changed its dimension from dold to
dnew, the dimension will remain stable for at least 2dnew + 1
phases.

The cases where the average number of peers per node μ

falls beyond the lower threshold 8dold + 16 or exceeds the
upper threshold 40dold + 80 are studied in turn. According
to Lemma 5, such an event will lead to a dimension change
with a delay of dold phases only. We prove that after the
change, for the average number of peers per node it holds
μ ∈ [8dnew + 16, 40dnew + 80] for at least dnew + 1 phases.
The dimension remains stable for at least 2dnew + 1 phases
which implies—together with Lemma 3—that the discrep-
ancy before the next change is limited by 2(dnew + 1) +
2(dnew + 1) + dnew = 5dnew + 4.

Case μ < 8d + 16: At time t − dold , it held that μ <

8dold +16 while at time t −dold −1 we had μ ≥ 8dold +16.
In dold + 1 phases, there are at most (dold + 1)(dold + 1) =
d2

old + 2dold + 1 leaves, so μ ≥ 8dold + 16 − d2
old+2dold+1

2dold
>

8dold +14 before merging. Clearly, there must be a node with

123

Towards worst-case churn resistant peer-to-peer systems 259

more than 8dold + 14 peers, hence, given the discrepancy of
5dold +4 (cf Lemma 3), every node has more than 3dold +10
peers before merging.

What about the maximum? At time t − dold , μ < 8dold +
16, and there have been at most dold(dold + 1) joins in dold

steps, so μ < 8dold + 16 + dold (dold+1)

2dold
< 8dold + 18 before

merging, and μ < 16dold + 36 afterwards. The maximum
node has less than 21dnew + 61 peers.

We now show that μ ≥ 8dnew + 16 for the next dnew + 1
phases after a reduction. At time t − dold − 1, μ ≥ 8dold +
16 = 8dnew + 24. The reduction doubles the average num-
ber of peers per node, hence μ ≥ 16dnew + 48. Further,
there are at most (dold + 1)(dold + 1) + (dnew + 1)(dnew +
1) = 2d2

new + 6dnew + 5 leaves in the meantime, hence μ ≥
16dnew +48− 2d2

new+6dnew+5
2dnew > 16dnew +41 > 8dnew +16.

Finally, μ ≤ 40dnew + 80 for dnew + 1 phases. At time
t−dold , μ < 8dnew+24, so μ < 16dnew+48 after the reduc-
tion. There are at most dold(dold+1)+(dnew+1)(dnew+1) =
2d2

new + 5dnew + 3 joins, therefore μ < 16dnew + 48 +
2d2

new+5dnew+3
2dnew < 16dnew + 54 < 40dnew + 80.

Case μ > 40d +80: At time t −dold , μ > 40dold +80 =
40dnew +40, so μ > 20dnew +20 after splitting; there are at
most dold(dold + 1) = d2

new − dnew leaves in dold steps, so

μ > 20dnew + 20 − d2
new−dnew

2dnew > 20dnew + 19. According
to Lemma 3, the minimum node has more than 15dnew + 15
peers after splitting. At time t−dold −1, μ ≤ 40dold +80, and
there are at most (dold +1)(dold +1) = d2

old +2dold +1 joins.

Hence, before splitting, μ ≤ 40dold + 80 + d2
old+2dold+1

2dold
<

40dold +82, and the maximum node has at most 45dold +86
peers.

Next, we show that μ ≥ 8dnew+16 for the dnew+1 phases
after the expansion. At time t − dold , μ > 40dold + 80 =
40dnew + 40, hence μ > 20dnew + 20 after the expansion.
Moreover, there are at most dold (dold+1)+(dnew+1)(dnew+
1) = 2d2

new + dnew + 1 leaves, and μ > 20dnew + 20 −
2d2

new+dnew+1
2dnew > 20dnew + 17 ≥ 8dnew + 16. Finally, μ ≤

40dnew +80 for the next dnew +1 steps: at time t −dold −1,
μ ≤ 40dold + 80 = 40dnew + 40, so μ ≤ 20dnew + 20 after
the expansion; moreover, there are at most (dold + 1)(dold +
1) + (dnew + 1)(dnew + 1) = 2d2

new + 2dnew + 1 joins,

thus μ ≤ 20dnew + 20 + 2d2
new+2dnew+1

2dnew < 20dnew + 24 <

40dnew + 80.
In reality, the repairing operations will run concurrently

to the adversary. However, as all operations are based on
the state of Round 1, a phase can be considered as running
uninterruptedly, that is, as if the adversary inserted d + 1
and removed d + 1 peers only between the phases. Thus, the
properties shown above remain valid. However, we addition-
ally have to postulate that there is always at least one core
peer. We know that it is always possible to select 2d +3 core
peers in Round 5 with respect to the state of Round 1. These

peers have to survive until Round 6 of the next phase, so
for twelve normal rounds in total; however, as the adversary
Aadv(d +1, d +1, 6) removes at most 2d +2 peers in twelve
rounds, this clearly holds.

Finally, we show that there are indeed enough peripheral
peers in Round 3 such that core peers do not have to change
the node for the peer distribution, that is: in Round 3, it holds
that |Pv| >

si ze(v)−si ze(u)
2 . We know that si ze(v) ≥ 3d + 10

and si ze(u) ≥ 3d + 10. As v has at most 2d + 3 core peers,
we have |Pv| ≥ si ze(v) − (2d + 3) ≥ si ze(v) − si ze(u) >
si ze(v)−si ze(u)

2 . ��
Finally, observe that it is possible to replace the complete

bipartite graphs between adjacent hypercube nodes by bipar-
tite matchings, reducing the peer degree from O(log2 n) to
O(log n). Apart from the lower degrees, all our results still
hold up to constant factors.

4 The dynamic pancake system

The previous section has presented algorithms to maintain a
hypercube topology with diameter O(log n) and where each
peer has at most O(log n) neighbors. The topology is resil-
ient to O(log n) worst-case changes per time unit which is
asymptotically optimal. In this section we sketch how our
construction can be adapted for another interesting network
topology, namely for the pancake graph of order d defined
in Definition 1.

The pancake graph and the unsolved problem of com-
puting its diameter (e.g., [58]) was introduced in [13]. In
terms of the group-theoretic model for network topologies
introduced by Akers and Krishnamurthy [2], the pancake
is an instance of a hierarchical Cayley graph [4]. We are
not aware of any literature on dynamic token distribution
or information aggregation on pancake graphs. The pancake
graph has the interesting property that it is a graph with mini-
mal maximum of peer degree and network diameter, namely
O(log n/ log log n) (see Fig. 2).

