
dJay : Enabling High-density Multi-tenancy for Cloud Gaming
Servers with Dynamic Cost-Benefit GPU Load Balancing

Sergey Grizan

Siberian Federal University

s grizan@ttglabs.com

David Chu, Alec Wolman

Microsoft Research

{davidchu, alecw}@microsoft.com

Roger Wattenhofer

ETH Zurich

wattenhofer@ethz.ch

Abstract
In cloud gaming, servers perform remote rendering on behalf

of thin clients. Such a server must deliver sufficient frame

rate (at least 30fps) to each of its clients. At the same time,

each client desires an immersive experience, and therefore

the server should also provide the best graphics quality pos-

sible to each client. Statically provisioning time slices of the

server GPU for each client suffers from severe underutiliza-

tion because clients can come and go, and scenes that the

clients need rendered can vary greatly in terms of GPU re-

source usage over time.

In this work, we present dJay, a utility-maximizing cloud

gaming server that dynamically tunes client GPU rendering

workloads in order to 1) ensure all clients get satisfactory

frame rate, and 2) provide the best possible graphics qual-

ity across clients. To accomplish this, we develop three main

components. First, we build an online profiler that collects

key cost and benefit data, and distills the data into a reusable

regression model. Second, we build an online utility opti-

mizer that uses the regression model to tune GPU workloads

for better graphics quality. The optimizer solves the Multi-

ple Choice Knapsack problem. We demonstrate dJay on two

high quality commercial games, Doom 3 and Fable 3. Our

results show that when compared to a static configuration,

we can respond much better to peaks and troughs, achieving

up to four times the multi-tenant density on a single server

while offering clients the best possible graphics quality.

Categories and Subject Descriptors C.2.4 [Computer-
Communication Networks]: Distributed Systems—Distributed

Applications; I.6.8 [Simulation and Modeling]: Types of

Simulation—Gaming

Keywords GPU management; server load balancing
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1. Introduction
Gaming is popular. Recently, cloud gaming — where dat-

acenter servers host game application instances and clients

merely transmit UI input and display output (e.g. frame

buffers) from servers — has emerged as an interesting alter-

native to traditional client-side execution. Sony’s PlaySta-

tion Now, Nvidia’s GRID and Amazon’s AppStream are

among the cloud gaming services available to consumers to-

day [1, 3, 4].

Cloud gaming offers several advantages. Client-side sys-

tem configuration and platform compatibility issues are

eliminated, alleviating a long-standing headache of tradi-

tional non-console gaming and mobile device gaming. In

addition, upgrading datacenter servers with better hardware

is far easier than redeploying hardware to clients. Further-

more, players can select from a vast library of games and

instantly play any of them.

However, cloud gaming faces several technical chal-

lenges that are not unfamiliar to other cloud service providers:

latency, bandwidth and multi-tenancy [6]. Previous work has

looked at reducing cloud gaming’s latency and bandwidth

costs [8, 20]. In this work, we tackle multi-tenancy: how can

a server host as many players as possible? Multi-tenancy’s

importance is underscored by the lessons of one early cloud

gaming pioneer, which failed in part because it could only

support one client per server, thereby making a large and

ultimately unsustainable investment in server farms [13].

At first, it might appear that the same isolation and virtu-

alization support that has served traditional hosted services

well would suffice for multi-tenant gaming. However, cloud

gaming multi-tenancy is challenging and distinct from tradi-

tional datacenter multi-tenancy because games exhibit three

unique properties.

• GPU-Centric Workload: Graphics rendering is heavily

reliant upon the GPU. System resources such as disk,

system memory and CPU are often underloaded.

• Continuous Deadlines: Acceptable gaming interactiv-

ity requires continuous frame processing of at least 30

Frames Per Second (FPS) for the whole session. Play-

ers become dissatisfied when frame rates fall below 30

FPS [7].
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• Adjustable Visual Quality: Games typically expose

many optional graphical effects (e.g., anti-aliasing, tex-

ture details, shadows) that produce higher quality graph-

ics. Provided at least 30 FPS, players prefer the highest

possible visual quality.

Naı̈vely running multiple tenants concurrently on a server

can pose grave shortcomings. The load generated by one in-

stance can squeeze out another instance, resulting in missed

deadlines, low or erratic frame rates and an unplayable expe-

rience. Even the load generated by a single instance exhibits

significant temporal variability due to scene complexity: sim-

ple scenes with a few basic objects and no effects such as

Figure 1a render much faster than complex scenes with many

detailed objects and complex lighting and advanced effects

such as Figure 1b. Players can encounter both simple and

complex scenes within a brief window of a single session.

Therefore, if a server chooses to statically provision for the

worst case of all players visiting complex scenes all the time,

wasted resources and over-provisioning will be significant.

To address these shortcomings, we have built dJay,1 a

game hosting server (akin to an application server) that max-

imizes aggregate visual quality while meeting all deadlines

in the face of both variable scene complexity and client

churn. Central to dJay is the notion of utility, which we

define to consist of two components: cost in terms of GPU

time, and benefit in terms of visual quality. Examples of bet-

ter and worse visual quality are higher and lower resolution,

respectively. Utility is the basis for dJay’s three main func-

tions which enable it to maximize aggregate visual quality.

Online Utility Pofiling: dJay first constructs a utility pro-

file per application. During this one-time operation, dJay

collects utility measurements from live sessions. A core part

of the profiling is that dJay distills data collected from ses-

sions into per graphical object utility, where graphical ob-

jects are things that appear in game (e.g., race cars, build-

ings, soldiers). This step is important because object utili-

ties are reusable across sessions, whereas session utilities are

not. The distillation occurs through regression model con-

struction. §4 describes utility profiling in detail.

Future Utility Estimation: After the regression model is

constructed, dJay actively monitors each live session to de-

termine whether a session’s utility will change significantly

in the near term (which can happen often, for example, due

to scene changes). To produce an accurate estimate, dJay

queries the game for a list of game objects, and applies the

regression model to the objects, and generates an estimate

of expected future utility. §5 describes utility estimation in

detail.

Expected Utility Maximization: Lastly, dJay dynamically

adjusts visual quality settings to deliver the best possible

aggregate quality. It does so by periodically solving a vi-

sual quality optimization problem subject to GPU demands

1 dJay : a music artist that plays and mixes multiple records simultaneously.

