
Finding Heavy Distinct Hitters in Data Streams

Thomas Locher
IBM Research – Zurich
thl@zurich.ibm.com

ABSTRACT
A simple indicator for an anomaly in a network is a rapid
increase in the total number of distinct network connections.
While it is fairly easy to maintain an accurate estimate of the
current total number of distinct connections using streaming
algorithms that exhibit both a low space and computational
complexity, identifying the network entities that are involved
in the largest number of distinct connections efficiently is
considerably harder. In this paper, we study the problem
of finding all entities whose number of distinct (outgoing or
incoming) network connections is at least a specific fraction
of the total number of distinct connections. These entities
are referred to as heavy distinct hitters. Since this prob-
lem is hard in general, we focus on randomized approxima-
tion techniques and propose a sampling-based and a sketch-
based streaming algorithm. Both algorithms output a list of
the potential heavy distinct hitters including the estimated
counts of the corresponding number of distinct connections.
We prove that, depending on the required level of accuracy
of the output list, the space complexities of the presented
algorithms are asymptotically optimal up to small logarith-
mic factors. Additionally, the algorithms are evaluated and
compared using real network data in order to determine their
usefulness in practice.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures

General Terms
Algorithms, Theory

Keywords
Network Monitoring, Anomaly Detection, Streaming Algo-
rithms, Heavy Distinct Hitter, Space Complexity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

1. INTRODUCTION
Today’s networks carry more and more data at increas-

ing bitrates, which makes it progressively harder to monitor
them and react to exceptional or undesirable situations in a
timely fashion. An exceptional situation may be, e.g., some
sort of attack on a machine in the network, a worm that
propagates inside the network, or a suspicious activity that
may precede an attack, such as a port scan. In particular
the timeliness of detection is crucial in order to contain such
incidents and limit the caused damage. In practice, intru-
sion prevention and detection systems such as Snort1 are
deployed, which typically store information about each net-
work flow. Due to the increasing amount of traffic data, such
simple approaches become insufficient as it becomes imprac-
tical or even infeasible to constantly sift through massive log
files to spot unusual activity. Thus, there is a growing need
for stream processing techniques that require little space and
processing cost.

A simple and straightforward indicator for an anomaly is
a substantial change in the number of distinct network con-
nections. It is well known that this metric can be approx-
imated accurately using little space. For example, during
the spreading phase of a worm, infected machines try to es-
tablish connections to as many other entities in the network
as possible. The opposite situation occurs in the case of
a distributed denial of service (DDoS) attack, where many
distinct entities target one or a small number of specific des-
tinations. Note that, while such an attack often results in
a significant increase in network traffic volume, there are
certain DDoS attacks, e.g., TCP SYN flooding attacks, that
do not necessarily cause a noticeable increase in bandwidth
usage. In both scenarios, monitoring the number of dis-
tinct network connections allows a network administrator
to quickly detect the anomaly. However, this simple ap-
proach has a major shortcoming: If an anomaly is detected,
the entities that provoked it or, in case of an attack, that are
targeted are not revealed, implying that log data would still
have to be parsed in order to identify them. Thus, the main
question is whether and how these entities can be found ef-
ficiently. Naturally, one would also like to know the number
of distinct (incoming or outgoing) connections for each of
those entities to quantify the severity of the situation.

In this paper, we study the following general problem,
which encompasses the network security problems outlined
above. Given a data stream, we consider two features of
each flow, such as the source and the destination IP address.
In other words, we abstract away all other features and as-

1See http://www.snort.org/.

sume that each flow consists of a pair of features, referred to
as element and value. An element that occurs with a large
number of distinct values in the data stream is called a heavy
distinct hitter. The goal is to find the heavy distinct hitters
and, for each heavy distinct hitter, the corresponding num-
ber of distinct values, using as little space as possible. The
precise definition of the model and the considered problem
is given in the following section.
It is easy to see that by using the IP source address as the

element and the IP destination address as the value, each
heavy distinct hitter may correspond to an infected machine
that is spreading a worm, and, by using the reverse assign-
ment, the heavy distinct hitters may be the victims of a
DDoS attack. As many other important network monitoring
problems can potentially be mapped to this general problem,
space-efficient solutions could be highly useful for numerous
practical applications. Moreover, given the connection to
the fundamental problem of computing the number of dis-
tinct items for some feature, the considered problem is also
interesting from a theoretical perspective. Thus, it comes
as no surprise that many variations of this problem have
already been studied. The most important related work is
dicussed in Section 4.
As we will see, finding heavy distinct hitters is hard in

general, and we therefore have to settle for randomized ap-
proximation algorithms. Section 3 presents two simple and
parallelizable approximation algorithms for this problem, in-
cluding their analyses. The results in this section are the
main contributions of this paper as they show that there
are indeed efficient solutions for the given model. Further-
more, we prove that the achieved space bounds are close
to optimal, depending on the required accuracy of the ap-
proximation. Additionally, the effectiveness of the proposed
algorithms is validated using traces of real network data.

2. MODEL
A data stream S is modeled as a sequence of n element-

value pairs (e1, v1), . . . , (en, vn). The elements and values
are taken from the domains E and V , respectively. Let
m ≤ n denote the number of distinct element-value pairs,
where two pairs (ei, vi) and (ej , vj) are considered distinct
if ei 6= ej or vi 6= vj (or both). Furthermore, we define that
ES ⊆ E is the set of all elements that occur as part of an
element-value pair in the stream S. The cardinality of this
set, which is upper bounded by m, is denoted by ` := |ES |.
Simply speaking, an element is called a heavy distinct hit-

ter if its contribution to the total number m of distinct pairs
is large.2 The contribution of an element is quantified by
means of a function wS : E → N mapping each element e
to the number of distinct values that form an element-value
pair with e in S. Formally, the function wS is defined as
wS(e) := |{v ∈ V | (e, v) ∈ S}|. We say that wS(e) is the
weight of element e in stream S. Note that this definition
implies that

∑
e∈ES

wS(e) = m. Since we always consider

a specific stream S, we simply write w(e) instead of wS(e)
in the following. It remains to specify what constitutes a
sufficiently large weight: An element e is a heavy distinct
hitter if its weight w(e) is at least a certain threshold value

2In contrast, an element e is considered a heavy hitter (see,
e.g., [9]) if the sum of values that occur together with e as
a pair in the stream is large.

T , i.e., the parameter T establishes the boundary between
heavy distinct hitters and the remaining elements.

Given a specific threshold T , the general goal is to com-
pute the set Π := {(e, w(e)) | w(e) ≥ T}. As argued in
the previous section, it is desirable to use algorithms that
require as little space as possible. The space complexity of
an algorithm is defined as the number of words of memory
that are stored during the computation of the (approximate)
solution in the worst case for any data stream. We count
the number of words instead of the number of bits in order
to simplify the notation as we assume that all quantities,
including elements, values, and also auxiliary data such as
hash values etc., can be stored in one word of memory.