Besides the interesting diameter/degree trade-off (which
is also achieved by other (Cayley) graphs), a major reason for
us to study the pancake graph is that it is considered a diffi-
cult graph compared to a hypercube for example. Indeed, as
we will see in the following, simulating the pancake in such
a way that the network still has O(log n/ log log n) diame-
ter and degree requires a slightly different peer organization
within a node. However, we are still able to devise token
distribution and information aggregation algorithms on the
pancake that can be translated into the simulated systems,
providing evidence that our techniques work for a large class
of graphs (beyond hypercubic topologies).

Definition 1 A pancake graph of order d is a graph Pd =
(V, E), with V (Pd) = {l1l2 . . . ld |li ∈ {1, . . . , d},∀i �=

123

260 F. Kuhn et al.

1234

2134

4321

3124

1324
3142

3214

2314

4132

1432

3412

4312

1342

3421 2341

32412431

4213 1423

1243

2143

4123

4231
2413

Fig. 2 A pancake graph of order 4 (P4)

j : li �= l j }, i.e., V (Pd) is the set of all permutations on
the set [1, d]. Let ρi denote a prefix-inversion of length i :
ρi (l1 . . . li . . . ld) = li li−1 . . . l1li+1 . . . ld . For u, v ∈ V (Pd),
it holds that {u, v} ∈ E(Pd) ⇔ v = ρi (u) for i ∈ {2, . . . , d}.
Pd is a (d − 1)-regular graph of diameter smaller than 2d
(by the straight-forward routing algorithm which adjusts one
position after the other in two rounds each, starting from the
least significant position).

Henceforth, we will refer to the set {a, a+1, . . . , b−1, b} as
[a, b]. Moreover, the number li at the i th position of a node
with label v = l1 . . . ld will be called the i th entry.

Again, we simulate the pancake graph in our p2p system:
each peer is part of a distinct pancake node, and each pan-
cake node consists of O(d2) peers. A data item is redundantly
stored by the peers of the node to which its identifier hashes.
Peers have connections to other peers of their pancake node;
additionally, some peers of neighboring pancake nodes are
connected to each other. In case of joins or leaves, some of
the peers have to change to another pancake node such that
up to constant factors, all pancake nodes own the same num-
ber of peers at all times. If the total number of peers grows or
shrinks above or below a certain threshold, the order of the
pancake is increased or decreased by one, respectively.

The balancing of peers among the pancake nodes is again
done by a dynamic token distribution algorithm. More-
over, we have a distributed information aggregation algo-
rithm which estimates the number of peers in the system
and adapts the order accordingly. Based on the described
structure, we get a p2p system with peer degree and net-
work diameter O(log n/ log log n), implying time complexity
O(log n/ log log n) for the usual operations such as search.
At the same time, our system tolerates Θ(log n/ log log n)

worst-case joins and/or crashes per constant time interval.

4.1 Dimension change

The order of the pancake graph is changed according to
the total number of peers in the system. For the expan-
sion, node l1 . . . ld ∈ V (Pd) splits into d + 1 new nodes
{(d + 1)l1l2 . . . ld , l1(d + 1)l2 . . . ld , . . . , l1l2 . . . ld(d + 1)}
of Pd+1, and vice versa for the reduction.

To be useful for our application, the pancake’s order
change from dold to dnew has to fulfill a requirement: a node
in Pdnew must be able to compute its new neighbors locally,
i.e., based on the information about the neighbors in Pdold .
We will now describe the expansion and the reduction of the
order in turn and show that this criterion is indeed met in both
cases.

4.1.1 Expansion

If the total number of peers in the system exceeds a cer-
tain threshold, each node v = l1 . . . ld ∈ V (Pd) splits into
d + 1 new nodes {vexp

(1) = (d + 1)l1l2 . . . ld , v
exp
(2) = l1(d +

1)l2 . . . ld , . . . , v
exp
(d+1) = l1l2 . . . ld(d +1)} of Pd+1. The fol-

lowing lemma states that the new neighbors of a node v
exp
(i) ∈

V (Pd+1) can easily be computed given the knowledge about
the neighbors of the original node v ∈ V (Pd).

Lemma 6 Consider two arbitrary nodes u and v of Pd .
It holds that if {uexp

(i) , v
exp
(j) } ∈ E(Pd+1) for some i, j ∈

{1, . . . , d + 1}, then {u, v} ∈ E(Pd) or u = v.

Proof If {uexp
(i) , v

exp
(j) } ∈ E(Pd+1) there is a k ∈ {2, . . . , d +

1} such that uexp
(i) = ρk(v

exp
(j)). If d +1 appears among the first

k entries of uexp
(i) (and thus also of v

exp
(i)), the original nodes—

having no entry (d + 1)—are related by a prefix-inversion
of length k − 1: u = ρk−1(v). If on the other hand the entry
(d + 1) appears among the remaining entries, u and v are
related by the same prefix-inversion: u = ρk(v). ��

4.1.2 Reduction

If the total number of peers in the system falls below a certain
threshold, all nodes l1 . . . li (d + 1)li+1 . . . ld ∈ V (Pd+1) for
i ∈ [0, d] merge into a single node l1 . . . ld ∈ V (Pd). Unfor-
tunately, we cannot reverse the expansion directly. Instead,
the reduction works as follows. First, the following Dom-
inating Set [17] on Pd+1 is computed: every node v =
l1 . . . ld+1 having l1 = d + 1 becomes a dominator. We will
call a dominator plus its adjacent (dominated) nodes a cluster.
In the following, let vdom

(1) = (d + 1)l1 . . . ld be a domina-

tor and vdom
(i) = ρi (v

dom
(1)) = li−1li−2 . . . (d + 1)li . . . ld its

neighbor with prefix-inversion of length i , for i ∈ [1, d + 1].
The idea is to contract each cluster with dominator vdom

(1) =
(d +1)l1 . . . ld to a single node v = l1 . . . ld ∈ V (Pd). Mind,
however, that our clusters do not yield the desired reduction

123

Towards worst-case churn resistant peer-to-peer systems 261

yet: in order to get the inverse operation of the expansion,
each cluster has to exchange one dominated node with each
of its adjacent clusters.

