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Abstract. We study the online problem of evacuating k robots on m
concurrent rays to a single unknown exit. All k robots start on the same
point s, not necessarily on the junction j of the m rays, move at unit
speed, and can communicate wirelessly. The goal is to minimize the com-
petitive ratio, i.e., the ratio between the time it takes to evacuate all
robots to the exit and the time it would take if the location of the exit
was known in advance, on a worst-case instance.
When k = m, we show that a simple waiting strategy yields a competitive
ratio of 4 and present a lower bound of 2 +

√
7/3 ≈ 3.52753 for all k =

m ≥ 3. For k = 3 robots on m = 3 rays, we give a class of parametrized
algorithms with a nearly matching competitive ratio of 2+

√
3 ≈ 3.73205.

We also present an algorithm for 1 < k < m, achieving a competitive

ratio of 1+2·m−1
k
·
(
1 + k

m−1

)1+m−1
k , obtained by parameter optimization

on a geometric search strategy. Interestingly, the robots can be initially
oblivious to the value of m > 2.
Lastly, by using a simple but fundamental argument, we show that for
k < m robots, no algorithm can reach a competitive ratio better than
3 + 2 b(m− 1)/kc, for every k,m with k < m.

1 Introduction

Searching for an unknown target is a fundamental problem in computer science
and mathematics, especially in the area of robotics. The standard toolkit to
analyze this class of problems is competitive analysis [32], i.e., our goal is to
design online algorithms with a small competitive ratio, which compares the
performance of the online algorithm to an optimal offline solution which knows
the target location beforehand.

As pointed out by Hammar et al. [22], “A problem with paradigmatic status
in this framework is searching on m concurrent rays,” which is the focus of this
paper. More precisely, we study the problem of evacuating k ≤ m robots on m
concurrent rays (i.e., semi-infinite lines) to an unknown exit z [23,26], with the
robots communicating wirelessly [14,18].

The seminal forefather of this problem is the linear search problem, also
known as the cow path problem, first posed by Beck [6] and Bellman [8]: A
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searcher has to find an object of unknown location on the infinite line (i.e., 2
concurrent rays). The optimal online algorithm achieves a competitive ratio of
9, in each iteration doubling the search depth 1, 2, 4, . . . on each side of the
starting point s [7]. Gal [21] and Baeza-Yates et al. [4] then extended their
results to the model of m concurrent rays, where the optimal strategy is to,
instead of doubling the search depth, use a factor of m/(m − 1), yielding an
optimal competitive ratio of 1 + 2mm/(m − 1)m−1 [29]. If k robots can search
for the exit, and one robot finding it terminates the search, a competitive ratio
of 1 + 2(m/k − 1)/(m/(m− k))m/k is optimal [30].

The concepts of collaborative evacuation and wireless communication are
more recent additions in this field. In the case of the (unit speed) robots only
being able to communicate when they meet, for k = m a competitive ratio of 9
is again optimal [23] if there is a minimum distance to the exit, else 1 + 2(p +
1)p+1/pp for p = dlogme is optimal. In the special case of m = 2 and k > m, 9
is optimal as well [12]. Baeza-Yates and Schott studied wireless communication
in this context: Even though most of their paper “Parallel searching in the
plane” [5] is about searching the plane, they also considered the evacuation
problem with two searchers on the line, pointing out that a competitive ratio of
3 is then optimal for k ≥ m = 2. Further collaborative robot evacuation studies
in geometric settings have been performed by Czyzowicz et al.: Evacuating the
circle with k = 2 [13], the line with faulty robots [17], the disk [14,15,16] (see
also [11]), and equilateral triangles and squares [18], with [15,18] also studying
wireless communication.

Contributions In this paper, we extend the model of Baeza-Yates and Schott [5]
beyond the infinite line (i.e., m = 2), by examining the problem of evacuating
1 < k ≤ m robots on m rays with wireless communication, which has not been
studied before to the best of our knowledge. We also study the case that the k
robots do not start on the junction j of the m rays.

When starting on the junction with k = m > 2 robots, we show that a
competitive ratio of 3 is still optimal, and starting away from the junction allows
for a 4-competitive algorithm. For the special case of k = m = 3, we present a
class of parametrized algorithms with a competitive ratio of 2 +

√
3 ≈ 3.73205.