However, once we start to throw away information about
the stream, an algorithm can no longer determine the exact
weight of each element. In particular, deciding whether a
weight reaches the threshold T becomes hard. This intu-
itive argument can be formalized using a simple reduction
from the set disjointness problem [19, 22, 25], which yields
that any randomized algorithm that computes Π with rea-
sonable probability must store at least Ω(m) bits for any
threshold T . This fundamental limitation forces us to resort
to randomized approximation algorithms. Hence, instead of
trying to compute the correct solution Π, we focus on algo-
rithms that approximate Π in the sense that the computed
weights may deviate from the true weights, but the deviation
is bounded with a tunable probability. Consequently, the el-
ements in the output set may not be identical to those in Π.
The relaxed version of the heavy distinct hitter problem has
two additional parameters and is defined as follows.

Definition 2.1. Approximate Heavy Distinct Hitter
Problem. Given a stream S, parameters ε, δ ∈ (0, 1), and a
threshold value T > 0, output a set L of pairs (e, w̃(e)) for
which it holds that

(1) if element e is in L, then w(e) ≥ (1− ε)T

(2) if element e is not in L, then w(e) < (1 + ε)T

(3) for all (e, w̃(e)) ∈ L we have that |w(e)− w̃(e)| ≤ εT

with probability at least 1− δ.

The parameter ε specifies that any element e for which
w(e) ∈ [(1 − ε)T, (1 + ε)T) may or may not be added to
L, whereas the decision must be correct for all other el-
ements (Condition (1) and Condition (2)). Condition (3)
upper bounds the error in the estimated weights, i.e., it im-
poses a constraint on the accuracy. It is convenient to take
εT as the upper bound on the error for the following rea-
son. If the error in each estimated weight w̃(e) is at most
εT (with a certain probability), then we can simply add ex-
actly those elements e to L for which w̃(e) ≥ T , and both
Condition (1) and Condition (2) hold as well. The second
parameter δ is the error probability of the algorithm, i.e.,
we consider Monte Carlo algorithms. We say that an algo-
rithm (ε, δ)-approximates the correct solution Π if its output
L meets all the requirements of Definition 2.1.

It may suffice to guarantee a bound on the error that is
proportional to the true weight. In this case, we substitute
the strong accuracy condition (Condition (3)) with the fol-
lowing weak accuracy condition:

(3’) for all (e, w̃(e)) ∈ L we have that |w(e) − w̃(e)| ≤
εw(e).

As we will see, there is a fundamental difference between
strong and weak accuracy in that weak accuracy can be
achieved using less space. The disadvantage of the weak ac-
curacy condition is that it gives weaker guarantees on the
correctness of an output list sorted according to the esti-
mated weights, i.e., it is more likely that w(e) > w(e′) but
w̃(e) < w̃(e′) for some elements e, e′ ∈ ES . Note that strong
accuracy implies that Condition (3’) holds for ε′ := ε

1−ε
:

Since all elements in L have a weight of at least (1−ε)T and
the error in the estimated weights is upper bounded by εT ,
we immediately get that |w(e)− w̃(e)| ≤ ε

1−ε
w(e) = ε′w(e)

for all e ∈ L. Therefore, we focus on strong accuracy and dis-
cuss potential space optimizations for weak accuracy along
the way.
In the traditional heavy hitter problem, the threshold T

is simply a fraction of the length n of the data stream. This
definition has also been used in the context of the heavy
distinct hitter problem [26]. However, since we are interested
in finding the elements that contribute the most to the“total
weight”m, it is more natural to define T as a fraction of m.
Another motivation for this definition is that in the case of
applications where n constitutes the size of the considered
window, no element may have a weight that is a significant
fraction of n, yet some elements may have a large weight
with respect to m if the number of duplicates in the data
stream is large. Hence, we strive to identify the elements
whose weight is at least T = φm for a parameter φ ∈ (0, 1).3

3. ALGORITHMS
An essential ingredient for both algorithms discussed in

this section are pseudo-random hash functions mapping ele-
ments or element-value pairs to a particular image uniformly
at random. We assume that all hash functions are indepen-
dent. In the first part of this section, a simple sampling-
based algorithm is presented, followed by a discussion of a
sketch-based algorithm in Section 3.2.

3.1 Sampling-Based Heavy Distinct Hitter Al-
gorithm

A straightforward approach to reducing the space com-
plexity is to randomly drop element-value pairs in the
stream, i.e., merely a small, random sample of the entire
stream is stored. The basic idea is that any element e that
ends up in the sample together with many different values
probably occurs in the stream with a large number of dis-
tinct values if each element-value pair has a small probability
of being sampled. While this simple trick suffices to detect
heavy distinct hitters with reasonable probability, the errors
in the estimated weights may still be large. This problem
is addressed by generating several samples in parallel and
extracting a more accurate estimator from them.

3.1.1 Description
The most crucial parameter of the presented sampling al-

gorithm, referred to as Asample, is the sampling probability
p ∈ (0, 1) as it must be large enough to ensure that all heavy
distinct hitters are sampled frequently, but small enough to
make sure that the space complexity remains low. As men-
tioned above, several samples are required in order to bound

3It is worth noting that, since m ≤ n, a solution for T = φm
also contains all heavy distinct hitters for T = φn.

Algorithm 1 Asample: Process element-value pair (e, v).

for i := 1, . . . , r do
if hi((e, v)) < p and (e, v) /∈ Ri then

Ri := Ri ∪ {(e, v)};
w̃i(e) := |{(e′, v′) ∈ Ri | e = e′}|/p;

end if
end for
w̃(e) := median(w̃1(e), . . . , w̃r(e));
if w̃(e) ≥ T then

L := (L \ {(e, ·)}) ∪ {(e, w̃(e))};
end if

the error in the estimated weights. Thus, the second param-
eter of Asample is the number r of independent samples used
by the algorithm.

For all i ∈ {1, . . . , r}, a pseudo-random hash function hi :
(E × V) → [0, 1], mapping element-value pairs to a value in
the range [0, 1] uniformly at random, is associated with the
ith sample Ri. These hash functions are used to determine
whether an element-value pair is added to the sample as
follows. When processing an element-value pair (e, v) in
the stream, it is added independently to each sample Ri

if hi((e, v)) < p and it has not been added before.4 An
estimate w̃i(e) of element e’s weight is computed for each i ∈
{1, . . . , r}, which is simply the number of distinct values that
occur together with e in the sample divided by the sampling
probability p. The final estimate w̃(e) is the median of these
r estimates. An element, together with its estimated weight,
is added to the output set L if the estimated weight is at
least T = φm. The issue that m, and hence T , is not known
a priori will be discussed later. The algorithm is summarized
in Algorithm 1.

3.1.2 Analysis
In order to simplify the analysis, we assume in the fol-

lowing that ε ≤ 1/2. Moreover, the parameters of Asample

are set to p := 4e
(εφ)2m

and r := 2dlog(4
φδ

)e − 1. As a first

step, Lemma 3.1 shows that each estimate w̃i(e) is statisti-
cally unbiased, i.e., each estimate is w(e) in expectation. In
addition, the lemma upper bounds the variance of w̃i(e).

