Algorithms for and against the Cloud

Roger Wattenhofer

ETH Zurich – Distributed Computing Group

Disclaimer

SenSys OSDI HotNets AAAI PODC Mobicom STOC FOCS SIGCOMM ICALP **SPAA** SODA EC

Find balanced separator of minimum size *K*.

Find balanced separator of minimum size K.

Find balanced separator of minimum size *K*.

Our result: almost linear time algorithm for small *K*.

[Brandt, W., 2017]

Find balanced separator of minimum size *K*.

Our result: almost linear time algorithm for small *K*

...in a boring way

[Brandt, W., 2017]

GPS for the Cloud

Just record 1ms of raw data

Coarse Time Navigation

Exhaustive Search in Area

Also Robust to GPS Spoofing

\$100B Revenue

3/4 Online

Online Two Player Games

Match Players Fast Waiting is Boooooring Match Players Well Similar Rating, Location, etc.

Min-Cost Perfect Matching With Delays (MPMD)

Haste Makes Waste!

MPMD Example

MPMD Example

► time

Online Matching Literature

- Bipartite graph, left side is known, right side revealed online
 - Maximum cardinality matching [KVV1990, BM2008, GM2008, DJK2013, M2014, NW2015]
 - Maximum vertex weighted matching [AGKM2011, DJK2013, NW2015]
 - Maximum capacitated assignment (the AdWords problem) [MSVV2005, BJN2007, GM2008, AGKM2011, NW2015]
 - Metric maximum weight matching [KP1993, KMV1994]
 - Metric minimum cost perfect matching [KP1993, MNP2006, BBGN2014]
 - Metric minimum capacitated assignment (transportation) [KP2000]
- MPMD: known graph, both sides revealed online

MPMD Results

• Finite metric space $\mathcal{M} = (V, \delta)$

- n = |V|• $\Delta = \frac{\max_{x \neq y \in V} \delta(x, y)}{\min_{x \neq y \in V} \delta(x, y)}$
- O(log² n + log Δ)-competitive randomized algorithm [Emek, Kutten, W 2016]
- O(log n)-competitive (almost) deterministic algorithm Lower bound of Ω(√log n)
 [Azar, Chiplunkar, Kaplan 2017]
- O(log n)-competitive (almost) det. bipartite algorithm Ω(√log n/ log log n) lower bound for bipartite Ω(log n/ log log n) lower bound for non-bipartite [Wang et al., 2018]

The $O(\log n)$ Algorithm

Approximate Metric by Tree

Leaves = Nodes in Metric Space

[Fakcharoenphol, Rao, Talwar 2004], [Bansal, Buchbinder, Gupta, Naor 2015]

Total space cost = $\sum {i i}$

For each pair at least one timer running

Total time cost $\leq 2 \sum \overleftarrow{\otimes}$

Total Algorithm Cost = $O(\sum \heartsuit)$

What about OPT?

cost 👸 = cost 🔪

Done?

Just One Little Thing...

OPT has an easy time...

... but only every other phase!

Total OPT Cost = $\Omega(\Sigma \heartsuit)$

Where is the $\log n$ coming from?

Height = $O(\log n)$ for time E[Distortion] = $O(\log n)$ for space

Algorithms against the Cloud

Will Blockchain Kill the Cloud? SAPY

Launch: Introducing Oracle Autonomous Blockchain Cloud Service ORACLE^{Cloud}

The blockchain is here to make cloud computing better Information Age

Why Blockchain is Cloud 2.0 COINTELEGRAPH The future of money

BlockCloud: Re-inventing Cloud with Blockchains guardtime 🛎

> FUTURE OF CLOUD COMPUTING IS DECENTRALISED BLOCKCHAIN

STEVE FORBES Chairman, Forbes Media

CURRENCY OF THE FUTURE?

2008

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trasted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network instantys transactions by bashing them into an orgging chain of hash-based proof-of-work, forming a record that cannot be changed without robing the proof-of-work. The longest chain not only server as proof of the sequence of events winnessed, but proof that it canne from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to another the network, they[] generate the longest chain and outprese attackers. The interior the network, they of the protect has been been as a proof of the network in the network in the network.

Blockchain

Figure 9-3 Manual Journal Voucher.

tage of		MANUAL JOURNAL VOUCHER			DATE 2/2/X
		19		A PROFILE	000
Batch	n 1101 Batch Line 9		Total Amount 11, 200.20		
Description ACCRUED INTEREST INCOME			Effective Date	1/31/X5	Type A
Refere	nce JY3-JA	N INTEREST	Accounting Co	mpany /D-	CORPORATE
Seq.	Account Number	Description	Debit Am	ount (Credit Amount
01	1280-000	INTEREST RECEIVABLE	11,20	0.20	
02	8050-010	FIRST NATIONAL - CD		1	,330.10
03	8050-020	MUNICIPAL BONDS		6	,220.80
<u>.</u> Г	8050-010	ATHER INVESTIGATE			649 30

FinTech developers and managers understand that the blockchain has the potential to disrupt the financial world. The blockchain allows the participants of a distributed system to agree on a common view of the system, to track changes in the system, in a reliable way. In the distributed systems community, agreement techniques have been known long before cryptocurrencies such as Bitcoin (where the term blockchain is borrowed) emerged. Various concepts and protocols exist, each with its own advantages and disadvantages. This book introduces the basic techniques when building fault-tolerant distributed systems, in a scientific way. We will present different protocols and algorithms that allow for fault-tolerant operation, and we will discuss practical systems that implement these techniques.