We also give lower bounds of 2 +
√

7/3 ≈ 3.52753, for every k = m ≥ 3.
Furthermore, we consider the case of less robots than rays, i.e., collaborative

wireless evacuation with 1 < k < m robots. Even though the k robots are obliv-
ious to the number of m > 2 rays, our optimization of parametrized geometric

search strategy yields a competitive ratio of at most 1+2·m−1k ·
�
1 + k

m−1

�1+m−1
k

.

Moreover, as we show, even when starting on the junction, no algorithm can have
a better competitive ratio than 3 + 2 b(m− 1)/kc, for any k,m with k < m.

Paper Organization In the following paragraph we discuss further related work,
before introducing the necessary formal preliminaries in Section 2. We then con-
sider the case of m robots on m rays in Section 3, with an in-depth focus of
3 robots on 3 rays. Afterwards, we study the more general case of 1 < k < m



robots on m rays in Section 4, also detailing a lower bound for k < m with a
simple but fundamental argument. Lastly, we conclude in Section 5.

Further Related Work Results for the search problem on m rays can be used
for showing competitive bounds for search problems in various classes of simple
polygons, cf. [23,29], with further applications in hybrid [26] and interruptible [1]
algorithms. The classic linear search or cow path problem has moreover been
studied in a multitude of models, e.g., adding turn costs [9,19] (also with multiple
searchers on rays [2]), with a single [25] or multiple error prone robots [17], or
a moving target [9]. Bose et al. [10] gave tight bounds on the competitive ratio
with distance bounds to the target, showing that the optimal search strategy is
then unique.

Searching on m rays has furthermore been considered with multiple tar-
gets [3], with only one robot being allowed to move at a time [26], regarding
advice complexity [24], and randomized algorithms [27,31] – cf. the survey by
Tate [33] for an overview of the latter.

On graphs, the problem of finding a specified node in an online fashion is
also known as treasure hunt or as the node searching problem. [20,28].

2 Preliminaries

We consider the problem of collaboratively evacuating k robots R0, . . . , Rk−1 on
m concurrent rays a0, . . . , am−1, joined at a common junction j. All robots start
at the same point s, w.l.o.g. on ray a0, where s does not have to be the junction
j. All robots have to reach the single exit z on some ray az, the location and ray
of z is unknown until one robot reaches the location of the exit z. We denote
the distance of the junction j to the start s by js. The robots have the same
unit maximum speed and can communicate wirelessly, instantaneously sharing
their information. As thus, we can assume that one central algorithm controls all
robots. Unless otherwise noted, we assume that the robots travel at unit speed
when moving.

The goal is to minimize the time needed for all robots to reach the exit,
compared to the minimum time needed if all information about the environment
would be revealed initially. Hence, we study this problem using competitive
analysis: The competitive ratio of an online (evacuation) algorithm is measured
as the supremum of the ratio of the time needed for all robots to reach the exit
and the distance Z from s to z, for all start and exit locations.

If the distance between the start s and the exit z is allowed to be arbitrarily
small, no online algorithm (without infinitesimal steps) can achieve a constant
competitive ratio for k < m: As thus, we use the common assumption of at least
unit distance between start s and exit z, cf. [1].

3 m Robots on m Rays

We start our study of robot evacuation by considering one robot for each ray.
In Subsection 3.1 we gather some basic observations. Note that Observations 1
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Fig. 1. As the robots starting on s are oblivious to the direction of the exit z, both
points of distance 1 need to be explored by at least one robot, meaning that at least one
robot takes a time of t = 3 to reach the exit (in this case all robots can also evacuate
the graph at a time of t = 3).

and 2 can be found with similar arguments for k = 2 in [5]. We further examine
the case of 3 robots on 3 rays in Subsection 3.2.

3.1 The General Case of m Robots on m Rays

If all m robots start on the junction j, then each robot Ri can explore ray ai
at unit speed, with some robot finding z at time t = Z. Then, all other robots
are at distance 2Z from z, inducing a total evacuation time of t = 3Z if they all
directly travel to the exit. Trivially, in the case of k = 1, a single robot starting
on the end of a single ray will find the exit in optimal time.

Observation 1 Let s = j and k = m, with m > 1. There exists an online
algorithm evacuating the m robots with a competitive ratio of 3.

For m > 1, no better ratio than 3 is possible (cf. also Figure 1): Assume all
2 ≤ k ≤ m robots start on the junction j and the exit is at distance Z = 1. In
the worst case, the exit will be on the last ray explored until distance 1 (which
could coincide with the first ray being explored until distance 1), so at least one
robot will need a time of t = 3Z to reach the exit z.