Lemma 3.1. For all i ∈ {1, . . . , r} and e ∈ ES , it holds

that E[w̃i(e)] = w(e) and V ar(w̃i(e)) < w(e) (εφ)
2m

4e
.

Proof. Consider any sampled element e and an arbitrary
i ∈ {1, . . . , r}. Let Di denote the number of distinct values
stored inRi that form an element-value pair with e. We have
that E[Di] = p · w(e) and thus E[w̃i(e)] = E[Di/p] = w(e).
The variance is V ar(w̃i(e)) = V ar(Di/p) = V ar(Di)/p

2 =

w(e)(1− p)/p < w(e) (εφ)
2m

4e
. �

While the estimated weights of the heavy distinct hitters
must be fairly accurate, the error for the remaining elements
merely has to be small enough to ensure that they are not
mistakenly considered heavy distinct hitters. In order to
formalize this rule, we partition the set ES of elements into
disjoint classes Cj , j ∈ {0, . . . , dlog(φm)e−1}, as follows. An
element belongs to class C0 if w(e) ≥ φm

2
. For each element

4Note that the pseudo-randomness of the hash functions im-
plies that an element-value pair (e, v) that is not added to
some sample Ri will not be added to Ri at any later point
in time.

e ∈ C0 an upper bound of b0 := εφm is imposed on the error
of its estimated weight. We define that e ∈ Cj for any j ≥ 1
if w(e) ∈

[
φm
2j+1 ,

φm
2j

)
. For each element in any such class,

we require that the error in the estimated weight is bounded
by b1 := b2 := . . . := φm

2
. The following lemma reveals that

the probability that w̃(e) deviates from w(e) by bj or more is
small for any element e ∈ Cj , and also that this probability
becomes exponentially smaller as j increases.

Lemma 3.2. For each element e in any class Cj it holds

that P[|w̃(e)− w(e)| ≥ bj] <
(
φδ
4

)j+1
.

Proof. First, consider the case j = 0. According to
Lemma 3.1, the variance of each estimate w̃i(e) is bounded

by V ar(w̃i(e)) < w(e) (εφ)
2m

4e
≤ (εφm)2

4e
for all i ∈ {1, . . . , r}.

By applying Chebychev’s inequality, we immediately get
that P[|w̃i(e) − w(e)| ≥ εφm] < 1

4e
= 1

2j+2e
. For j > 0,

we have that V ar(w̃i(e)) ≤ w(e) (εφ)
2m

4e
< (εφm)2

2j+2e
and thus

P[|w̃i(e) − w(e)| ≥ (φm)/2] < 4ε2

2j+2e
≤ 1

2j+2e
, using the as-

sumption that ε ≤ 1/2. Hence, we can conclude that

pj := P[|w̃i(e)− w(e)| ≥ bj] <
1

2j+2e
(1)

for any element e ∈ Cj , j ∈ {0, . . . , dlog(φm)e − 1}.
Since the final estimate w̃(e) is the median of r estimates,

it is only possible that |w̃(e) − w(e)| ≥ bj if more than
(r − 1)/2 estimates deviate from w(e) by at least bj . This
probability is upper bounded by

P[|w̃(e)− w(e)| ≥ bj] ≤
r∑

k=(r+1)/2

(
r

k

)
pkj (1− pj)

r−k

≤

(
r

(r + 1)/2

)
p
(r+1)/2
j

< (2e)(r+1)/2p
(r+1)/2
j

(1)
<

(
1

2j+1

)log(4/(φδ))

=

(
φδ

4

)j+1

.

�

Given this lemma, we are in the position to prove the
main result in this section, which states that Asample indeed
computes an (ε, δ)-approximation. In addition, Theorem 3.3
gives a bound on the space complexity of Asample that holds
with high probability.5

Theorem 3.3. If p := 4e
(εφ)2m

and r := 2dlog(4
φδ

)e −
1, Asample (ε, δ)-approximates the correct solution Π =
{(e, w(e)) | w(e) ≥ T}. The space complexity is

O

((
1 + εφ

√
logm

) log(1
φδ

)

(εφ)2

)
with high probability.

Proof. As there are at most 2j+1

φ
elements in class Cj ,

it follows from Lemma 3.2 that the probability that any
element in this class does not satisfy the required bound

is 2j+1

φ

(
φδ
4

)j+1 ≤
(
1
2

)j+1
δ. Hence, by a union bound, the

5For an input parameter m, an event holds with high prob-
ability if the probability that it occurs is at least 1− 1/mλ,
where λ ≥ 1 is a parameter of the algorithm or the analysis.

probability that any element in any class does not satisfy
the required bound is upper bounded by δ. Since the error
in w̃(e) for all e ∈ C0 is upper bounded by εφm = εT and
the estimated weight is smaller than T for all other elements,
Asample (ε, δ)-approximates Π as claimed.

At most 1
(1−ε)φ

element-weight pairs are added to L, i.e.,
the space complexity for storing L is O(1/φ) provided that
ε is bounded away from 1. Let R denote the total num-
ber of sampled element-value pairs.6 The simple bound
2dlog(4

φδ
)e − 1 ≥ 3 implies that E[R] = rpm ≥ 12e

(εφ)2
. Using

a Chernoff bound, we get that

P
[
R >

(
1 +

εφ√
3e

√
λ lnm

)
E[R]

]
≤ e−

(εφ)2

12e
(λ lnm)E[R]

≤ e−λ lnm =
1

mλ
.

Since E[R] = rpm < 8e
(εφ)2

dlog(4
φδ

)e, the claimed bound on

the space complexity follows. �

A nice property of Asample is that it can be adapted to
guarantee only weak accuracy at a lower space complex-
ity. Not suprisingly, this reduction of the space complexity
is achieved by reducing the sampling probability p, which
yields the following result.

Theorem 3.4. If p := 4e
(1−ε)ε2φm

and r := 2dlog(4
φδ

)e −
1, Asample (ε, δ)-approximates the correct solution Π =
{(e, w(e)) | w(e) ≥ T} guaranteeing weak accuracy. The
space complexity is

O

((
1 + ε

√
(1− ε)φ logm

) log(1
φδ

)

(1− ε)ε2φ

)
with high probability.