(a) Simple Scene (b) Complex Scene

Figure 1: Scene complexity examples from Fable 3.
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Figure 2: GPU load varies considerably during the course of

a Fable 3 session.

and resource availability. We map our problem to the well

known Multiple Choice Knapsack Problem [17], for which

we adapt a fast heuristic. Furthermore, dJay ensures that

quality changes are not disruptive to player experience by

employing a graceful quality change process. §6 describes

utility optimization in detail.

We have ported two high-quality production games, Fa-

ble 32 and Doom 33, to run on dJay (§7). The evaluation

in §8 shows that dJay is not only able to effectively profile

and predict utility, it is also able to dynamically optimize vi-

sual quality to enable up to 4× more multi-tenancy than the

comparable baseline. Lastly, dJay’s system overhead is low

(less than 3ms per frame), which is extremely important for

an interactive cloud gaming system.

2. Background
For gaming, GPU processing is the bottleneck resource. One

avenue to multi-tenancy is to create a static partitions of the

GPU for each application instance. Commercial GPU virtu-

alization solutions from Citrix and VMWare already provide

this capability. However, this leads to very poor server den-

sity for two reasons. First, users come and go, making static

partitions unaccommodating. Second, a game’s scene com-

plexity and corresponding GPU load can change dramati-

cally over time. For example, a user in a virtual environment

may view a simple room at one moment and then navigate

to view a complex garden environment in the next moment.

Unfortunately, a static partition must allocate conservatively

for peak load since poor frame rate during some scenes is un-

2 http://www.lionhead.com/games/fable-iii/
3 http://bethsoft.com/en-us/games/doom_3_bfg
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satisfactory. This means during any non-peak load — which

occur frequently — GPU cores sit idle. Figure 2 shows that

for a typical application, much GPU capacity remains idle

for much of the time. The timespans of high utilization and

low utilization correspond to scenes like Figure 1b and Fig-

ure 1a, respectively. This waste leads to inefficient opera-

tions on the part of the service providers.

We observe that almost all games provide the capabil-

ity to tune rendering settings. Common examples of render-

ing settings include screen resolution, antialiasing, lighting

model complexity, enabling or disabling shadows, and tex-

ture detail. Developers offer these knobs because end user

machines vary greatly in capability. With traditional thick

clients (no cloud gaming), a user with a powerful machine

can enable many advanced rendering settings whereas a user

with a modest machine can tone down settings in order to

maintain a responsive FPS. A speed of 30 FPS is widely re-

garded as the threshold for a playable experience. Therefore,

we treat its inverse, 33ms per frame, as the maximum per-

missible frame time. Since frame rates above 30 FPS have

marginal benefits [7], in this work we consider any frame

time 33ms or below equally acceptable.

We leverage the rendering settings that titles already ex-

pose as the means to trade off better visual quality for lower

resource utilization. Games commonly contain a fixed num-

ber of preset rendering settings such as High, Medium and

Low, which in turn map to various settings for individ-

ual rendering parameters (e.g., High gives 16× antialiasing,

maximum texture detail, etc.). It is worth noting that changes

in rendering settings are strictly visual enhancements and

have no bearing on game semantics. Therefore, we are free

to alter rendering settings at any time without side effects on

game logic.

We also introduce the Structural Similarity (SSIM) score,

a standard criteria of the video compression community

used to quantify the perceived loss in video quality between

a pristine image f ∗ and a distorted version of the image,

f [26]. For example, the images f ∗ and f might represent

the same scene rendered with a High setting and a Medium

(or Low) setting, respectively. The function SSIMf ∗( f ) takes

a real value in [0,1] where a lower values indicates lower fi-

delity to the pristine image. By definition, SSIMf ∗( f ∗) = 1

and SSIMf ∗( f ) = 0 when f is random noise. While SSIM

is not perfect at reflecting human subjective assessment of

quality, it is more accurate than alternative measures such

as SNR and PSNR, and maps reasonably to the standard

subjective user-study based measure for video quality, Mean

Opinion Score [26].

3. Approach
Given a fixed budget of 33ms per frame, the questions we

aim to address are:

• Cost: What rendering settings are feasible?

• Benefit: Among the feasible, which setting is best?

These turn out to be challenging questions for two reasons.

First, the feasible combinations depend greatly on the GPU

cost of the workload at hand. As previously noted, scene

complexity can change anytime. A rendering setting that

is feasible for the current scene in the game may be too

expensive for other scenes in the game. Second, among those

feasible rendering settings, the “best” can differ depending

upon the scene. For example, consider the two renderings

of the same arch scene shown in Figure 3. There are very

noticeable differences in the landscape between the high

quality and low quality renderings. In contrast, the high and

low quality renderings of a coastal scene shown in Figure 4

look very similar. Therefore, we cannot assume that the

benefits of more sophisticated rendering apply uniformly to

all scenes.

Figure 5 illustrates the architecture of dJay by which

we resolve these questions about cost and benefit. We next

describe its main pieces.

3.1 Measuring Cost
In order to understand which combinations of rendering set-

tings are feasible, we build profiles of each app’s frame

time under different rendering settings. However, frame

time alone lacks context; given a rendering setting, we lack

any notion of what may be causing higher or lower frame

time. Without additional context, we are limited to attribut-

ing (high) frame times to coarse app-level granularity. This

worst case estimate attains no better resource utilization than

conservative static partitioning.

Ideally, we ought to map frame time to relevant in-game

context. We conjecture that graphical objects can serve as

useful context because they can have a large impact on frame

time. As a concrete example, graphical objects in Fable 3

include castles, houses, enemies and non-player characters,

to name just a few. Graphical objects are created at the

discretion of the app developers and a typical game contains

hundreds to thousands. Since a castle object is graphically

much more complex than a house object, we aim to attribute

a higher GPU cost to castles than to houses. Suppose for

every frame, the game provides us the active object list
(AOL), the list of graphical object types used to render the

frame. By mapping cost to graphical objects, we can later

estimate a cost for a novel scene based on the graphical

object types it contains. dProf shown in Figure 5 is the

component that measures costs and performs the mapping

of costs to graphical objects. We use statistical regression
models to determine the cost-to-object mapping (§4).