Before we explain the exchange of the dominated nodes
in detail, we first prove that the set of nodes having l1 = d +1
indeed forms a dominating set, that every dominated node is
adjacent to exactly one dominator, and that dominators are
independent.

Lemma 7 Consider the graph Pd+1. The d! nodes of Pd+1

with first entry l1 = d + 1 build a dominating set, i.e., each
node is either a dominator itself or adjacent to a dominator.
Moreover, clusters are disjoint.

Proof Consider an arbitrary node v = l1l2 . . . ld+1. Assume
that li = d + 1 for some i ∈ {1, . . . , d + 1}. If i = 1, v

is a dominator itself. Two nodes having l1 = d + 1 cannot
be adjacent because of the prefix-inversion changes the first
entry. If i �= 1, there is exactly one neighbor of v which is a
dominator, namely node u = ρi (v). ��

According to Lemma 7, each node belongs to exactly one
cluster, hence the contraction operation is well-defined. How-
ever, as already mentioned, we additionally need to exchange
dominated nodes between adjacent clusters. This is done as
follows: the cluster with dominator vdom

(1) = (d + 1)l1 . . . ld
sends its dominated node vdom

(i+1) to the cluster with dominator
(d + 1)ρi (l1 . . . ld), for i ∈ [2, d].

It holds that after the exchange of the dominated nodes, (i)
each cluster with dominator vdom

(1) = v
exp
(1) = (d + 1)l1 . . . ld

which will contract to node v = l1 . . . ld consists of the nodes
v

exp
(1) = (d+1)l1 . . . ld , v

exp
(2) = l1(d+1) . . . ld , . . . , v

exp
(d+1) =

l1 . . . ld(d + 1), and (ii) the dominated node v
exp
(i) for i ∈

[3, d + 1]—before being transferred to the cluster domi-
nated by vdom

(1) —belonged to the cluster that will form the

new node ρi (v). To see this, note that node vdom
(i) is replaced

by ρi−1(v
dom
(i)) = ρi−1(li−1 . . . l1(d + 1)li . . . ld) = v

exp
(i) ,

and that before the transfer, v
exp
(i) belonged to the cluster

dominated by ρi (v
exp
(i)) = (d + 1)li−1 . . . l1li . . . ld which

will reduce to node ρi−1(v). Thus, after the exchange, the
following lemma holds.

Lemma 8 The cluster contracting to node v consists of those
nodes which v would also expand to, and the cluster has
information about each of v’s neighbors.

4.2 Information aggregation

We now describe our algorithm AI A which allows us to count
the total number of peers in the pancake’s nodes. Let Pi (v)

denote the sub-graph of the pancake graph Pd consisting of
those nodes which share a postfix of length d − i with a
given node v. (Note that the graph induced by Pi (v) is a pan-
cake graph of order i .) The algorithm runs in d − 1 phases

and accumulates the total number of tokens in sub-graphs of
increasing size.

Each phase consists of two rounds. In the first round
of phase i , a node v sends the total number of tokens in
its sub-graph Pi (v)—which is known by induction—to its
neighbor ρi+1(v). Thus, since prefix-inversion is a sym-
metric operation, v receives the total number of tokens in
the sub-graph Pi (ρi+1(v)) from node ρi+1(v). In the sec-
ond round, node v sends this information to all neighbors
ρ j (v) for j < i + 1. Given the information about all
Pi (ρi+1(ρ j (v))) (for j < i + 1), the total number of tokens
in the sub-graph Pi+1(v) can be computed: τ(Pi+1(v)) =
τ(Pi (v)) + ∑i

j=1 τ(Pi (ρi+1(ρ j (v)))), where τ(·) denotes
the number of tokens in the corresponding sub-graph. Hence,
by induction, after d −1 phases, every node can compute the
total number of tokens in the system.

Theorem 6 AI A provides all nodes with the correct total
number of tokens in the system after d − 1 phases.

Proof By induction over the phases we show that after phase
i , it holds that each node v knows the total number of tokens
in Pi+1(v).

i = 0: Before the first phase, a node v only knows its
own tokens, and as there is only one node in P1(v), the claim
holds trivially.

i → i + 1: By the induction hypothesis, after phase i ,
each node v = l1 . . . ld knows the total number of tokens
in the sub-graph Pi+1(v). In phase i + 1, node v learns the
total number of tokens in the sub-graphs Pi+1(ρi+2(ρ j (v)))

for j < i + 2. This facilitates the computation of the total
number of tokens in Pi+2(v).

Note that the nodes ρ j (v) for j < i + 2 all have a dif-
ferent first entry and share the postfix li+2li+3 . . . ld with
v. Performing a ρi+2 prefix-inversion yields a member for
each sub-graph with postfix li+3li+4 . . . ld of length d − (i +
2). Therefore, combining the information of the sub-graphs
gives the total number of tokens in Pi+2(v). ��

AI A is executed all the time and in a pipelined fashion,
i.e., all phases run concurrently. This way, all nodes always
get a consistent result even if the adversary concurrently adds
and removes tokens (peers). Moreover, the result always cor-
responds to the exact state of the system d − 1 phases ago.

4.3 Token distribution

Our goal is again to minimize the maximum difference of
the number of tokens of any two pancake nodes, denoted by
the discrepancy φ. Analogous to the information aggregation
algorithm, our token distribution algorithm AT D exploits the
recursive structure of the pancake graph. In a first step, all
pancakes of order 2 balance their tokens. Then, the pancakes
of order 3, 4, . . . exchange tokens. Pancakes of order i can

123

262 F. Kuhn et al.

thereby build on the fact that all pancakes of order i −1 have
balanced the token levels of their nodes. A detailed descrip-
tion of AT D is given in Algorithm 1. We assume that we
have a dominating set for each pancake Pi (v). For example,
the dominators could again be all nodes of Pi (v) having the
largest of the first i entries at the first position. Note that, by
definition, entries i + 1 to d are fixed for all nodes of Pi (v).