Proof. Due to the smaller sampling probability p, the
variance increases slightly, i.e., we have that V ar(w̃i(e)) <

w(e) (1−ε)φε2m
4e

for all i ∈ {1, . . . , r} and e ∈ ES .
We will now show that Lemma 3.2 still holds if we split

the class C0 into two disjoint classes C∗
0 and C0 and define

b∗0(e) := εw(e) for all e ∈ C∗
0 . An element belongs to class C∗

0

if its weight is at least (1−ε)φm, i.e., exactly those elements
are in C∗

0 that are allowed to occur in L. Each other element
e, whose weight is in the range [φm

2
, (1− ε)φm), remains in

class C0 for which b0 := εφm.
Consider any element e ∈ C∗

0 . It holds that V ar(w̃i(e)) <

w(e) (1−ε)φε2m
4e

≤ (εw(e))2

4e
. Thus, the probability that w̃i(e)

deviates from w(e) by at least b∗0(e) = εw(e) is lower than
1/(4e). For each element e ∈ C0 we have that V ar(w̃i(e)) <

w(e) (1−ε)φε2m
4e

< (εφm)2

4e
and thus P[|w̃i(e) − w(e)| ≥ b0] <

1/(4e). Hence, for each element in either C∗
0 or C0 the fail-

ure probability is lower than 1/(4e) = 1/(2j+2e). For all
e ∈ Cj , j > 0, and i ∈ {1, . . . , r}, it holds that V ar(w̃i(e)) <

w(e) (1−ε)φε2m
4e

< (εφm)2

2j+2e
, and thus P[|w̃i(e) − w(e)| ≥ bj =

φm/2] < 1/(2j+2e), as ε ≤ 1/2 by assumption. Using
the same techniques as in Lemma 3.2, we again get that

P[|w̃(e)− w(e)| ≥ bj] <
(
φδ
4

)j+1
for all j.

The proof of correctness is now identical to the proof of
Theorem 3.3, and the space complexity is derived analo-
gously. �
6Note that the same stream element-value pair may occur
in more than one sample Ri. Given that p is small, this does
not increase the space complexity substantially.

We see that the space complexity can be improved roughly
by a factor of (1− ε)/φ if weak accuracy suffices.

3.1.3 Discussion
It is easy to show that the bounds on the space complexity

in Theorem 3.3 and Theorem 3.4 are asymptotically optimal
up to logarithmic factors.

Theorem 3.5. Any algorithm A that (ε, δ)-approximates
Π = {(e, w(e)) | w(e) ≥ T} guaranteeing weak accuracy
must store Ω

(
1

ε2φ

)
bits. If strong accuracy is required, any

algorithm A that (ε, δ)-approximates Π must store Ω
(

1
(εφ)2

)
bits.

Proof. Both bounds follow from simple reduction argu-
ments. First, we consider the space required to guaran-
tee weak accuracy. Assume that the heavy distinct hitters
are given, i.e., it remains for algorithm A to estimate their
weights. Without loss of generality, it is further assumed
that the approximation of the weight of each heavy dis-
tinct hitter is independent. As there may be Ω(1/φ) heavy
distinct hitters, algorithm A must compute the number of
distinct values for Ω(1/φ) elements independently, implying
that algorithm A must store Ω(1/φ) times as many bits as
are required to compute an accurate estimate of the weight
of a single heavy distinct hitter. Since any algorithm com-
puting an (ε, δ)-approximation of the number of distinct el-
ements must store Ω(1/ε2) bits if m is sufficiently large [17],
Ω(1/ε2) bits are also needed to get an accurate estimate of
the weight of each heavy distinct hitter, which proves the
claimed bound.
An algorithm A that (ε, δ)-approximates Π guaranteeing

strong accuracy can be used to (ε′, δ)-approximate m, where
ε′ := εφ, as follows. Each item x in the stream is converted
into the element-value pair (e, x) and then processed by al-
gorithm A. In the end, L will contain (e, w̃(e)) for which
it holds that |w̃(e) − w(e)| = |w̃(e) − m| ≤ ε(φm) = ε′m
with probability at least 1 − δ. Again using the result that
Ω(1/ε′2) bits are required to (ε′, δ)-approximate the num-
ber of distinct elements, we conclude that algorithm A must
store at least Ω(1/(εφ)2) bits. �

A minor shortcoming of Asample is that the bound on the
space complexity is probabilistic. This issue can be over-
come by fixing the maximum number of sampled elements,
e.g., by setting it to a small multiple of the expected number,
which slightly increases the failure probability of the algo-
rithm. A more critical problem is that m is unknown. As
mentioned earlier, m can be approximated fairly efficiently.
Given an estimate m̃ that lies in the range [(1−ρ)m, (1+ρ)m]
with reasonable probability, p is computed using the esti-
mate m̃/(1 + ρ). This estimate is appropriate because the
claimed error bounds on the weights with respect to the true
m may be violated if m is overestimated. Thus, p may be
too large by a factor of (1 + ρ)/(1− ρ), and the space com-
plexity increases by the same factor. Naturally, the estimate
m̃ and consequently the sampling probability p changes as
elements are processed, i.e., it is necessary to iterate over the
sampled elements and drop all the elements from each sam-
ple Ri if hi(e) < p does not hold anymore [23], in particular
if intermediate results are required. In order to minimize
the number of iterations, the estimate for m may only be
increased if, e.g., m̃ reaches the next power of 2, which also
leads to an increase in the space complexity.

Apparently, all these actions have a negative impact on
the space complexity or the failure probability of the entire
procedure. An obvious question is whether there are other
approaches that are not affected by these problems. This
issue is addressed in the following section, where an algo-
rithm is presented whose parameters do no not depend lin-
early on m, which appears to be inherent to sampling-based
approaches.

3.2 Sketch-Based Heavy Distinct Hitter Algo-
rithm

A common technique for solving stream processing prob-
lems is to compute a so-called sketch, or synopsis, which is a
space-efficient summary of a stream. The main difference to
sampling is that typically the entire stream is added to the
sketch (i.e., no input is simply dropped). Finding a suitable
sketch for the heavy distinct hitter problem is challenging
because only distinct values must be counted, which means
that a heavy hitter approach cannot be used. The sketch
introduced in this section solves this problem by employing
pairs of distinct counting primitives capable of computing
an estimate of the number of distinct items inserted. An
element-value pair is processed by randomly inserting it into
one of each pair of distinct counting primitives. The intu-
ition is that updating the same counting primitive of each
pair when processing (e, ·) produces an imbalance between
the estimates of the primitives, which can be exploited to
estimate w(e).

3.2.1 Description
The basic building block of our sketch is a distinct count-

ing primitive C, which offers two functions: (1) insert(x)
processes the data item x and (2) getNumberDistinct() re-
turns an estimate of the (current) number of distinct in-
serted items. Any distinct counting primitive that satisfies
the following criteria can be used: It can be stored using a
constant number of words, and if m distinct items are in-
serted, getNumberDistinct() returns the correct number m
in expectation and the variance is αm2 for some constant
α > 0. It can be shown that this bound on the variance is
asymptotically optimal if the space complexity of C is con-
stant [17]. Furthermore, we require that the estimate does
not change when some item is inserted repeatedly. Several
distinct counting algorithms described in the literature meet
these requirements. We will discuss such algorithms in more
detail later.