3.2 Measuring Benefit
In order to objectively assess “best,” we use SSIM and com-

pare rendering settings as follows for a given scene. Suppose

we generate the pristine image f ∗ with rendering settings R∗
where R∗ is the setting with every optional rendering setting

dialed to maximum quality. Let R1 and R2 be two rendering

settings and let f1 and f2 be the images generated by them,
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(a) High Quality (b) Low Quality

Figure 3: Major differences between High and Low Quality.

(a) High Quality (b) Low Quality

Figure 4: Minor differences between High and Low Quality.

dProf: utility profiler

dIce: concurrent execution
Session #28

(master instance)
Session #28

(slave instance)

per frame: <rendering setting, frame time, 
SSIM, Active Object List (AOL)>

Online Profiling

Session #913 Session #914 Session #915 Session #916

dOpt: utility optimizationdEst: utility estimation

Online Utility Maximization

per frame: <Potential Object List (POL)>
rendering setting

Regression Model
<rendering setting, object id, cost, benefit>

Figure 5: The dJay architecture shows the relationship of various components, all of which run online. Blue arrows represent

measurement whereas red arrows represent control.

respectively. We say R1 > R2 if SSIMf ∗( f1) > SSIMf ∗( f2).
However, comparing the SSIM of two existing frames is in-

sufficient to tell us about the SSIM of a novel frame that we

encounter in the future.

As with frame time, we wish to generalize SSIM beyond

a single frame. Therefore, we employ an approach for SSIM

that is similar to the approach that we employed for frame

time. dProf also uses statistical regression to map the SSIM

of a frame to the SSIM contribution of graphical objects in

the frame, thereby deriving a per-object “benefit” measure-

ment (§4). These benefit values are opaque in that they can-

not be interpreted as SSIM per se. We show how they are

used next.

3.3 Estimating Future Utility
With regression models constructed, our next task is to apply

the models at runtime to estimate the utility — the benefit-

to-cost ratio — of upcoming scenes for various rendering

settings. This is performed by dEst. Two aspects worth

elaboration are 1) why we work on upcoming scenes, and

2) how we estimate the utility of various rendering settings.

First, we focus on upcoming scenes (as opposed to past

scenes or the current scene) because upcoming scenes are

the ones for which we still have the opportunity to adjust

rendering settings. The main challenge is to identify upcom-

ing scenes in a reasonable way. We introduce the notion of a

potential object list (POL). The POL consists of those game

object types that are likely to be encountered by the player

within a short time horizon. For example, a castle just be-

yond the player’s field of view is a good candidate for the

POL. dEst receives POL updates from the game dynami-

cally.

Second, we estimate utility with respect to both current

and alternative rendering settings. Estimation for one ren-

dering setting consists of using the regression model to per-

form a statical inference. dEst makes the estimate for each

rendering setting to arrive at a collection of utilities, one for

each rendering setting.

3.4 Optimization
dOpt takes the future utilities computed by dEst for all ses-

sions, computes a utility-maximizing assignment of render-

ing settings to sessions, and then propagates the new render-

ing settings to the corresponding sessions. The utility maxi-

mization problem nicely maps to the Multiple Choice Knap-

sack Problem, for which polynomial time approximations

are available [17, 22]. However, we choose a simpler greedy

heuristic because dOpt must complete its online decision

making very quickly. In addition, we incorporate a limited

form of hysteresis into our heuristic such that visual qual-

ity changes are gracefully made when possible, and quickly

enacted when necessary.

3.5 Requirements
For dJay to work as described above, we require that:
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1. An instance can report the AOL and POL for every frame.

2. An instance can change rendering settings dynamically.

Fortunately for Requirement 1, the AOL and POL are al-

ready maintained as part of standard rendering data struc-

tures like Octrees and k-d trees [10]. How an app maintains

this data structure internally (tree, nested, graph, etc.) is an

internal design decision. We simply require these be exposed

to dJay as a generic flat namespace list. It is even permis-

sible for the app to pass lists with extra or missing objects.

This does not affect correctness; it will only impact how well

dJay can optimize the density of the server. Therefore, it is

straightforward for a developer to expose the AOL and POL

to dJay; just pass the already-in-use rendering data struc-

tures as lists. For Requirement 2, games typically permit ad-

justment of rendering settings in-game, so it is straightfor-

ward.

4. Online Utility Profiling
We next describe the detailed operation of dProf.

4.1 Building Game Object Profiles
From a session s with a fixed rendering setting r, dEst

screen captures a set of uncompressed frames, f sr
1 , f sr

2 , ..., f sr
N .

Due to storage constraints, it may be a subset of the frames

that the user actually sees during the session. From each

frame f sr
i , we measure its cost in terms of GPU frame time,

csr
i , and its benefit in terms of SSIM bsr

i . We also require that

the game report the frame’s AOL, which is a list of graphical

objects, Gsr
i = {gsr

i j} where j is the unique ID of each game

object type (e.g., castle type 42) and gsr
i j represents the

number of game objects of type j in frame i of session s
with rendering setting r.

In order to build a per-game object profile, we construct

a system of equations as follows.

∑
j

wb
jg

sr
i j = bsr

i ∀i,s,r

∑
j

wc
jg

sr
i j = csr

i ∀i,s,r

where wc
j and wb

j are the weights for cost and benefit, respec-

tively. We use a least squares method to determine the un-

known weights. Weights essentially encode per-game object

profile information. Note that a game object whose impact

on cost and/or benefit is high will naturally be assigned a

higher weight. Note also that measurements from additional

sessions simply result in more equations, leading to more re-

fined weightings. Alternative models such as nonlinear and

neural networks are also feasible. We tried some of these

and found the simple linear model to work surprisingly well

in practice. Lastly, weights need not be pinpoint precise as

long as they are informative enough to guide cost-benefit de-

cisions.
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Figure 6: Vertex count correlates well with graphical ob-

ject cost. Therefore, a coarse filter eliminates unimportant

objects by their vertex count. Shown here is a small ran-

dom sampling of over 130 Doom 3 objects. The names

“guardian,” “skybridge,” etc. are the original object names

given by the Doom 3 developers.