Observation 2 For every 2 ≤ k ≤ m: No online algorithm can achieve a better
competitive ratio than 3 for evacuating the k robots.

The situation is more difficult when the robots do not start on the junction
j and m > 2.3 If we knew the initial direction of the junction, we could send
m− 1 robots there, again obtaining a competitive ratio of 3 as before.

The following algorithm yields an upper bound of 4 for the competitive ratio
even when the direction of the junction is not known: Send two robots R0, R1

in opposing directions until either the exit z or the junction j is found, with
the remaining m − 2 robots waiting at the start s. If the exit z is found first
(or simultaneously), a competitive ratio of 3 can again be achieved by directly
sending all robots to the exit z. If the junction is found first, we stop the robots
R0, R1 for a duration of js, while the other m− 2 robots travel to the junction.
We then proceed as if s was the point from which all rays emanate and the section
between s and j was actually comprised of the first parts of m− 1 rays that just

3 If m = 2, then a competitive ratio of 3 can be reached again, as every point can be
seen as the junction.



happened to be glued together. According to this equivalent consideration, at
time 2js, all robots are on their rays at distance js from s and then continue
to explore their assigned rays. When the exit z is found by one robot at time
js+ Z, all other robots move to the exit z in time 2Z, obtaining a competitive
ratio of (js+ 3Z)/Z < 4.

Observation 3 Let k = m, m > 2. There exists an online algorithm evacuating
the m robots with a competitive ratio of at most 4.

We will later show a lower bound of 2 +
√

7/3 ≈ 3.52753 in Corollary 2, for
all k = m ≥ 3.

3.2 The Case of 3 Robots on 3 Rays

We start with a lower bound for the competitive ratio of evacuating 3 robots
from 3 rays, before giving a nearly matching upper bound in Theorem 3.

Theorem 1 (Lower bound of 2+
√

7/3 for 3 robots on 3 rays). No online

algorithm can achieve a better competitive ratio than 2 +
√

7/3 ≈ 3.52753 for
evacuating 3 robots on 3 rays.

Proof. As evacuating 3 robots on 3 rays has a competitive ratio of 3 when s = j,
we assume that s 6= j, s ∈ a0, and Z > js. Also, we can assume in a worst-case
fashion that the junction j lies on the side of s that ensures that at time js at
most one of the three robots is closer to j than in the beginning, i.e., closer to
j than js.

It follows that the earliest time when the 2 points of distance 3/2 · js from s
on a1, a2 have been visited is at time 5/2 · js: Only the robot that is (possibly)
closer to j at time js than in the beginning can visit any of these 2 points before
time 5/2 · js; however, since it can visit the first of the two at time 3/2 · js at
the earliest, it cannot visit the other one before time 5/2 · js.

W.l.o.g., let R2 be a robot who has (possibly previously) visited a point p
farthest away from the junction on the starting ray a0 at time t = 5/2 · js. We
will now show Theorem 1 by case distinction for a point y, denoting where R2

is at time 5/2 · js. The case distinction will depend on a “border”-value b, later
to be optimized. We refer to Figure 2 for an overview of the construction.

We start with the first case of jy ≥ b + js and y lies on a0: Then, we
place the exit z at one of the points of distance 3/2 · js from s on a1, a2 that
is visited last by the strategy used by the three robots. As the exit cannot
have been found before time 5/2 · js, robot R2 will need (in the best case)
5/2 · js + sy + 3/2 · js = 4 · js + sy ≥ 4 · js + b total time to reach the exit z.
Note that in this case, the optimal time is Z = 3/2 · js.

Next, we consider the second and remaining case of jy < b + js or y not
lying on a0. To still reach y at time 5/2 · js, R2 could have moved at most to a
p with ps ≤ 5/4 · js+ b/2. We now place the exit z a distance of ε “behind” one
of the three points of distance 5/4 · js+ b/2 to the start s which will be reached
last. Note that, as shown before, the earliest time when both of these points on
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Fig. 2. The robots R1, R2, R3 start on s and have to find the unknown exit z. Point p
depicts the farthest any robot has been away from the junction on the starting ray a0
until time 5/2 ·js, and y where a robot visiting p is at time 5/2 ·js. Depending on if y is
at least js+ b away from the junction j or not, we give two different arguments in the
proof of Theorem 1, resulting in a (normalized to js) value of b of −1+

√
21/2 ≈ 1.29129

and a lower bound of 2 +
√

7/3 ≈ 3.52753.

a1, a2 can be reached is at time 5/2 · js + b/2 + ε, and the earliest time when
the respective point on a0 can be reached (assuming both points on a1, a2 were
reached) is not before time 5/2 · js+ 5/4 · js+ b/2 + ε− b. As thus, for all robots
to evacuate to the exit, a time of at least 5/2 · js+ (5/4 · js+ b/2 + ε− 3/2) +
5/4 · js+ b/2 + ε+ 5/4 · js+ b/2 + ε = 19/4 · js+ 3/2 · b+ 3 · ε is needed, with
the optimal solution taking time Z = 5/4 · js+ b/2 + ε.