The algorithm, called Asketch, is similar to Asample in
that it also computes r estimates and returns the median as
the final estimate. The second parameter s of Asketch de-
termines how many pairs of distinct counting primitives are
used to compute each estimate. For a certain i ∈ {1, . . . , r}
and j ∈ {1, . . . , s}, the two distinct counting primitives that
form the jth pair used for the ith estimate are denoted by C0

ij

and C1
ij . Each stream item (e, v) is processed by inserting it

into one distinct counting primitive of each pair. A pseudo-
random hash function hij : E → {0, 1}, hashing each ele-
ment e to 0 or 1 with equal probability, determines whether
(e, v) is inserted into C0

ij or C1
ij irrespective of v ∈ V . Af-

ter this insertion process, the updated estimate w̃(e) can be
computed and, as in Asample, (e, w̃(e)) is added to the out-
put set L if w̃(e) ≥ T (i.e., T must again be approximated).
The steps of Asketch are given in Algorithm 2.

It remains to specify how w̃(e) is determined. As men-

Algorithm 2 Asketch: Process element-value pair (e, v).

for i = 1, . . . , r do
for j = 1, . . . , s do

C
hij(e)

ij .insert((e, v));
end for

end for
L := L \ {(e, ·)};
w̃(e) := getEstimate(e);
if w̃(e) ≥ T then

L := L ∪ {(e, w̃(e))};
end if

tioned before, it is the median of estimates w̃1(e), . . . , w̃r(e).
Each estimate w̃i(e), i ∈ {1, . . . , r}, is computed as follows.
For all s pairs of distinct counting primitives, the differ-
ence between the estimated number of distinct insertions
into C

hij(e)

ij and C
1−hij(e)

ij is computed, and w̃i(e) is sim-
ply set to the average of these differences. This procedure,
called getEstimate(e), is summarized in Algorithm 3.

3.2.2 Analysis
The analysis of algorithm Asketch basically follows the

same lines as the analysis of Asample. For the sake of sim-
plicity, we assume in this section that ε ≤ 1/2− c for some
constant c > 0 (this assumption is used in the proof of Theo-
rem 3.7). In the following, we will slightly abuse our notation

and consider C
hij(e)

ij a random variable whose value is the
corresponding distinct counting primitive’s estimate of the
number of distinct inserted items. The key result, which is

proved in the following lemma, is that C
hij(e)

ij −C
1−hij(e)

ij is
an unbiased estimator of the weight w(e) of element e, and
its variance is in the order of m2.

Lemma 3.6. For all i ∈ {1, . . . , r}, j ∈ {1, . . . , s}, and

e ∈ ES , it holds that E
[
C

hij(e)

ij − C
1−hij(e)

ij

]
= w(e) and

V ar
(
C

hij(e)

ij − C
1−hij(e)

ij

)
≤ (1 + α)m2 −mw(e).

Proof. For all i ∈ {1, . . . , r}, j ∈ {1, . . . , s}, and q ∈
{0, 1}, let the random variable Cq

ij(t) denote the return value
of Cq

ij .getNumberDistinct() after t distinct items have been

inserted. Recall that E[Cq
ij(t)] = t and V ar(Cq

ij(t)) = αt2

according to our requirements of distinct counting primitives
given in Section 3.2. For any two elements e and e′, we define

s(e, e′) :=

{
1 if hij(e) = hij(e

′),

0 else.

It holds that

E
[
C

hij(e)

ij

]
= E

[
C

hij(e)

ij

(
w(e) +

∑
e′∈ES\{e}

s(e, e′)w(e′)
)]

= w(e) +
m− w(e)

2
=

m+ w(e)

2
.

Similarly, we get that E
[
C

1−hij(e)

ij

]
= m−w(e)

2
, and thus

E
[
C

hij(e)

ij − C
1−hij(e)

ij

]
= w(e) as claimed.

E[Cq
ij(t)] = t and V ar(Cq

ij(t)) = αt2 together imply that

E[(Cq
ij(t))

2] = (1 + α)t2. Let pt denote the probability that

the total number of distinct elements hashed to C
hij(e)

ij is t.

Algorithm 3 getEstimate(e): Compute the estimated
weight of element e.

for i = 1, . . . , r do
w̃i := 0;
for j = 1, . . . , s do

w̃i := w̃i + C
hij(e)

ij .getNumberDistinct()

−C
1−hij(e)

ij .getNumberDistinct();
end for
w̃i := w̃i/s;

end for
return median({w̃1, . . . , w̃r});

We have that

E
[(

C
hij(e)

ij

)2]
=

m∑
t=w(e)

E
[(

C
hij(e)

ij (t)
)2]

pt

= (1 + α)

m∑
t=w(e)

t2pt

≤ 1 + α

2

(
m2 + w(e)2

)
. (2)

The last inequality can be explained as follows. Due to the
quadradic dependency on t, the sum is maximized if the
probability that t = m is maximized, i.e., the number of dif-
ferent elements is minimized. Assume that there is just one
other element e′ whose weight is w(e′) = m− w(e). In this

case, pw(e) = pm = 1/2 and we get exactly E
[(
C

hij(e)

ij

)2]
=

1+α
2

(m2+w(e)2). Note that this bound also holds if e is the

only element, which implies that E
[(
C

hij(e)

ij

)2]
= (1+α)m2.

If there are more elements, pm is reduced, and E
[(
C

hij(e)

ij

)2]
becomes smaller as a result. The same argument also applies

to C
1−hij(e)

ij for which it holds that

E
[(

C
1−hij(e)

ij

)2]
≤ 1 + α

2
(m− w(e))2. (3)

In order to bound the variance, we need a lower bound on
the covariance:

Cov
(
C

hij(e)

ij , C
1−hij(e)

ij

)
≥ −E

[
C

hij(e)

ij

]
E
[
C

1−hij(e)

ij

]
= −m2 − w(e)2

4
. (4)

Given these bounds, we get the claimed bound on the

variance of ∆Cij(e) := C
hij(e)

ij − C
1−hij(e)

ij as follows.

V ar(∆Cij(e)) = V ar
(
C

hij(e)

ij

)
+ V ar

(
C

1−hij(e)

ij

)
−2Cov

(
C

hij(e)

ij , C
1−hij(e)

ij

)
(2,3,4)

≤ 1 + α

2

(
m2 + w(e)2

)
−
(
m+ w(e)

2

)2

+
1 + α

2
(m− w(e))2 −

(
m− w(e)

2

)2

+
m2 − w(e)2

2

= (1 + α)m2 + αw(e)2 − (1 + α)mw(e)

≤ (1 + α)m2 −mw(e).

�

Considering that O(m) distinct element-value pairs are
inserted into each distinct counting primitive, it is not sur-
prising that the variance of the difference between two dis-
tinct counting primitives is in the order of m2. The fact
that the variance is not bounded by O(mw(e)) (as in algo-
rithm Asample) entails that the space complexity depends
logarithmically on the number ` of distinct elements in the
stream as Theorem 3.7 reveals.