4.2 Deterministic Instance Concurrent Execution
While measuring GPU cost is straightforward, measuring

SSIM benefit is more nuanced. Recall that in §3.2 we in-

troduced the function SSIMf ∗i ( fi) where some frame fi is

evaluated against a pristine f ∗i . A key question is how to

obtain f ∗i . To accomplish this, we employ deterministic in-
stance concurrent execution (dIce) shown in Figure 5. The

essential idea is to run two instances — a master and a

slave — of the same game concurrently. The instances dif-

fer only in their rendering settings such that the master pro-

duces f ∗1 , f ∗2 , ..., f ∗N and the slave produces f1, f2, ..., fN . The

instances are identical in all other respects: the instances start

in the same initial state, receive the same user input during

the session and process the input deterministically to arrive

at new intermediate states.

A key requirement of the app is that the app should act

deterministically given user input. Previous work has shown

that modern games can be modified in a generic way (e.g.,

converting getTime() calls to return deterministic values

based on a fixed hash seed) to achieve the required input

determinism [8]. dIce pipes user input to both concurrent

instances. The two instances respond deterministically to the

input, differing only in the visual quality of their rendered

output.

Since profiling requires running an extra slave for every

master, we recommend running profiling during quiescent

periods such as 1) during new game onboarding where user

access to the new game is rate limited, and 2) during diurnal

troughs in utilization (e.g., 5am in the morning) when the

service experiences light utilization.

4.3 Object Filtering
While the per-object profile construction described above

works, it has the potential to create performance issues, es-

pecially if the app passes large lists of graphical objects to

dProf at every frame. To mitigate this issue, we prune the
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AOL with two filters as follows. First, we coarsely filter the

objects by their vertex count, which is the number of ver-

tices in the object’s 3D representation. Objects that are more

expensive to render tend to have more vertices. Figure 6 il-

lustrates this relationship by showing the tight correlation

between an object’s vertex count and the object’s predicted

cost, wc
j. We prune objects whose vertex count is below a

threshold εv. Second, we finely filter the objects by their cost

and benefit weights. The reason that a second level of filter-

ing is necessary is because the object list may still be too

large with just coarse-grained vertex-based filtering. In or-

der to filter by weights, we first construct an initial regres-

sion model with only vertex-based filtering to arrive at some

initial weights. We then filter object type j if either cost or

benefit weight is less than εw. Finally, we construct a new re-

gression model with the remaining objects, arriving at final

weights wb
j and wc

j. We have empirically found setting εv to

100 vertices and εw to 0.0001 to work well in practice.

5. Future Utility Estimation
Next, dEst uses the weights of the linear regression from

dProf to forecast upcoming cost and benefit. However, we

do not have exact information about future objects since

these are dependent upon the user’s upcoming actions which

are obviously not known. Instead, we use the POL Ĝsr
i =

{ĝsr
i j}, that are likely to be visible within a short time horizon.

Its notation mirrors that of G: i is the frame number and j
is the unique id of the game object. We rely on the game

to provide updates of Ĝ to dEst, just like we relied on the

game to provide G to dProf. Ĝ only needs to be a guess, not

exact; better guesses lead to more accurate utility estimates.

Providing Ĝ is also straightforward for game developers in

practice, as we discussed in §3.5.

In order to estimate upcoming cost ĉsr
i and benefit b̂sr

i for

Ĝsr
i , we apply the regression model as follows.

b̂sr
i = ∑

j
wb

j ĝ
sr
i j

ĉsr
i = ∑

j
wc

jĝ
sr
i j

Cost and benefit are calculated for every frame, which is

feasible since the calculation is very fast.

6. Expected Utility Maximization
Finally, dOpt uses the estimated future utilities to decide on

the visual quality for each session. If costs are expected to

rise, dOpt should downgrade the sessions that suffer little

quality drop but return significant resource savings. Con-

versely, if costs are expected to fall, dOpt should upgrade the

session that gets the most visual quality improvement from

the extra resources newly available. In addition, dOpt should

gracefully change visual quality when possible so that visual

quality changes are not too abrupt for users.

6.1 Optimization Problem and Initial Assignment
The task is to assign rendering settings to each active session.

We choose to make the assignment such that the aggregate

utility is maximized. Other optimization objectives (such as

maximizing the minimum utility, maximizing fairness, etc.)

are also interesting and we leave them for future work.

From dEst, we have a set of utilities U = {(b̂sr, ĉsr)},

each of which corresponds to an active session s and render-

ing setting r pairing (we drop the per-frame subscript i since

we only discuss a single time step). The objective function

is to maximize the aggregate expected utility:

Maximize ∑
s

∑
r

xsrb̂sr (1)

where xsr is an indicator variable that is 1 if rendering setting

r is chosen for session s and is 0 otherwise. The constraints

are that the total expected cost should be less than the min-

imum acceptable frame time, 33ms, and that each session

should be assigned a rendering setting:

∑
s

∑
r

xsrĉsr < 33ms (2)

∑
r

xsr = 1 ∀s (3)

This formulation is a classic variation of the knapsack

problem, known as the multiple choice knapsack problem

(MCKP) [22]. It is NP-hard. We employ a greedy heuris-

tic for MCKP which is inspired by the heuristic presented

in [17]. The idea behind the heuristic is to transform MCKP

into a version of the regular knapsack problem, and apply the

standard greedy solution of the regular (non-multiple choice)

knapsack problem. The key intuition is that we enforce ev-

ery session to have at least some rendering setting assigned

by first assigning all sessions to the lowest rendering setting.