Algorithm 1 Token Distribution AT D (node v)
1: for i := 2 to d do
2: send all tokens to ρi (v);
3: send all tokens to dominator in Pi (v);
4: dominators send tokens to nodes of their clusters;
5: end for

Let Pi (v) be the pancake of order i . After the i th iteration
of AT D , for all v, all nodes of Pi (v) have the same number
of tokens. Hence, at the end (i = d) all nodes of the pan-
cake have the same number of tokens. In Line 4 of AT D , it
is not specified how many tokens to send to which nodes if
the number of tokens at a node is not divisible by i . There is
also no explicit notion of tokens which are added or removed
by an adversary during the algorithm. In the following, we
will prove that the algorithm perfectly distributes tokens if
tokens are fractional, that is, if they can be divided arbitrarily
and if no tokens are added or removed during the algorithm
(static token distribution). We will then analyze the effects
of adversarial insertions and deletions and of integer tokens.

Lemma 9 AT D perfectly solves the static fractional token
distribution problem on a pancake of order d.

Proof As outlined above, we prove the lemma by induction
over i . Since P1(v) is a single node, clearly at the begin-
ning all nodes of P1(v) have the same number of tokens.
Let us therefore assume that for all nodes u, each node of
Pi−1(u) has the same number of tokens τi−1(u). The pan-
cakes Pi−1(u) of order i − 1 belonging to Pi (v) can be char-
acterized by their i th entry. Let li be the i th entry of the nodes
of Pi−1(u). In Line 2 of AT D , a node u of Pi−1(u) moves all
tokens to ρi (u), that is, all tokens are moved to a node with li
as its first entry. Hence, after Line 2, all nodes of Pi (u) with
first entry li have τi−1(u) tokens.

In Lines 3 and 4, each cluster (dominator plus neighbors)
distributes all its tokens equally among the members of the
cluster. It therefore remains to show that each cluster of Pi (u)

has the same number of tokens. However, since in each clus-
ter, every possible first entry occurs exactly once, this is
clear from the discussion of the first step of the algorithm
(Line 2). ��

We will now show how dynamic insertions and deletions
of tokens affect the fractional token distribution of AT D . For
the dynamic token distribution algorithm, we assume that the

d − 1 iterations of the algorithm are repeated, that is, after
i = d, we start again at i = 2.

Lemma 10 If in every iteration of AT D at most J tokens
are added and at most L tokens are removed, the algorithm
guarantees that at all times t ≥ d−1, the maximal difference
between the numbers of fractional tokens between any two
nodes is 3(J + L).

Proof To start, we only consider insertions and neglect dele-
tions. Because all operations of the algorithm are linear
in the sense that they can be combined independently, we
can look at each token independently. By Lemma 9, each
token which is added before the first iteration of the algo-
rithm is distributed equally among i ! ≥ 2i nodes after iter-
ation i . A token which is added after iteration j is distrib-
uted among i !/j ! ≥ 2i− j nodes after iteration i . All tokens
which were inserted before the last complete execution of
AT D are equally distributed among all nodes of the pan-
cake. We therefore only have to look at the last complete
execution and at the current execution of the algorithm.
All tokens which are inserted in the current execution of
AT D are distributed among at least 2t nodes, t iterations
after the insertion. Therefore, by a geometric series argu-
ment, there are at most 2J tokens per node which were
inserted in the current iteration. All tokens which were
inserted before the end of the last complete execution of
the algorithm, were distributed among at least d nodes after
the last complete execution. Since in iteration i , each node
distributes its tokens among i different nodes and each
node receives tokens from i different nodes, all the tokens
from the last complete execution of the algorithm remain
distributed among at least d nodes. Because there are at
most (d − 1)J such tokens, each node has less than one
of them. Together, the difference between the number of
tokens at the heaviest and the lightest node becomes 3J . For
deleted tokens the same argumentation as for inserted tokens
holds. ��

We have analyzed the token distribution algorithm for the
idealized case where tokens can be divided arbitrarily. In our
application, tokens correspond to peers, and we again have
to extend the analysis to integer tokens. We assume that in
Line 4, tokens are distributed as equally as possible. That is,
if there are k tokens in a cluster, some of the nodes receive
�k/ i� tokens and some nodes receive �k/ i� tokens.

Lemma 11 The (absolute) difference between the number
of integer tokens and the number of fractional tokens at any
node is always upper bounded by 2d.

Proof We start the proof by looking at iteration i of AT D .
Assume that before iteration i , the difference between the
number of integer tokens and the number of fractional tokens
is at most ξ at each node. If there are token insertions or

123

Towards worst-case churn resistant peer-to-peer systems 263

deletions at a node, this difference does not change because
insertions and deletions affect the numbers of fractional and
integer tokens in the same way. In Line 2, all tokens are moved
and therefore ξ remains unchanged. In Lines 3 and 4, tokens
are distributed equally among i nodes of a cluster. If there are
k tokens in such a cluster, each node gets between �k/ i� and
�k/ i� tokens. If every node got exactly k/ i tokens, the dif-
ference between fractional and integer would remain at most
ξ . Due to the rounding, the difference can therefore grow to
at most ξ + 1 after iteration i . Hence, after t iterations, the
absolute difference between the numbers of fractional and
integer tokens is at most t .

To prove that at each node, the number of integer tokens
cannot deviate from the number of fractional tokens by more
than 2d, we need the following observation. By Lemma 9,
fractional tokens are distributed equally among all nodes after
their first complete execution of AT D , that is, after less than
2d iterations. Therefore, the number of fractional tokens at
each node only depends on the insertions and deletions of
the last 2d iterations and on the total number of tokens in
the system. Therefore, the distribution of fractional tokens
is the same if we assume that before the last 2d iterations,
the number of fractional tokens at each node was equal to
the number of integer tokens. By the above argumentation,
the difference between the numbers of integer and fractional
tokens at a node can have grown to at most 2d in those 2d
iterations. ��

By combining Lemmas 9, 10, and 11, we obtain the fol-
lowing theorem about the dynamic integer token distribution
algorithm.

Theorem 7 The discrepancy φ of the dynamic integer token
distribution algorithm is at most φ ≤ 4d + 3(J + L).

The algorithmAT D is formulated in the form which makes
the proofs of this section as simple as possible. It is of course
not desirable that all nodes first have to move all tokens to
dominator nodes which then redistribute the tokens. Espe-
cially in the case where no insertions or deletions occur, we
would like the system to stabilize to a point where no tokens
have to be moved around. It is not difficult to implement
AT D in a way which has this property. In Line 2, two nodes
u and ρi (u) exchange all their tokens. They can of course
obtain the same effect by computing the difference between
the number of tokens and by only moving this number of
tokens in the appropriate direction. A similar trick can be
applied for Lines 3 and 4. The dominator nodes can collect
all the necessary information and decide about the necessary
movements of tokens.