Theorem 3.7. If r := 2
⌈
max{ln(4

φδ
), 1

2
log1/(2ε)(

φ`
2
)}
⌉
−

1 and s :=
⌈ (1+α)2e2

(φε)2

⌉
, Asketch (ε, δ)-approximates the cor-

rect solution Π = {(e, w(e)) | w(e) ≥ T}. The space com-
plexity is

O

(
log(1

φδ
) + log1/ε(φ`)

(φε)2

)
.

Proof. By assumption, repeated insertions of the same
element-value pair do not have any effect on the distinct
counting primitives. Therefore, we can assume without loss
of generality that each element-value pair occurs only once
in the stream.
Consider the time when a specific element e whose weight

is at least φm
2

occurs the last time. At this point in time,
e has been processed exactly w(e) times. Each w̃i(e) is
the average of s trials, which means that E[w̃i(e)] = w(e)

and V ar(w̃i(e)) ≤ (1+α)m2

s
≤ (εφm)2

2e2
since at most m

(distinct) element-value pairs have been processed. Con-
sequently, using Chebychev’s inequality, we get that p′ :=
P[|w̃i(e) − w(e)| > εφm] ≤ 1

2e2
. As in the analysis of al-

gorithm Asample, the probability that the error of the final
estimate w̃(e) is at least ε(φm) is upper bounded by the
probability that more than (r− 1)/2 estimates are off by at
least ε(φm), i.e.,

P[|w̃(e)− w(e)| > εφm] ≤

(
r

(r + 1)/2

)
p′(r+1)/2

≤ (2e)(r+1)/2p′(r+1)/2 ≤ φδ

4
,

where we used that r ≥ 2dln(4/(φδ))e − 1. By means of
a union-bound argument, we see that the probability that
w̃(e) deviates form w(e) by more than ε(φm) for any element
whose weight is at least φm

2
is upper bounded by δ/2 because

there are at most 2/φ such elements. Thus, all elements
whose weight is at least φm

2
satisfy the requirements with

probability at least 1− δ/2.
For the remaining elements it suffices to show that the

error does not exceed φm
2
, which ensures that none of these

elements is erroneously considered a heavy distinct hitter.

Since p′′ := P[|w̃i(e)−w(e)| > φm/2] ≤ 2ε2

e2
, the probability

that w̃(e) of any such element e is larger than φm
2

is

P
[∣∣∣w̃(e)− w(e)

∣∣∣ > φm

2

]
≤

(
r

(r + 1)/2

)
p′′(r+1)/2

≤ (2e)(r+1)/2p′′(r+1)/2

≤
(
1

e

)(r+1)/2

(4ε2)(r+1)/2

≤ φδ

4
(2ε)log1/(2ε)(φ`/2) (5)

=
δ

2`.

In Inequality (5) we used that r ≥ 2 ln(4/(φδ))− 1 and r ≥
log1/(2ε)(φ`/2) − 1. Again, using a union-bound argument,
the probability that the estimated weight of any element
exceeds φm

2
is upper bounded by δ/2. Hence it follows that

the estimates of all elements are as accurate as required with
probability at least 1− δ as claimed.

The space complexity is rs ·2d+ |L| with d being the con-
stant size of a distinct counting primitive. At most 1

(1−ε)φ

element-value pairs are added to L, implying that |L| ∈
O(1/φ). Since r := 2dmax{ln(4

φδ
), 1

2
log1/(2ε)(

φ`
2
)}e − 1,

s := d (1+α)2e2

(φε)2
e, and log1/(2ε) x ≤ 1

c
log1/ε x for any x ≥ 1

due to the assumption that ε ≤ 1/2 − c, the bound on the
space complexity follows. �

It is worth noting that (the less important case of) ε ∈
[1/2, 1) can be handled by setting r := 2

⌈
ln(`

δ
)
⌉
− 1, which

results in a space complexity of O
(log(`/δ)

(φε)2

)
.

3.2.3 Discussion
While the space complexity of Asample is essentially con-

stant, the space complexity of Asketch depends logarith-
mically on `. However, when taking a closer look at the
parameter r in Theorem 3.7, it becomes apparent that
r = 2

⌈
ln(4

φδ
)
⌉
−1 unless ` is exceedingly large. For example,

if φ = δ = ε = 1/10, r must be set to a larger value only
if ` > 109. Thus, the space complexity is constant for most
practical purposes. What is more, if the space required for
each distinct counting primitive is small—one possible im-
plementation using little space is presented in Section 3.3—,
the space complexities of the two algorithms are identical
up to a small constant factor.

The advantage of Asketch is that it does not rely on an
accurate estimate of m. However, this increased robustness
comes at a certain price: Due to the larger variance, al-
gorithm Asketch cannot be adapted for the weak accuracy
constraint. Moreover, the computational cost is higher as
many hash values have to be computed when processing an
element-value pair. This processing cost can be reduced by
caching the hash values of heavy or recently encountered el-
ements, i.e., there is a trade-off between computational and
space complexity.

3.3 Practical Evaluation
So far, we have discussed bounds on the space complexity

and the accuracy of the proposed algorithms that hold re-
gardless of the distribution of the input stream. Since worst-
case distributions rarely occur in practice, it is worthwhile to
investigate the performance of the algorithms when process-
ing real network data. For this purpose, the algorithms have
been implemented and tested using undirectional flow data
captured at the edge between the IBM Research campus
network and the Internet. The considered trace is a collec-
tion of more than 12 million flows recorded in five days in
May 2009. Our focus is on finding the sources that connect
to many distinct destination IP addresses. In total, there
are more than 725, 000 distinct source-destination pairs in
the trace. Luckily, the trace is an ideal test candidate: Five
machines scanned almost an entire 16-bit subnetwork dur-
ing this time, which means that each of these machines is
responsible for 8.8% of all distinct connections. The sum of
distinct connections of the top 10 sources amounts to 64%
of the total sum. The number of distinct connections of

the other approximately 12, 000 sources follows a heavy-tail
distribution.
Before discussing the main results, we briefly describe the

distinct counting primitive used in the implementation of
Asketch. Each inserted item is hashed uniformly at random
to a value in the range (0, 1) and the k smallest hash values
ever encountered are stored. If hk is the kth smallest hash
value (i.e., the largest stored value), the estimated number of
distinct items is (k − 1)/hk [16]. When inserting m distinct
items, it can be shown that E[(k−1)/hk] = m and V ar((k−
1)/hk) =

k−1
k−2

(m2−m)−m2 < m2

k−2
. Thus, a variance of (at

most) αm2 is achieved by storing 1
α
+ 2 hash values. Given

the factor 1 + α in the parameter s, k = 4 minimizes the
space requirements and is used in the implementation.7