Some residual capacity less than 33ms may be left over for

upgrading some sessions to higher rendering settings. We

then rank all the remaining (b̂sr, ĉsr) pairs by their utilities

in descending order. However, rather than ranking by ab-

solute utility, we rank by marginal utility, which we define

as the increase in utility of one rendering setting over the

least costly rendering setting of the same session. That is,

the marginal utility is:

usr =
b̂sr − b̂sq∗

ĉsr − ĉsq∗

q∗ = argmin
q

ĉsq

Finally, we iteratively pick the top ranked candidate until we

run out of residual capacity. Whenever we pick a candidate

that belongs to session s, we simultaneously excise all other

pairs belonging to s from the ranked list. Our heuristic differs

from that of [17] in that they are willing to tolerate exceeding

the capacity for sake of a solution that is closer to optimal

whereas we are not.
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Rendering Setting

s = 1 LO ME HI

r = 1 r = 2 r = 3

b̂sr 0.7 0.8 0.95

ĉsr 2 5 29

(a) Session 1

Rendering Setting

s = 2 LO ME HI

r = 1 r = 2 r = 3

b̂sr 0.9 0.94 0.96

ĉsr 10 14 15

(b) Session 2

Table 1: An example of two sessions and their correspond-

ing cost and benefits for three rendering settings: LO(W),

ME(DIUM) and HI(GH). The dOpt heuristic identifies ME

and HI for Session 1 and 2, respectively, as explained in the

text.

As an illustration, consider the following example shown

in Table 1 with two sessions and three rendering settings.

The residual cost is 33− 2− 10 = 21. The ranked utilities

are: u1,2 = 0.1
3 , u2,3 = 0.06

5 , u2,2 = 0.04
4 and u1,3 = 0.25

27 . We

first pick u1,2 which reduces the remaining frame time to

21−3 = 18. We also remove u1,3 from the list. We then pick

u2,3 which reduces the remaining frame time to 18−15 = 3.

We also remove u2,2 from the list. At this point, no more

candidates remain in the list so the heuristic terminates.

The benefit of the greedy heuristic is that it is both simple

and fast: it runs in time O(n logn) due to the need to sort,

where n is the number of sessions times the number of

rendering settings. Speed is of particular importance because

the heuristic is responsible for online decision making.

6.2 Graceful Change During Normal Operation
We run the heuristic once per epoch, where an epoch is five

frames. The cost and benefit used are the average cost and

benefit over the last epoch. However, dynamically changing

rendering settings arbitrarily can be too abrupt, even once

per epoch. A rendering setting that changes from one ex-

treme of high quality to the other extreme of low quality

could be easily noticed by the user. We protect against abrupt

changes by only permitting rendering settings that are one

level higher or one level lower than the current rendering

setting, in addition to staying at the same rendering setting.

We implement this change by modifying the above MCKP

heuristic as follows. At epoch t, instead of initializing the

heuristic by setting all sessions to the lowest rendering set-

ting, we set all sessions to their rendering settings deter-

mined in epoch t − 1. If the residual frame time is greater

than zero, we have the chance to upgrade some rendering set-

tings as before. However, instead of considering all possible

rendering settings in the ranking, we only consider those ren-

dering settings that are one level higher than the current set-

ting. We pick top ranked utilities from the list as before. Con-

tinuing from the example in Table 1, suppose in Epoch 1 we

have made the selections of rendering setting 2 for session

1 and rendering setting 3 for session 2 as discussed above.

Then in Epoch 2, we only consider rendering setting 3 for

session 1 (as long as costs are equal or less than before). If in-

stead the residual capacity is less than zero (indicating costs

are greater than before), we are in the situation of needing

to downgrade one or more session’s rendering settings. We

then construct a ranked list of marginal utilities in ascending

order, but this time only for those rendering settings that are

one level less than the current settings. We iteratively pick

the top rank from this list until the cost is lowered enough

to satisfy the frame time budget. Taking again the example

in Table 1, suppose Epoch 1 is assigned as discussed previ-

ously, but this time in Epoch 2, all the costs double such that

the residual frame time is now 33− 5× 2− 15× 2 = −7.

The ranked list is then u1,1 = −0.1
−6 and u2,2 = −0.02

−2 . In the

first iteration, session 1 is downgraded to rendering setting 1,

leaving −7−−6 =−1 residual frame time. in the next itera-

tion, session 2 is downgraded to rendering setting 2, leaving

−1−−2 = 1 residual frame time.

It is possible that by limiting rendering setting increases

to only one level higher, residual frame time may be wasted

which otherwise might be spent toward an even higher ren-

dering setting. Similarly, it is also possible that by limiting

setting decreases to only one level lower, the total frame time

may still exceed 33ms (i.e., negative residual frame time)

whereas considering all possible rendering setting decreases

may reveal setting(s) that achieve the 33ms target. In prac-

tice, we found that dampening changes is useful because 1)

it minimizes abrupt changes that can distract users, and 2)

if a better setting exists that is more than one step away, we

can still converge to it eventually in future epochs.

It may be the case that we are unable to converge to 33ms

even after several epochs. For this case, we use a two part

fallback solution, called Warning and Critical. dOpt triggers

the Warning condition when the total frame time is between

33ms and 40ms for more than 200 epochs, and triggers the

Critical condition when the total frame time is more than

40ms for more than one epoch. If either Warning or Critical

condition is triggered, all rendering settings are reassigned as

described in §6.1. Critical is usually indicative of a session

permanently transitioning from a scene with low complexity

to a scene with high complexity, in which case we ought

to downgrade right away to maintain a playable experience

for all clients. Warning is afforded a longer interval since

there can be many ephemeral instances where the utilization

spikes briefly.

6.3 Managing Session Churn
User churn entails both starting and ending sessions. When

a session ends, resources are freed up. We handle this case

just as described for normal operations in §6.2; over one

or more epochs, the remaining sessions will start to use up

the newly freed resources. When a session starts, we take a

two step approach. First, we try to add the new session at

the highest possible rendering setting that fits in the residual

frame time. In a fully loaded system, this often means that

the new session can only be added at the lowest rendering

system, if at all. If this fails (due lack of frame time budget),
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we then take a more drastic approach of reinitializing all

rendering settings for all sessions as described in §6.1. There

can be cases where even setting every session to the lowest

rendering setting does not satisfy the 33ms budget. This

indicates an admission control failure which we discuss in

§10.