4.4 Node representation

The algorithms so far have all been described on the level
of pancake graphs. In this section, we take a more detailed

look at the internals of the system. We first present the
representation of the pancake’s nodes and edges and then
give an algorithm which allows to maintain these struc-
tures against a concurrent adversary. We omit the peer-level
description of some components, for example the token dis-
tribution or the information aggregation algorithm. These
operations are straight-forward and can be done with similar
techniques.

4.4.1 The grid

The peers of a node v ∈ V (Pd) are arranged to form a
2-dimensional grid Gv consisting of exactly d + 1 columns,
while the number of rows R may vary depending on the total
number of peers in v.

Let τ(v) be the total number of peers in node v and let R =
�τ(v)/(d + 1)�. The first R · (d + 1) peers are arranged in a
2-dimensional grid with d+1 columns and R complete rows,
such that every peer occupies exactly one position Gv[x, y]
for x ∈ [0, d] and y ∈ [0, R − 1]. The remaining τ(v) mod
(d + 1) peers—from now on called extra peers—are located
in an incomplete additional row Gv[i, R] for i ∈ [0, τ (v)

mod (d + 1)]. Inside a row or column, the peers are com-
pletely connected (“intra-connections”): a peer at Gv[x, y]
is connected to the peers Gv[x, i] for i ∈ [0, R] and Gv[i, y]
for i ∈ [0, d]. As the extra peers do not form a complete row,
they are more vulnerable; thus, they additionally participate
in row R−1, i.e., we also have connections between Gv[i, R]
for i ∈ [0, d +1] and all peers Gv[j, R −1] for j ∈ [0, τ (v)

mod (d + 1)].
Additionally, we need to specify the representation of the

pancake’s edges (“inter-connections”). The idea is as follows:
if two nodes u and v are connected in the pancake graph Pd ,
i.e., {u, v} ∈ E(Pd), then each peer Gu[i, 0] is connected to
the peer occupying Gv[i, 0], for i ∈ [0, d]. In the following,
we will call the peers in the lowest row (row 0) the core of
the corresponding node. Thus, two nodes are connected by
a matching between their cores. The representation of the
pancake’s nodes is depicted in Fig. 3.

Fig. 3 The peers of a pancake node are arranged as a grid with d + 1
columns. A peer has connections to all peers in its row plus to all peers in
its column. The pancake’s edges are represented by a matching between
the peers of the bottom row

123

264 F. Kuhn et al.

4.4.2 Grid maintenance

Algorithm AG RI D needs several rounds. The main theme
is similar to the one proposed for the hypercube graph: at
the beginning, a snapshot of the state (living peers, etc.) of
the system is made. The following rounds are then solely
based on this information—ignoring the fact that some peers
have been crashed by the concurrent adversary in the mean-
time. That is, by using sufficient redundancy, we do not have
to take the crashed and newly joined peers into consider-
ation until the maintenance algorithm restarts with the first
round.

AG RI D consists of two phases. In the first phase, the fol-
lowing information is broadcast throughout the grid: (1) the
positions where peers have left, (2) the IP addresses of the
peers that have joined, (3) the IP addresses of the extra peers,
and (4) the IP addresses of the peers in row R − 1. The sec-
ond phase is based on this information and works as follows:
every surviving peer can locally compute which peers will
take the positions of the peers that left (gaps in the grid).
Thereby, newly joined peers are taken into account first, and
if this is not enough, the extra peers are used. If there are
still gaps in the grid, the peers of the top row are used, and if
necessary, the number of rows is decremented (R := R −1).
If on the other hand there are still joining peers left after all
gaps have been filled, these peers are added to the top row,
creating a new top row if necessary (R := R + 1). After this
local computation, the peers that have to fill the gaps are pro-
vided with the information about their new neighbors. We can
guarantee that no row is removed completely and that there
is always a complete column in the presence of a concur-
rent adversary AADV (d/2, d/2, 5) who adds and removes at
most d/2 peers in any time period of 5 rounds. Moreover,
also the pancake’s edges are repaired in constant time since
we ensure that two adjacent pancake nodes always have at
least two living adjacent core peers which can reestablish the
matching between the cores.

We now give the detailed description of AG RI D . We write
Gv[·, y] and Gv[x, ·] to denote all (surviving) peers in the
yth row and in the xth column respectively. In the follow-
ing, we assume the extra peers to participate in both rows R
and R−1, i.e., they send and receive messages for both rows.

Round 1: The snapshot is made: a surviving peer at position
Gv[x, y] sends its IP address and the IP addresses of its join-
ers to all peers in Gv[·, y].
Round 2: Each peer at position Gv[x, y] sends the addresses
of its joiners plus the information in which column of its row
peers have left to Gv[x, ·].
Round 3: Each peer at position Gv[x, y] forwards the infor-
mation received in Round 2 to the peers Gv[·, y].

Round 4: Now the new form of Gv is computed locally: if a
peer at Gv[x, y] has missing neighbors on its row or column,
it computes which joiner or—if necessary—which extra peer
or which peer in the top row has to replace it. If there are
enough new peers, the number of rows is incremented, and
vice versa if more than all extra peers are used for repair-
ing. Each peer having a missing neighbor on its row sends
the information about all neighbors of this row or column
directly to the peer which will replace it. Additionally, the
information required to establish the top rows is provided to
the responsible peers. Finally, in order to repair the matching
between adjacent nodes, the peers of the old core which are
still alive send the addresses of the new core peers to the old
neighboring cores.

Round 5: The old core broadcasts the new partners of the
matchings within Gv[·, 0]; this ends the repairing operation
with respect to the snapshot’s state.

4.4.3 Expansion

When the pancake graph’s order is incremented from d to
d + 1, each node v must split into d + 1 new nodes. Since
the grid Gv consists of d + 1 columns, there is a simple way
to perform the expansion on the grid level: every column
becomes one new node.