About the author

Roger Wattenhofer is a professor at ETH Zurich. Before joining ETH Zurich, he was at Brown University and Microsoft Research. His research interests include fault-tolerant distributed systems, efficient network algorithms, and cryptocurrencies such as Bitcoin. He has published more than 250 scientific articles.

Inverted Forest Publishing First Edition, 2016 ISBN-13 978-1522751830 ISBN-10 1522751831

Copyrighted Material

Blockchain Basics

JOHN DOE OR JANE DOE 123 MAIN STREET ANYTOWN, TN 01234	2670 87-823/64
PHONE 555-1212	19
Pay to the Order of	JS
	Dollars 🗗 security on an
Bank of Yourtown	6-73
For	M
10123456781 #98765432#	

Block

Blockchain

Blockchain is Replicated

Blockchain

Distributed Systems & Cryptography (1982) (1976)

Blockchain

Distributed Systems & Cryptography Fault-Tolerance & Digital Signatures

Rule of Thumb

Blockchains* may disrupt your business if you use signatures.

*or blockchain-like tech

Blockchain Variants

Permissionless / Open

Permissioned / Closed

The Seven Blockchain Dimensions

Blockchain

Blockchain Throughput Speed 10 tx/s 💽 1 hour 1 minute 10k tx/s10m tx/s 1 second
Blockchain

Scalability

10 nodes 100 nodes 1000 nodes

Energy Consumption

«Ich wäre nicht überrascht, wenn Bitcoin verboten würde»

ETH-Informationstechnologe Roger Wattenhofer über den Energiebedarf der Kryptowährung und bessere Alternativen

Wattenhofer vom Departement Informationstechnologie und Elektrotechnik der ETH Zürich

Economic Incentives

Proof of Work

Hashrate · Energy/Hash \approx 1.3 GW $13 \cdot 10^9$ GH/s 0.1 J/GH

The Seven Blockchain Dimensions

What About Privacy?

It's Complicated.

Privacy

Anonymity/Public Identity/Private

Research Issues

Solution to "many" problems: "Layer 2"

Plus: crypto, language (smart contracts), game theory, measurements, ...

Permissioned Blockchain

Payment Network

Permissioned Blockchain

Payment Network CREDIT SUISSE 💶 Bank Linth PostFinance¹ 🕸 UBS

Bitcoin

Anonymity

Open/Anarchic

Blockchain

Eventual Consistency

Proof-of-Work

eMoney

Accountability

Closed/Private

Paxos, PBFT, ...

Strong Consistency

Central Banks

What's Wrong with Paper?

Cost

Verifiability

Neue Zürcher Zeitung

Rund 26 Prozent der Zürcher Wahlzettel waren nicht gültig

Anonymity

Identity Swapper Identity Mixer

. . .

Election Help

Democracy Beyond Yes or No

Don't bring a Blockchain to a Gunfight

So what's new, really?

Classical Adversary

Modern Adversary

Нуре

"First practical solution to a longstanding problem in computer science, Byzantine Generals."

"Satoshi solved a problem that academic computer scientists thought was impossible"

"Bitcoin is digital gold, it will put us back onto a sound monetary policy"

"Bitcoin will end wars"

... and Criticism

"A non-deliberate Ponzi scheme"

"It's yet another eventually consistent database"

"Flawed technology, inherently limited in scale and performance"

"Unlikely to impact the finance sector"

Would you rather fight...?

Cloud vs. Blockchain

Would you rather trust...?

Cloud vs. Blockchain

Thanks to lots of hardware...

Moving to the cloud can save up to 87% of IT energy

Cloud vs. Blockchain

"We at big corp will run your blockchain in our cloud!"

What's this?

A Blockchain?

A Distributed System!

Summary

Thank You! Questions & Comments?

Thanks to my co-authors Vertex Separators: Sebastian Brandt Online With Delay: Yuval Emek, Shay Kutten Cloud GPS: Manuel Eichelberger

www.disco.ethz.ch

Abstract:

Algorithms interact in two main ways with the cloud. There exist algorithms which are tailored for the cloud, for which the cloud is the perfect environment. Moreover, the cloud may also benefit from optimization algorithms, algorithms that make the cloud more efficient. The AlgoCloud program features papers which roughly fit one of the two, and I will also give a few examples in the first part of my talk. Apart from these algorithms for the cloud, I will also talk about algorithms against the cloud. Recently, blockchains are hyped to be a cloud competitor, sometimes even a cloud killer. In the second part of my talk we will discuss whether there is some truth to whether blockchains are going to threaten the successful cloud paradigm.