To optimize the lower bound in respect to b, we solve 19/4·js+3/2·b+3·ε
5/4·js+b/2+ε =

4·js+b
3/2·js for b. By normalizing js to unit value and restricting b > 0, solving the

above equation gives us the parameter b = −1− ε+1/2 ·
√

21 + 12ε+ 4ε2, which
is approximately 1.29129 for ε→ 0 for our proof, as the functions defined by the
terms on the individual sides of the equation are monotonically decreasing and
increasing, respectively.

Observe that −1−ε+1/2 ·
√

21 + 12ε+ 4ε2 is monotonically decreasing when
considered as a function of ε, i.e., for all values of ε > 0, we obtain the supremum
at −1 +

√
21/2 ≈ 1.29129.

Therefore, we achieve a lower bound of 4−1+
√
21/2

3/2 = 2 +
√

7/3 ≈ 3.52753.
ut

We note that the construction from the above proof can be extended to
k = m > 3 robots and rays, as at time t = js, at most bm/2c robots can be
guaranteed to be at the junction j.

Corollary 2. For every k = m ≥ 3 holds: No online algorithm can achieve a
better competitive ratio than 2 +

√
7/3 ≈ 3.52753 for evacuating k = m robots

on m rays.

We now give an algorithm with a nearly matching competitive ratio for 3 robots:



Theorem 3. There exists an online algorithm evacuating 3 robots on 3 rays
with a competitive ratio of 2 +

√
3 ≈ 3.73205.

Proof. We know from Observation 1 that there is an algorithm with a compet-
itive ratio of 3 when starting on the junction j, so suppose that j 6= s. We
prove Theorem 3 by giving a whole class of algorithms, all reaching the desired
competitive ratio. To describe these strategies, we develop a parametrized ap-
proach by composing an algorithm that moves the robots according to certain
parameters and then optimizing the competitive ratio over the parameter space.
More specifically, the algorithm depends on two parameters α and β which are
constrained by the inequalities 0 ≤ β ≤ α ≤ 1

2 and 2α ≤ β + 1
2 and moves the

three robots R0, R1, R2 as described in the following. We note that if one robot
finds the exit, all the other robots abandon their strategy and take the shortest
path to the exit z.

Figure 3 serves as a visual aid to understand the parameters and the respec-
tive strategies. We send R0 in one direction, R1 in the other, and R2 waits until
the junction j (or the exit) is found. W.l.o.g. suppose R0 reaches the junction j
after js time passed, i.e., R1 is at distance js to s on the other side of ray a0,
and R2 is still on the start s. Then, R0 moves for α · js time into one of the two
branching rays a1, a2, returns back to the junction j, and moves into the other
ray of a1, a2. Meanwhile, at time js, R1 starts to move deeper into the ray a0
away from the junction j by β · js before turning around and walking backwards
until it reaches the same distance to the junction j as r3, which starts moving
towards the junction at time js and then moves into the ray R0 explored first
(and left by the time R2 arrives at the junction). The three robots continue to
move straight to a distance of js+ β · js to s on their respective ray, and those
that arrive early wait for the others. Then, they all move uniformly outwards at
equal distance to the start s.

We will now start analyzing the competitive ratio of the above algorithm:
Until the junction is found, any exit found will lead to a competitive ratio of 3.
Observe that until all three robots move outwards from the start s on the three
rays, the following three points, with additional ε distance to s, are worst case
points regarding the competitive ratio of the algorithm (cf. Figure 3), i.e., the
time when a robot visits them for the first time will determine the competitive
ratio: p2, the point where R0 turns around to go back to the junction, p1, the
point where R1 turns around to go back to the start, and p0, the junction itself.
After that, the competitive ratio of any exit placement can only be lower, as now
any remaining distance of x to the exit will be covered in x time by one robot.

For ease of readability, we are going to omit the additional εs in the following
calculations, as we are later going to consider the supremum of the competitive
ratio anyway.