According to Sect. 4.1, two neighboring expanded nodes
have already been adjacent in Pd (or originate from the same
node). Assume that two columns, one in Gv and the other
one in Gu , for two expanding adjacent nodes u, v ∈ V (Pd),
become neighbors in Pd+1. With the grid as described so far,
these two columns have only one connection to each other
(one pair of core peers). In order to increase the fault-toler-
ance the following mechanism is applied: as soon as there
are enough peers in the system and there are at least d + 2
complete rows in each node, adjacent nodes u, v ∈ V (Pd)

start to establish a matching between the columns in Gu and
Gv which will become neighbors if the graph is expanded.
In order to limit the information that is sent, we establish
this matching stepwise, ensuring that it is finished before
the node actually has to split. This is done in d + 1 phases,
in phase i for the matching to neighbor ρi (v). The idea is
that each peer at Gv[x, y] with y ∈ [1, d + 2] sends its IP
address to the peer Gv[y − 1, 0]. Peer Gv[y − 1, 0] is then
responsible to transfer the yth row to the corresponding peers
Gρi (v)[y, 0] for i ∈ [2, d + 2]. From there, the information
is broadcast to Gρi (v)[·, y]. This mechanism guarantees that
between two neighboring columns, at least one connection
will be finished, even in the presence of a concurrent adver-
sary. Once the matching is established, it is maintained as
long as there are at least d + 2 rows.

The expansion then works as follows. We consider a node
v = l1 . . . ld with grid Gv . The column Gv[i, ·] for i ∈ [1, d+

123

Towards worst-case churn resistant peer-to-peer systems 265

1] will form the new node v
exp
(i) = l1 . . . li−1(d + 1)li . . . ld .

Since peers of the i th column Gv[i, ·] are completely con-
nected, the expansion can be performed in two rounds: it is
straight-forward to locally compute the form of the new grids
Gv

exp
(i)

, including cores and inter-connections, and send this

information to nodes ρ j (v
exp
(i)) for j ∈ [2, d + 1].

Round 1: The peers of the i th column Gv[i, ·] which will
form the new node v

exp
(i) are completely connected, and each

peer in v
exp
(i) can locally compute the form of Gv

exp
(i)

. The

information about the new core is sent to nodes ρ j (v
exp
(i)) for

j ∈ [2, d + 1], using the connections of the matching.

Round 2: The peers in v
exp
(i) send the information about the

neighboring cores received in Round 1 to their own new core.

4.4.4 Reduction

The reduction of the pancake’s order is more elaborate:
reducing the order from d + 1 to d requires d + 1 grids
to merge into one. Additionally, some peers are bound to
change nodes (cf Sect. 4.1).

Similarly to the notation introduced in Sect. 4.1, let vdom
(1) ∈

V (Pd+1) be the dominator of a cluster that contracts to v ∈
V (Pd) and let vdom

(i) = ρi (v
dom
(1)). To reduce the order of

the pancake graph, we must exchange the nodes vdom
(i+1) with

udom
(i+1) for i ∈ [2, d] where u = ρi (v), and then merge the

clusters into one node v (cf Sect. 4.1).
On the grid level, a constant number of rounds is needed

for this order reduction. Basically, the procedure is as fol-
lows. First we turn Gvdom

(i)
for i ∈ [1, d + 1] into a clique and

the information about the core of Gvdom
(1)

is sent to ρi−1(v
dom
(i))

(node exchange, cf Sect. 4.1). Now, the new grid of node v

will be formed. For this, let again v
exp
(i) for i ∈ [1, d + 1]

be the nodes which will form v after the node exchange,
v

exp
(1) being the dominator. After v

exp
(1) learned about its new

dominated nodes, it sends all its peers’ addresses to v
exp
(i) for

i ∈ [2, d +1]. With this information, a first version of Gv can
be computed, where column i is given by v

exp
(i) . Based on this

structure, the final grid can be obtained by a rearrangement.

4.5 The system

The n peers in our system are arranged in a simulated pancake
topology of order d. The data of the DHT is stored as follows.
Let hash(·) be a hash function which, given an identifier I D,
outputs a random permutation on some set [1, N], where N
is a sufficiently large global integer constant. A data item
with identifier I D is stored on the node v ∈ V (Pd) which
is determined by the ordering of the smallest d numbers of
hash(I D). A data item is not copied to all peers in that node,

but only replicated on the core at the bottom row. Recall that
this has the advantage that—if we use peers in topmost rows
for the peer distribution—unnecessary copying of data can
be avoided when peers move between nodes, while we are
still able to tolerate the same powerful adversary. Finally,
observe that routing is simple in the pancake system: assume
that a peer in a node u = l1l2 . . . ld wants to find a data item
which hashes to a node v = l̂ 1̂l2 . . . l̂d . The lookup operation
proceeds by correcting one “coordinate” at a time, starting at
the back: from node u = l1l2 . . . ld the request is forwarded
to node ld . . . l j+1l1l2 . . . l j−1̂ld , etc.

We now describe how to assemble the components
to form a peer-to-peer system resilient to an adversary
AADV (Θ(log n/ log log n),Θ(log n/ log log n), 1). We per-
manently run AI A to estimate the total number of peers in the
system and adapt the pancake’s order accordingly, AT D to
distribute the peers evenly among the pancake’s nodes, and
AG RI D to maintain the grid. When the order of the pancake
is changed, both AI A and AT D are restarted. This is possi-
ble because our system guarantees that after a change of the
pancake’s order, there are sufficiently many rounds without
another order change such that the estimations of the total
number of peers are up-to-date.

Taking into account that AI A delivers the estimated num-
ber of peers with a delay of d−1 phases, and that according to
Theorem 7, the difference between the total number of peers
at any two nodes is bounded by O(d) if there are O(d) joins
and leaves per time unit, we have the following theorem.

Theorem 8 The pancake p2p system guarantees peer degree
and network diameter O(d) in the presence of an adversary
who inserts and deletes Θ(d) peers per unit time. Each node
always has at least one living core peer and no data is lost.
Moreover, it holds that d = Θ(log n/ log log n), where n is
the total number of peers in the system.

The proof of Theorem 8 is similar to the deduction of Theo-
rem 5, and is omitted here.

5 Conclusion

This article presented algorithms to maintain p2p networks
under worst-case joins and leaves. It is often justified to study
alternative churn models, e.g., probabilistic models [12]
where peers join and leave according to a Poisson process.
However, here we pursue a more conservative approach as
this gives stronger guarantees. In addition, more optimistic
models do not take attackers or viruses into account which
exploit the p2p topology and propagate along the p2p sys-
tem’s links, indeed harming certain parts of the network more
severely than others.