After processing the data stream, both algorithms output
the 10 elements with the largest estimated weights. We eval-
uate how many top 5 and top 10 sources are identified cor-
rectly, and also the error in the estimates. As the parameter
r mainly helps to keep all errors bounded, it does not affect
the median error significantly. For the sake of simplicity, we
focus on this measure and state only average median errors
over several runs using different hash functions and differ-
ent r ∈ {1, 3, 5, 7, 9}. In order to compare the performance
of Asample and Asketch, they are both allowed to store a
certain fraction of the total number of distinct connections.
This constraint simplifies the sampling algorithm because
maintaining an accurate estimate of m, as discussed in Sec-
tion 3.1.3, is not required, which also means that Asample is
slightly favored. Since Asample has the additional advantage
that it must only store element-value pairs, instead of pairs
of distinct counting primitives, we can expect Asample to
achieve more accurate results. By setting the memory bud-
get to 10% of the total sum of distinct connections, Asketch

correctly finds all top 5 and top 10 sources, and the median
error in the estimates of the top 5 and the top 10 sources is
roughly 5% and 8%, respectively. The median error is still
reasonably small when reducing the budget to 1% (19% for
the top 5 and 27% for the top 10 sources), and all top 5
sources are identified correctly, but often only 6 or 7 of the
correct top 10 sources are found. Given a memory budget of
1%, the median error of Asample is around 5-6% for both the
top 5 and top 10 sources, and all top 10 sources are in the
output list, i.e., due to the lower variance, Asample achieves
a better accuracy particularly for the sources outside the top
5. Even a budget of 0.1% suffices for Asample to identify at
least 4 of the top 5 and 9 of the top 10 sources with a me-
dian error of about 20%. We conclude that both algorithms
are capable of finding the heavy distinct hitters in the top 5
using little space; however, in this setting Asample achieves
a greater accuracy in the estimates, which is in accord with
the theoretical analysis.

4. RELATED WORK
There is a large body of work on streaming (or one-pass)

algorithms, which process data streams exactly once and in
order. For a nice introduction to streaming algorithms, the
interested reader is referred to [24]. As mentioned before,
one of the most well-known and well-studied problems in
the streaming model is computing the number m of distinct
elements in a data stream. An elegant approach to approx-
imate m is to map each element to a pseudo-random bit

7Note that k = 3 could have been used as well.

string and to store the largest index i where the first 1 oc-
curs. Since we can expect that roughly m/2k elements have
the first 1 at position k, i is approximately logm [13] (see
also [4, 10, 12, 21] and references therein). The alterna-
tive technique outlined in the previous section is proposed
and analyzed in [16]. It has been shown that any algorithm
that outputs an estimate whose error is bounded by εm with
reasonable probability must store Ω(logm+ 1

ε2
) bits [1, 17].

An algorithm that matches this bound has been proposed
recently [21].

Alon et al. introduced the more general problem of ap-
proximating the frequency moments Fk :=

∑
ei∈ES

mk
i ,

where mi denotes the frequency of element ei, of a data
stream for any k ≥ 0 [1]. Note that the number of distinct
elements is the 0th frequency moment. In a series of papers,
tight bounds (up to polylogarithmic factors) on the space
requirements have been proved for all k [1, 3, 5, 8, 18].

The elements that occur frequently in a data stream may
also be of interest. It has been shown that elements whose
frequencies exceed a certain threshold can be found effi-
ciently [23] using the “sample and hold” technique [15]. The
basic idea is to sample each element with a certain probabil-
ity. Once an element is sampled, its frequency is maintained
correctly from this point on by updating it whenever the
same element occurs again in the stream. This technique
can also be used to find flows in a network that use up at
least a certain fraction of the bandwidth by randomly sam-
pling bytes [11]. While “sample and hold” is an elegant and
efficient technique to count frequencies, it is not as useful
for detecting heavy distinct hitters. The problem is that the
frequencies of sampled elements cannot be updated easily,
i.e., a distinct counting primitive must be used for each ele-
ment, and the sampling rate must be Ω

(
1

mεφ

)
, otherwise too

many distinct values may be missed before sampling an ele-
ment for the first time. Since the error must be bounded by
ε(φm) and some elements may have a weight in the order of
m, the space requirement for such a distinct counting prim-
itive is Ω

(
1

(εφ)2

)
bits. Therefore, the resulting (expected)

space requirement is Ω
(

1
(εφ)3

)
bits, which is worse than the

bounds in Section 3.
The problem of finding heavy distinct hitters has also been

studied in the literature, although the considered models
and the problem definitions are not identical. The most rel-
evant related work focuses on finding superspreaders [26],
which are entities in a network that connect to many dis-
tinct destinations, i.e., superspreaders are heavy distinct hit-
ters. The authors show that straightforward sampling can
be used to identify superspreaders using little space. In con-
trast to this work, the threshold is defined as T = φn, i.e.,
the number of distinct destinations must be a fraction of
the length of the entire data stream. Moreover, their goal is
primarily to detect superspreaders without considering how
many distinct destinations are contacted. In particular, for
a parameter b, their sampling algorithm detects each super-
spreader with probability at least 1 − δ, and a source that
contacts at most T/b destinations is erroneously considered
a superspreader with probability at most δ. By setting the
sampling probability to an appropriate value, the space com-

plexity of their algorithm is O
(log(1/δ)

φ

(
1+ 1

(b−1)2

))
in expec-

tation. If we apply our model and require that Condition (1)
and Condition (2) hold, and also that all superspreaders are
found with probability 1− δ, the space complexity becomes

O
(log(1/(φδ))

φε2

)
. Note that algorithm Asample achieves the

same expected space complexity while additionally guaran-
teeing weak accuracy.
Numerous other techniques that are based on sampling

have been proposed [7, 20, 27]. Cao et al. [7] focus on
identifying heavy distinct hitters for a “moderately large”
threshold T . They propose a two-phase filtering method
using Bloom filters [6] whose purpose is to remove the ma-
jority of elements with small weights. The weight of the re-
maining elements is estimated using a thresholded bitmap.
Since the computed weights are biased, the authors further
introduce a simple technique for bias correction using unbi-
ased weight estimates of a small random sample of elements.
Zhao et al. [27] address the problem that some of the sam-
pled element-value pairs may occur frequently, which entails
that the data structure used to store the sampled pairs must
process the same pairs again and again. As the arrival rate
of element-value pairs may be significantly higher than the
processing rate of this data structure, the sampling rate has
to be small in order to ensure that the data structure is
not overwhelmed. However, a small sampling rate results
in low accuracy. The authors propose to use a Bloom filter
to filter out element-value pairs that have been encountered
before. Due to the possibility of hash collisions, the up-
date procedure of the data structure must be modified to
obtain unbiased weight estimates. Additionally, a more so-
phisticated approach is presented using a two-dimensional
bitmap, which achieves more accurate results according to
experiments using traces of real-world network traffic. A dif-
ferent approach to boost the performance of algorithms for
the heavy distinct hitter problem is to use special associative
memories [2].
In another work, the space complexity of finding the top-k

heavy distinct hitters, i.e., the k elements with the largest
weights, is studied. The authors consider SYN flooding
attacks, where the weight of an element is defined as the
number of half-open TCP connections [14]. Their model
is somewhat more general in the sense that they can han-
dle deletions, i.e., once a TCP connections is fully estab-
lished, it no longer contributes to the weight of the (desti-
nation) element. The space complexity of their algorithm

is O
(m log2(n/δ) log2 m

w(ek)ε
2

)
, where w(ek) denotes the kth largest

weight.8 If w(ek) ∈ Ω(φm), the space complexity becomes

O
(log2(n/δ) log2 m

φε2

)
, i.e., if n, m, and the weight of the top-k

elements are large, the space complexities of the algorithms
presented in Section 3 are significantly lower.