7. Implementation
To prototype dJay we modified open source Doom 3 (origi-

nally 366,000 lines of code) and Fable 3 (originally 959,000

lines of code) to interface with dProf, dIce, dEst and

dOpt components. Modifications to the games was done via

source code; dProf, dEst and dOpt were implemented as

standalone console processes. The number of modified lines

of code was 500 and 300 for Fable 3 and Doom 3, respec-

tively. All instances run in the same host OS, Windows 8, be-

cause the two apps are written for the Windows platform but

the Windows Hypervisor does not support high performance

GPU virtualization. Other hypervisors such as VMWare and

Citrix do not have this limitation. As a result, we rely on

the host OS’s and GPU device driver’s core scheduling and

memory management mechanisms, neither of which makes

provisions for real-time guarantees, let alone while multi-

plexing the GPU. Therefore, our implementation provides a

conservative reference point in terms of performance gains

possible. Another limitation is that dJay only supports run-

ning one game type (either Fable 3 or Doom 3) at a time;

future work includes load balancing across disparate apps at

once on the same server.

We extended Doom 3 and Fable 3 to invoke the dJay

API where appropriate. The API requires games to receive

rendering setting change commands. The API also requires

games to provide the following data for each in-game frame:

current frame number, frame time, frame buffer, the AOL

and the POL. The data is pulled by the API rather then

pushed by the game to ensure minimum impact on the game

performance. The data being pulled depends on the mode of

operation: profiling or optimization.

7.1 Profiling mode
In profiling mode, the user plays normally on the best render-

ing settings while dJay records every frame’s frame num-

ber, AOL, frame time and frame buffer into a file. Note that

the largest item in this set, the frame buffer, is already being

transferred to the encoder for streaming to the thin client and

dJay merely needs to fork a copy. We modified each game

to save the AOL as an array of object identifiers to a region

of memory shared between the game instance and dJay. For

both Doom 3 and Fable 3, we use the game’s preexisting in-

ternal visible objects data structure as the basis for the AOL.

Coarse-grained object filtering by vertex is implemented as

part of the conversion from internal data structure to AOL.

In order to support deterministic concurrent execution,

we first save the client’s input stream to a buffer. When avail-

able, we take advantage of the fact that games sometimes

support “replay mode” (aka “spectator mode”) to replay the

input stream in a separate instance of the same game at a dif-

ferent rendering setting. During replay mode, we also collect

every frame’s frame number, AOL, frame time and frame

buffer as before. Doom 3 has replay mode built-in. Fable 3

does not have replay mode built-in so we implemented (de-

terministic) replay ourselves by adding the following com-

mand line options: -capture causes the game to dump key-

board, mouse and joystick commands along with the world-

relative timestamps into a log file, -replay disables all reg-

ular game input and pushes fake commands into the game

input queue in the moments of world-relative time which are

specified in the log file. We patched Doom 3 and Fable 3

as described in [8] and [20] in order to enable deterministic

replay. The collected datasets are then loaded into dProf to

create the game’s utility profile. dProf constructs and solves

two systems of equations via least squares linear regression.

7.2 Optimization mode
In optimization mode, we modified the game to save the

POL to the same shared memory as was used by AOL. In

order to construct the POL for Fable 3, we use an internal

method checkVisibility(FoV) that determines whether

a graphical object is within a given field-of-view. We use

checkVisibility(360◦) on Fable’s internal list of graph-

ical objects to generate the POL. Doom 3’s POL is similarly

constructed. dEst reads the data from the shared memory,

and runs the regression model. dOpt takes the estimated util-

ities, runs the optimization and updates the game with the

corresponding rendering setting.

8. Evaluation
A summary of our findings are as follows.

• Regression modeling yields accurate utility estimates

which can be used to estimate total frame time and SSIM

score of the upcoming frames with a 15% L1 error.

• The median overhead of online profiling is 0.33ms. The

median overhead of online estimation and optimization

is 1.8ms.

• Dynamic utility maximization provides equal or better

quality than static configurations. Gains are especially

apparent when scene complexity changes and players

churn. In the best case, dJay can scale to 4× more ses-

sions than static.

8.1 Experimental Setup
We tested dJay prototype running on a single server that

consists of an HP z820 server with quad core Intel i7, 16GB

memory, and an Nvidia GTX 580 GPU w/ 3GB memory.

The GTX 580 is similar to one discrete GPU chip of a server-

class multi-chip rendering card such as the Nvidia GRID

M40.

dJay was configured to support three rendering setting

presets for each game: Low (LO), Medium (ME) and High

 65



Rendering Setting HI value ME value LO value

Video Quality Ultra High Medium

High quality special effects Yes No No

Antialiasing 16x 2x Off

(a) Doom 3

Rendering Setting HI value ME value LO value

Model detail Very High Normal Very Low

Landscape detail Very High Normal Very Low

Effects detail High Normal Very Low

Tree detail Very High Normal Very Low

Texture Quality Very High Normal Very Low

Shadow Quality Very High Normal Reasonable

Water Quality Very High Normal Very Low

Draw distance Very High Normal Very Low

(b) Fable 3

Table 2: Rendering Setting Presets. Values such as “Ultra,”

“Very High,” “Reasonable” and so forth are constants de-

fined by Doom 3 and Fable 3.
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Figure 7: Predicted Frame Time vs. Actual Frame Time for

Fable 3

(HI). Video settings used for Doom 3 are shown in Table 2a.

Screen resolution was 1280×1024 for all presets, windowed

mode. Video settings used for Fable 3 are shown in Ta-

ble 2b. Screen resolution was 1920× 1080 for all presets,

in windowed mode. While our prototype can let users play

interactively, we ran all of our experiments via automated

scripts. We recorded approximately 30 hours of player traces

per game covering many different in-game scenes to ensure

data diversity. We reused the replay mode function built for

dIce to inject prerecorded user traces to simulate live play-

ers. dJay was configured to keep frame rate above 30 FPS;

service provider may choose a higher cap if so desired.

8.2 Utility Estimation Accuracy
To evaluate the regression model’s estimation accuracy, we

compared predicted frame time and SSIM with ground truth

frame time and SSIM. We show the results for Fable 3 only

as the results for Doom 3 are similar.

0 500 1000 1500 2000
Frame number

Actual SSIM Predicted SSIM

0

0.9

SS
IM

 sc
or

e

0.99

Figure 8: Predicted SSIM vs. Actual SSIM for Fable 3
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Figure 9: A Summary of Regression Model Accuracy. “Error

bars” represent 95th and the 5th percentile measurements.