Two systems have been described which are optimal in
the sense that there cannot exist topologies with a smaller

123

266 F. Kuhn et al.

peer degree which are robust to the same amount of churn.
We believe that our techniques are applicable to many other
graphs beyond the ones studied in this article. All that is
needed is a token distribution and information aggregation
algorithm on the graph. Indeed, the reason for studying the
pancake graph in this article (in addition to the hypercube
graph) was, besides its interesting properties, that it is known
to be a difficult graph. However, it turned out that although
some additional reasoning about how to simulate the topol-
ogy by the peers is required, our approach also works there.

In practice, a simpler graph is typically advantageous, and
hence, the hypercube system may be preferred over the pan-
cake system. In particular, in future it would also be inter-
esting to maintain alternative hypercubic structures similar
to the ones used in Pastry, where there is no global dimen-
sion change but where the graph can evolve more locally.
Indeed, based on the ideas presented here, we have developed
eQuus [32], a DHT which connects peers in such a way that
the peer degree and network diameter is always bounded by
O(log n) with high probability, where n is the total number
of peers in the network. eQuus gives less guarantees regard-
ing the worst-case efficiency of the topology under churn.
However, in contrast to the work presented here, it is local-
ity-aware in the sense that communication takes place along
routes whose latencies are close to optimal. eQuus has not
been deployed yet and we were hence not able to collect
empirical traces from this system’s behavior in the wild. It
also remains an open question whether locality-awareness
can be achieved without sacrificing certain robustness prop-
erties.

A particularly important direction for future research is
self-stabilization: How can our techniques be combined with
the recent advances in topological self-stabilization in order
to give recovery guarantees in times where the bounds on the
adversarial power are exceeded?

Acknowledgments The authors would like to thank Joest Smit for
interesting discussions on the pancake topology.

References

1. Abraham, I., Awerbuch, B., Azar, Y., Bartal, Y., Malkhi, D.,
Pavlov, E.: A generic scheme for building overlay networks in
adversarial scenarios. In: Proceedings 17th International Sympo-
sium on Parallel and Distributed Processing (IPDPS) (2003)

2. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for sym-
metric interconnection networks. IEEE Trans. Comput. 38(4), 555–
566 (1989)

3. Albrecht, K., Arnold, R., Gähwiler, M., Wattenhofer, R.: Aggre-
gating information in peer-to-peer systems for improved join and
leave. In: Proceedings 4th IEEE International Conference on Peer-
to-Peer Computing (P2P) (2004)

4. Annexstein, F., Baumslag, M., Rosenberg, A.L.: Group action
graphs and parallel architectures. SIAM J. Comput. 19(3), 544–
569 (1990)

5. Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion
deterministic data structure for distributed environments. In: Pro-
ceedings of 15th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 318–327 (2004)

6. Awerbuch, B., Scheideler, C.: Robust random number genera-
tion for peer-to-peer systems. In: Proceedings of 10th Interna-
tional Conference on Principles of Distributed Systems (OPODIS)
(2006)

7. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT.
In: Proceedings of 18th ACM Symposium on Parallel Algorithms
and Architectures (SPAA) (2006)

8. Bhagwan, R., Savage, S., Voelker, G.: Understanding availability.
In: Proceedings of 2nd International Workshop on Peer-to-Peer
Systems (IPTPS) (2003)

9. Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober,
M.: Pagoda: a dynamic overlay network for routing, data man-
agement, and multicasting. In: Proceedings of 16th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA),
pp. 170–179 (2004)

10. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabiliz-
ing deterministic skip list. In: Proceedings of SSS (2008)

11. Cybenko, G.: Dynamic load balancing for distributed memory mul-
tiprocessors. J. Parallel Distrib. Comput. 7, 279–301 (1989)

12. Datta, A., Aberer, K.: Internet-scale storage systems under churn.
In: Proceedings of 6th IEEE International Conference on Peer-to-
Peer Computing (P2P) (2006)

13. Dweighter, H. (a.k.a. J. E. Goodman): Problem E2569. American
Mathematical Monthly, vol. 82 (1975)

14. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content address-
able networks. In: Proceedings of 13th Symposium on Discrete
Algorithms (SODA) (2002)

15. Fiat, A., Saia, J., Young, M.: Making chord Robust to byzantine
attacks. In: Proceedings of European Symposium on Algorithms
(ESA) (2005)

16. Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S.,
Täubig, H.: Brief announcement: on the time complexity of distrib-
uted topological self-stabilization. In: Proceedings of International
Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS) (2009)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of books in the mathe-
matical sciences). W.H. Freeman, San Francisco (1979)

18. Godfrey, P.B., Shenker, S., Stoica, I.: Minimizing churn in distrib-
uted systems. In: Proceedings of ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (2006)

19. Guha, S., Daswani, N., Jain, R.: An experimental study of the
skype peer-to-peer VoIP system. In: Proceedings of 5th Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS) (2006)

20. Haeberlen, A., Mislove, A., Post, A., Druschel, P.: Fallacies in
evaluating decentralized systems. In: Proceedings 5th International
Workshop on Peer-to-Peer Systems (IPTPS) (2006)

21. Harvey, N., Munro, J.: Deterministic skipnet. Inf. Process. Lett.
90(4), 205–208 (2004)

22. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A
distributed polylogarithmic time algorithm for self-stabilizing skip
graphs. In: Proceedings of Annual ACM Symposium on Principles
of Distributed Computing (PODC) (2009)

23. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: A self-stabi-
lizing and local delaunay graph construction. In: Proceedings of
20th International Symposium on Algorithms and Computation
(ISAAC) (2009)

24. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation
of aggregate information. In: Proceedings of 44th Annual
IEEE Symposium on Foundations of Computer Science (FOCS)
(2003)

123

Towards worst-case churn resistant peer-to-peer systems 267

25. Kothapalli, K., Scheideler, C.: Supervised peer-to-peer systems. In:
Proceedings of International Symposium on Parallel Architectures,
Algorithms, and Networks (I-SPAN), pp. 188–193 (2005)

26. Kuhn, F., Locher, T., Wattenhofer, R.: Tight bounds for distributed
selection. In: Proceedings of 19th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA) (2007)

27. Kuhn, F., Schmid, S., Smit, J., Wattenhofer, R.: A blueprint for con-
structing peer-to-peer systems Robust to dynamic worst-case joins
and leaves. In: Proceedings of 14th IEEE International Workshop
on Quality of Service (IWQoS) (2006)