5. CONCLUSION
As we have seen, while there is no space-efficient solution

that finds the correct set of heavy distinct hitters and the
corresponding weights, there are approximation techniques
that yield accurate results with high probability and that
have a small memory footprint. In particular, we have stud-
ied two classic approaches in stream processing, sampling
and computing a sketch of the data stream. Both techniques
achieve a space complexity that is asymptotically optimal
up to small logarithmic factors given a strong accuracy con-

8The space complexity given in their paper depends on the
size of the domains E and V . Their bound can be reduced
to the stated bound by hashing each pair to a value in a
domain of size polynomial in m.

straint. The proposed sampling-based algorithm is further
(almost) optimal if a weaker accuracy constraint suffices,
whereas the sketch-based algorithm has the advantage that
it does not rely on an accurate estimate of the number of
distinct items in the data stream. The practical study shows
that the sampling-based algorithm slightly outperforms the
sketch-based counterpart in that its returned estimates are
more accurate given the same memory budget. However,
both algorithms are able to detect the heavy distinct hitters
even when given considerably less space than the theoret-
ical upper bounds demand. Another strong point of the
proposed algorithms is that they are intrinsically paralleliz-
able as they compute sets of independent estimates. These
results suggest that the proposed algorithms may indeed be
valuable for various stream processing applications.

6. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The Space

Complexity of Approximating the Frequency
Moments. Journal of Computer and System Sciences,
58(1):137–147, 1999.

[2] N. Bandi, D. Agrawal, and A. El Abbadi. Fast
Algorithms for Heavy Distinct Hitters using
Associative Memories. In Proc. 27th International
Conference on Distributed Computing Systems
(ICDCS), 2007.

[3] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and
D. Sivakumar. An Information Statistics Approach to
Data Stream and Communication Complexity.
Journal of Computer and System Sciences,
68(4):702–732, 2004.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar,
D. Sivakumar, and L. Trevisan. Counting Distinct
Elements in a Data Stream. In Proc. 6th International
Workshop on Randomization and Approximation
Techniques (RANDOM), pages 1–10, 2002.

[5] L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha.
Simpler Algorithm for Estimating Frequency Moments
of Data Streams. In Proc. 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
708–713, 2006.

[6] B. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Communications of the ACM
(CACM), 13:422–426, 1970.

[7] J. Cao, Y. Jin, A. Chen, T. Bu, and Z.-L. Zhang.
Identifying High Cardinality Internet Hosts. In Proc.
28th IEEE Conference on Computer Communications
(INFOCOM), pages 810–818, 2009.

[8] A. Chakrabarti, S. Khot, and X. Sun. Near-Optimal
Lower Bounds on the Multi-Party Communication
Complexity of Set Disjointness. In In Proc. 18th IEEE
Conference on Computational Complexity (CCC),
pages 107–117, 2003.

[9] M. Charikar, K. Chen, and M. Farach-Colton. Finding
Frequent Items in Data Streams. Theoretical
Computer Science, 312(1):3–15, 2004.

[10] M. Durand and P. Flajolet. LogLog Counting of Large
Cardinalities. In Proc. 11th Annual European
Symposium on Algorithms (ESA), pages 605–617,
2003.

[11] C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting: Focusing on the
Elephants, Ignoring the Mice. ACM Transactions on
Computer Systems, 21(3):270–313, 2003.

[12] C. Estan, G. Varghese, and M. Fisk. Bitmap
Algorithms for Counting Active Flows on High Speed
Links. In Proc. 3rd ACM SIGCOMM Conference on
Internet Measurement (IMC), pages 153–166, 2003.

[13] P. Flajolet and G. N. Martin. Probabilistic Counting
Algorithms for Data Base Applications. Journal of
Computer and System Sciences, 31(2):182–209, 1985.

[14] S. Ganguly, M. Garofalakis, R. Rastogi, and
K. Sabnani. Streaming Algorithms for Robust,
Real-Time Detection of DDoS Attacks. In Proc. 27th
International Conference on Distributed Computing
Systems (ICDCS), 2007.

[15] P. B. Gibbons and Y. Matias. New Sampling-Based
Summary Statistics for Improving Approximate Query
Answers. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 331–342,
1998.

[16] F. Giroire. Order Statistics and Estimating
Cardinalities of Massive Data Sets. Discrete Applied
Mathematics, 157(2):406–427, 2009.

[17] P. Indyk and D. Woodruff. Tight Lower Bounds for
the Distinct Elements Problem. In Proc. 44th Annual
IEEE Symposium on Foundations of Computer
Science (FOCS), 2003.

[18] P. Indyk and D. Woodruff. Optimal Approximations
of the Frequency Moments of Data Streams. In Proc.
37th Annual ACM Symposium on Theory of
Computing (STOC), pages 202–208, 2005.

[19] B. Kalyanasundaram and G. Schnitger. The
Probabilistic Communication Complexity of Set
Intersection. SIAM Journal on Discrete Mathematics,
5(2):545–557, 1992.

[20] N. Kamiyama, T. Mori, and R. Kawahara. Simple and
Adaptive Identification of Superspreaders by Flow
Sampling. In Proc. 26th IEEE Conference on
Computer Communications (INFOCOM), pages
2481–2485, 2007.

[21] D. M. Kane, J. Nelson, and D. Woodruff. An Optimal
Algorithm for the Distinct Elements Problem. In Proc.
29th ACM SIGMOD Symposium on Principles of
Database Systems (PODS), pages 41–52, 2010.

[22] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

[23] G. Manku and R. Motwani. Approximate Frequency
Counts Over Data Streams. In Proc. 28th
International Conference on Very Large Data Bases
(VLDB), pages 346–357, 2002.

[24] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Foundations and Trends in Theoretical
Computer Science, 2005.

[25] A. A. Razborov. On the Distributional Complexity of
Disjointness. Theoretical Computer Science,
106(2):385–390, 1992.

[26] S. Venkatamaran, D. Song, P. B. Gibbons, and
A. Blum. New Streaming Algorithms for Fast
Detection of Superspreaders. In Proc. 12th ISOC
Symposium on Network and Distributed Systems
Security (NDSS), pages 149–166, 2005.

[27] Q. Zhao, A. Kumar, and J. Xu. Joint Data Streaming
and Sampling Techniques for Detection of Super
Sources and Destinations. In Proc. 5th ACM
SIGCOMM Conference on Internet Measurement
(IMC), pages 77–90, 2005.