Figure 7 shows a times series trace of ground truth frame

time alongside predicted frame time for an actual user trace

run with the ME preset. Note that predicted follows ground

truth reasonably well. Note also that the predicted frame

time tends to be much more stable than the ground truth

frame time. This is because the predicted frame time does

not change as long as the POL is the same whereas the actual

frame time can fluctuate rapidly based on the instantaneous

client view. At first the player is in a simple environment

with a small GPU load of about 1.3ms per frame. Then, after

frame 167 he enters a more complex location where both

actual and predicted frame times rise. In this location he

encounters an explosion event near frame 657, which causes

frame time to increase for about 102 frames. Then the values

decrease back to 2ms per frame with a short drop to 1.2ms

when the player has no complex objects in sight. At frame

1426 he enters a simple cave and the frame time drops to

about 0.2ms.

Figure 8 illustrates how predicted SSIM also matches

ground truth reasonably. Note that SSIM is plotted on an

inverse log y-axis because the impact of a change close

to one is much more important (from a psycho-perceptual

perspective) than a change close to zero [8]. At frame 377,

the player moves to a seaside location which has poor SSIM

on ME. At frame 471 SSIM score rises as the player looks

at a simple castle wall, but soon enough it drops again after

he looks back at the sea. The player then runs towards the
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Figure 10: Per frame overhead of both profiling and opti-

mization is low. Note that this is CPU time so it does not

compete directly with GPU time.

castle gate where SSIM score is good enough until frame

818, when he enters a town. The player runs through it and

goes back to the seashore at frame 1185.

To evaluate the overall accuracy, we compared actual

and predicted data for four representative Fable locations

each of which was encountered many times across multi-

ple user traces: a typical town (Location 1), inside a house

(Location 2), at a place with a panoramic view (Location 3)

and inside a dungeon (Location 4). As seen in Figure 9,

Location 1’s frame time variance is relatively high. This

is because Location 1 has a large quantity of small- and

medium-weight graphical objects. Location 2 contains a

modest quantity of small- and medium-weight graphical

objects. Therefore, it still exhibits variance but its average

frame time is lower than Location 1. Location 3 is different:

there is a panoramic view with large objects that causes a

heavy GPU load of 7ms per frame on average. The objects

are visible everywhere, so the variance is not high. The pre-

diction is therefore quite accurate. Location 4 is very small

and simple, so frame time is really low. Due to its small num-

ber of objects, the prediction is also very accurate. Overall,

the L1 estimation error is 15% and the L2 estimation error

is 17%.

8.3 System Overhead
Since dJay is designed to operate on live instances in both

profiling and optimization modes, it is important that the

overhead of running dJay itself does not affect the frame

time. Figure 10a shows the overhead of profiling, and Fig-

ure 10b shows the overhead of optimization. Profiling over-

head is minimal at less than 0.6ms at the 99th percentile.

This is much better than unfiltered profiling which has a cost

of 8.9ms. Optimization overhead is similarly small at less

than 2.8ms at the 99th percentile. Importantly, both of these

costs are CPU costs, not GPU costs, and therefore do not

impact the bottleneck resource.

8.4 Utility Maximization Benefits
We tested dJay’s utility optimization against the following

baselines: All HI, All ME and All LO. Each of these base-

lines was statically provisioned for the corresponding preset

regardless of the number of sessions or scene complexity.

Increasing Multi-Tenancy: The first experiment simulates

increasing server load with four players joining one by one.

We show the results on Doom 3 and Fable 3 in Figure 11a

and Figure 11b, respectively. The ground truth average SSIM

per session is shown as we increase the number of sessions.

The minimum observed frame rate is also reported. Note

that the Doom 3 frame rate never goes above 30. This is

due to an implementation artifact of our Doom 3 modifica-

tions, even for lightly loaded cases like a single player on

LO. For Doom 3, when there was only one player, dJay sets

the quality level of the instance to HI and therefore player’s

SSIM score was equal to 1, i.e. he observed the best pos-

sible quality. Then a second player joined, and HI stopped

being the best option as it caused the FPS to drop below ac-

ceptable values. This impacted the SSIM too because even

though renderings were still using the HI setting, the reduced

rendering rate meant that stale frames often occurred, low-

ering SSIM. dJay switched one of the players to ME, so the

average SSIM score not only became a better option than

the low-FPS all-HI case, but also the all-ME case was sur-

passed due to a higher score of the player that was left on HI.

With the third player joining, even the all-ME case could not

keep a decent FPS, so dJay’s optimization led the player

staying on HI to gradually drop to LO, while the ME player

stayed on ME. This provided a better SSIM than any of the

baselines. This case demonstrates an advantage of 3× tenant

density of dJay over the HI static preset.

With Fable 3, HI preset worked well for one player. It

even worked well for two and three players, though there

was a drop in frame rate. However, the forth player caused a

serious FPS drop if all the players stayed on HI, and even ME

required too much GPU resources, so dJay switched all the

players to LO. Despite the drop to LO, it was a much better

option than HI or ME which could not provide a playable

FPS.

It is useful to note that with both Fable 3 and Doom 3,

even though profiling and regression model construction was

conducted with master and slave pairs, the resulting model

weights held up well when applied to higher densities of

three and four simultaneous instances.

Increase Scene Complexity: The second test was designed

to stress test an increase in server load by having one of the

users go from a simple location to a visually richer location

when the server is already at full capacity. The ground truth

average session SSIM score is shown in Figure 12a and

Figure 12b.

In the Doom 3 case, there were 2 players who could play

on all the presets with 30 FPS, so dJay picked HI for them.

After some time one of the players during his game progress

entered a large room with a boss and minions which required

a lot of GPU resources, so the server could not handle all

of them on HI with an appropriate FPS. In this case dJay
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Figure 11: Increasing Multi-Tenancy. SSIM score of dJay is always equal to or better than baselines. dJay also maintains at

least 30 FPS whereas baselines can fall severely below acceptable FPS.
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Figure 12: Increasing Scene Complexity. Again, SSIM score of dJay is always equal to or better than baselines. dJay also

maintains at least 30 FPS whereas baselines can fall severely below acceptable FPS.

dropped him to ME and left other players on HI, so that their

average SSIM score became higher than all the fixed preset

cases.