28. Kuhn, F., Schmid, S., Wattenhofer, R.: A self-repairing peer-to-
peer system resilient to dynamic adversarial churn. In: Proceedings
of 4th International Workshop on Peer-To-Peer Systems (IPTPS)
(2005)

29. Li, J., Stribling, J., Morris, R., Kaashoek, M.F., Gil, T.M.: A perfor-
mance versus cost framework for evaluating DHT design tradeoffs
under churn. In: Proceedings of 24th Annual IEEE Conference on
Computer Communications (INFOCOM) (2005)

30. Li, X., Misra, J., Plaxton, C.G.: Active and concurrent topology
maintenance. In: Proceedings of 18th Annual Conference on Dis-
tributed Computing (DISC) (2004)

31. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the
evolution of peer-to-peer systems. In: Proceedings of 21st Annual
Symposium on Principles of Distributed Computing (PODC),
pp. 233–242 (2002)

32. Locher, T., Schmid, S., Wattenhofer, R.: eQuus: a provably Robust
and locality-aware peer-to-peer system. In: Proceedings of 6th
IEEE International Conference on Peer-to-Peer Computing (P2P)
(2006)

33. Mitra, B., Ghose, S., Ganguly, N.: Effect of dynamicity on peer-to-
peer networks. In: Proceedings of 14th International Conference
on High Performance Computing (HiPC) (2007)

34. Mosk-Aoyama, D., Shah, D.: Computing separable functions via
gossip. In: Proceedings of 25th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 113–122 (2006)

35. Naor, M., Wieder, U.: Novel architectures for P2P applications:
the continuous-discrete approach. In: Proceedings of 15th Annual
ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pp. 50–59 (2003)

36. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter
P2P networks. In: Proceedings of 42nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS) (2001)

37. Patt-Shamir, B.: A note on efficient aggregate queries in sensor
networks. Theor. Comput. Sci. 370(1–3), 254–264 (2007)

38. Peleg, D.: Distributed Computing A Locality-sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia,
PA (2000)

39. Peleg, D., Upfal, E.: The token distribution problem. SIAM J. Com-
put. 18(2), 229–243 (1989)

40. Plaxton, C.G.: Load Balancing, Selection and Sorting on the Hyper-
cube. In: Proceedings of the 1st Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), pp. 64–73 (1989)

41. Qiao, Y., Bustamante, F.E.: Structured and unstructured overlays
under the microscope—a measurement-based view of two P2P sys-
tems that people use. In: Proceedings of the USENIX Annual Tech-
nical Conference (2006)

42. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A
scalable content-addressable network. In: Proceedings of the ACM
SIGCOMM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, pp. 161–172
(2001)

43. Rhea, S., Chun, B.-G., Kubiatowicz, J., Shenker, S.: Fixing the
embarrassing slowness of openDHT on planetLab. In: Proceed-
ings of the 2nd Conference on Real, Large Distributed Systems
(WORLDS) (2005)

44. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn
in a DHT. In: Proceedings of the USENIX Annual Technical Con-
ference (2004)

45. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object
location and routing for large-scale peer-to-peer systems. In: Pro-
ceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pp. 329–350 (2001)

46. Saia, J., Fiat, A., Gribble, S., Karlin, A., Saroiu, S.: Dynamically
fault-tolerant content addressable networks. In: Proceedings of
the 1st International Workshop on Peer-to-Peer Systems (IPTPS)
(2002)

47. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of
peer-to-peer file sharing systems. In: Proceedings of the Multime-
dia Computing and Networking (MMCN) (2002)

48. Scheideler, C.: How to spread adversarial nodes? rotate! In: Pro-
ceedings of the 37th ACM Symposium on Theory of Computing
(STOC) (2005)

49. Scheideler, C., Schmid, S.: A distributed and oblivious heap. In:
Proceedings of the 36th International Colloquium on Automata,
Languages and Programming (ICALP) (2009)

50. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large net-
works. IEEE/ACM Trans. Netw. 12(2), 219–232 (2003)

51. Shirazi, B.A., Kavi, K.M., Hurson, A.R.: Scheduling and Load
Balancing in Parallel and Distributed Systems. IEEE Computer
Science Press, Los Alamitos (1995)

52. Steiner, M., Biersack, E.W., Ennajjary, T.: Actively monitoring
peers in KAD. In: Proceedings of the 6th International Workshop
on Peer-to-Peer Systems (IPTPS) (2007)

53. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer net-
works. In: Proceedings of the 6th Internet Measurement Confer-
ence (IMC) (2006)

54. Tian, J., Dai, Y.: Understanding the dynamic of peer-to-peer
systems. In: Proceedings of the 6th International Workshop on
Peer-to-Peer Systems (IPTPS) (2007)

55. Van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: a robust
and scalable technology for distributed system monitoring, man-
agement, and data mining. ACM Trans. Comput. Syst. 21(2), 164–
206 (2003)

56. Van Renesse, R., Bozdog, A.: Willow: DHT, aggregation, and pub-
lish/subscribe in one protocol. In: Proceedings of the 3rd Interna-
tional Workshop on Peer-To-Peer Systems (IPTPS) (2004)

57. Yang, M., Chen, H., Zhao, B.Y., Dai, Y., Zhang, Z.: Deployment
of a large scale peer-to-peer social network. In: Proceedings of the
1st Workshop on Real, Large Distributed Systems (2004)

58. Yusuke, K., Keiichi, K., Yuji, S.: Computing the diameter of the
Pancake Graph. Joho Shori Gakkai Kenkyu Hokoku, 42 (2004)

123

	Towards worst-case churn resistant peer-to-peer systems
	Abstract
	1 Introduction
	1.1 Model
	1.2 Related work
	1.3 Our contributions
	1.4 Paper organization

	2 Algorithmic components
	2.1 Dynamic token distribution
	2.2 Remark on random token distribution
	2.3 Information aggregation

	3 The dynamic hypercube system
	3.1 Topology
	3.2 6-Round (maintenance) algorithm
	Round 1
	Round 2
	Round 3
	Round 4
	Round 5
	Round 6

	4 The dynamic pancake system
	4.1 Dimension change
	4.1.1 Expansion
	4.1.2 Reduction

	4.2 Information aggregation
	4.3 Token distribution
	4.4 Node representation
	4.4.1 The grid
	4.4.2 Grid maintenance
	4.4.3 Expansion
	4.4.4 Reduction

	4.5 The system

	5 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