In the Fable 3 case, there were 4 players who were as-

signed the HI preset because the server’s performance was

enough for them. One of the players finished his quest inside

the house and went to the seashore where the game spawned

additional scripted animations, so that his game process re-

quired more resources than were available on the server. If

all of them kept playing on HI, they all would observe a very

low FPS and a serious SSIM score drop as shown by the HI

preset. dJay switched the GPU-heavy user to LO and left

others on HI, which was better than switching all of them

to LO. The performance tradeoff gained from one player

was enough to keep the best visual quality for the others.

This case demonstrated an advantage of 4× tenant density

of dJay over HI and ME static presets.

High Load Responsiveness: Lastly, we zoom in on dJay

under a high load situation. Figure 13 shows a case of two

Fable 3 sessions with the aggregate load spiking above the

40ms Critical level starting at frame 131. As a result, dJay

acts quickly to drop the load at frame 135. In this case,

session 1 was downgraded from HI to LO.
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Figure 13: Responding quickly to high load minimizes poor

frame time.

9. Related Work
Remote rendering is a classic idea (see, e.g., [14, 21]. Yet

it was only recently that full remote execution of games on

cloud infrastructure was embraced by companies like Sony

(with their Playstation Now service), Amazon (with App-

Stream) and Nvidia (with their GRID service) as a way to

deliver high-fidelity gaming experiences on mobile devices.

A key challenge for cloud gaming products is managing the
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infrastructure costs. Anecdotal reports about the failure of

OnLive’s game streaming service blame the cost of their in-

frastructure, because they could only support one client per

server. dJay has the potential to significantly reduce data-

center server costs by increasing the density of games exe-

cuting on a single server.

Recent research on GPU virtualization provides an im-

portant building block to enable multi-tenant game execu-

tion on cloud servers. The simplest approach, often called

pass-through, is to provide direct access to the GPU hard-

ware from a guest VM. Such solutions prevent multiple

VMs from accessing the hardware simultaneously. Early ap-

proaches to enabling 3D rendering capabilities inside a vir-

tual machine focused on virtualization at the 3D API bound-

ary: VMGL virtualizes the OpenGL v1.5 applications to run

inside guest VMs with modest overhead [19]. VMware [11]

describes their virtual GPU architectures that takes advan-

tage of GPU hardware acceleration, rather than a pure emu-

lation approach. Intel [25] describe a mediated pass-through

solution to GPU virtualization, which allows multiple guest

VMs to run a full featured GPU driver inside the guest VM,

yet also enabling multiple guest VMs to access the same

hardware.

The idea of adjusting game settings to control the load

on the GPU was introduced in Kahawai [8], although in a

very different setting. In Kahawai, the system runs a game

using low quality settings on a low-power mobile GPU and

runs the same game on a powerful GPU using high quality

settings. In contrast with dJay, these settings are static and

Kahawai does not address the problem of game server host-

ing density.

For non-GPU workloads, there is a large body of related

works. Here, we simply describe a few representative sys-

tems. Increasing multi-tenant density for non-GPU work-

loads is a widely studied problem, and recent research ef-

forts include library OSes [23] and OS containers [2, 24].

Many systems use consistent hashing for load distribu-

tion, in both data centers and wide-area distributed sys-

tems [5, 9, 16]. In big data analysis systems, SkewTune

addresses issues of data load imbalance for mapreduce com-

putations [18]. Schedulers for data center clusters have ad-

dressed fairness [15] and avoiding fragmentation and over-

allocation [12].

10. Discussion and Limitations
dJay deals with managing sessions on a single server. One

interesting avenue of further study concerns the related topic

of global admission control and session-to-server assign-

ment. Under what conditions should a client be assigned to

a server? Which server in a cluster is best suited to handling

a new client? When should a client request be rejected? In

this work, we have made the simplistic assumption that the

server can always at least meet 30 FPS at the lowest render-

ing setting for all sessions assigned to it, but clearly this de-

cision is coupled with the overall service’s session-to-server

assignment policies. The profiling and optimization tools we

have developed can lend insight into these questions higher

up in the service provider stack.

One deceptively alluring solution to providing high qual-

ity graphics to all users all the time is to simply deploy

luxury, maximum performance GPUs in the server. How-

ever, this overlooks two realities. First, the best price-for-

performance GPUs are midrange. Luxury GPUs are expen-

sive and therefore not a realistic option for service providers.

Second, rendering demands have increased commensurate

with GPU performance boosts for the past two decades. We

cannot simply wait for Moore’s law to provide free cycles

because new rendering algorithms offering even better vi-

sual effects will likely be ready to use the new capacity.

Thus far we have used only a handful of rendering setting

presets. For even more granular video quality control, it is

also interesting to consider the space of all possible render-

ing settings. For example, Fable 3 presents at least eight di-

mensions for manipulating rendering settings (Table 2b). As

dJay delves into more settings options, it needs commen-

surately more profiling trace data in order to build a model

that accurately predicts each setting. While the exact data

volume needed is an open question, we have shown that it

is low overhead to collect more data online from active ses-

sions.

While we have shown dJay working with two production

games, future work includes extending dJay to a broader

class of games, such as multiplayer and 2D. In a multi-

player setting, the GPU load induced by other players are

still manifested as changes in the set of visible game objects.

Therefore, dJay should still compute utilities appropriately.

During profiling of a multiplayer game, updates from other

players would need to be vectored to both master and slave.

In addition, further game modifications would be needed in

order to have only master (or only slave) send updates to

other players. 2D games should be straightforward to sup-

port. Rather than modifying each game individually, it is ap-

pealing to consider implementing dJay as a game engine

modification. Game engines such as Unity and Unreal al-

ready power the vast majority of games. The key dJay mod-

ifications (deterministic execution, exposure of AOL/POL

and rendering setting changes) appear feasible at the game

engine level.

11. Conclusion
From the perspective of a cloud gaming service provider,

dJay lowers costs by achieving up to 4× better multi-tenant

density over existing approaches. It takes advantage of the

observation that dynamically changing rendering settings

can help to achieve frame rate targets when under load.

Moreover, by formulating the rendering settings assign-

ment problem as utility-optimizing Multiple Choice Knap-

sack Problem, dJay provides optimal visual quality when

resources are available.
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