The three points will be reached at the following times: p0 at time js+2 ·αjs
by R0, p1 at time 2 · js + βjs by R1, and p2 at time 2 · js + αjs. If all other
robots divert directly to the exit z when it is found, they will reach the exit with
the following additional time: p0 with time 2 · js− 2 ·αjs+ 2 · βjs, p1 with time
2 · js+ 2 · βjs, and p2 with time 2 · js+ 2 · αjs.
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Fig. 3. A depiction of the parameters α and β on the 3-ray and the strategies of the 3
robots (waiting is not indicated). The three worst case points p0, p1, p2 are also marked.

Hence, the competitive ratio induced by the three points is adding both times
above, divided by the distance of the exit to the start, i.e.,: 3+2·β for p0, 3+ 1

1+β

for p1, and 3 + 1
1+α for p2. Note that 3 + 1

1+α ≤ 3 + 1
1+β due to initially choosing

β ≤ α.
As 3 + 2 · β is strictly monotonically increasing and 3 + 1

1+β strictly mono-
tonically decreasing, the desired solution can be obtained by equalizing both

terms in the parameter range, with β =
√
3−1
2 . As α can be chosen freely in the

parameter space, we have generated a whole class of algorithms with identical

competitive ratio of minβ max
�
3 + 2 · β, 3 + 1

1+β

�
= 2 +

√
3. ut

4 1 < k < m Robots on m Rays

In this section, we continue our study of collaborative robot evacuation by con-
sidering the case of 1 < k < m robots on m rays. Since in this case the number
of robots is not sufficient anymore to assign a ray to each robot, a more intricate
scheme than before is required in order to achieve a good competitive ratio. In
the literature, similar problems have been tackled by using geometric search. We
show that this general idea can also be applied in our setting and present an
upper bound for the competitive ratio where the factor that governs the expo-
nential growth is chosen in a way that minimizes the bound. We complement this
result with a lower bound for all wireless evacuation algorithms where k < m.

4.1 An Upper Bound on the Competitive Ratio

We start by developing GeomSearch(α, β), an algorithm for evacuating k robots
from m rays where the robots start in the junction j. The algorithm depends on
two parameters α and β which we will determine later. It proceeds as follows:



Each robot explores the m rays in so-called exploration steps where each ex-
ploration step consists of exploring some ray up to some depth and then returning
to the junction. More specifically, robot Ri starts by exploring ray ai up to depth
αβi upon which it returns to the junction. Then it explores ray ai+k (mod m) up

to depth αβi+k, returns to the junction, explores ray ai+2k (mod m) up to depth

αβi+2k, and so on. In other words, robot Ri performs its qth exploration step on
ray ai+(q−1)k (mod m) with a depth of αβi+(q−1)k. Note that in each exploration

step of robot Ri the explored depth increases by a factor of βk and that it always
chooses the ray to be explored next by increasing the ray index by k (modulo
m). If a robot finds the exit z it immediately informs all other robots, upon
which each robot immediately aborts its exploration and heads straight for z.

From the definition of the exploration steps it follows that for any two robots
Rh and Ri with h < i and any positive integer q, the qth exploration step of Ri
takes strictly more time than the qth exploration step of Rh and the (q + 1)th
exploration step of Rh takes strictly more time than the qth exploration step of
Ri. Thus, we obtain the following observation which sheds light on the order in
which the robots take their exploration steps.

Observation 4 Let h, i and q be integers satisfying 0 ≤ h < i ≤ k − 1 and
q ≥ 1. Then robot Rh finishes its qth exploration step before Ri finishes its qth
exploration step, and Ri finishes its qth exploration step before Rh finishes its
(q + 1)th exploration step.

In order to prove an upper bound on the competitive ratio of Algorithm
GeomSearch(α, β) for suitably chosen α and β, we need a technical lemma,
given in the following.

Lemma 4. Let β =
�
1 + k

m−1

�1/k
. Then 1 + 2

βm+k−1

βk − 1
≥ 3 + 2

βm

βk − 1
.

Proof. For a contradiction, assume that the statement is false. We obtain the
following series of implications:

3 + 2
βm

βk − 1
> 1 + 2

βm+k−1

βk − 1

=⇒ βk − 1 > βm(βk−1 − 1)

=⇒ k

m− 1
>

�
1 +

k

m− 1

�m/k��
1 +

k

m− 1

�(k−1)/k
− 1

�

=⇒ k

m− 1
>

�
1 +

m

m− 1

���
1 +

k

m− 1

�(k−1)/k
− 1

�



=⇒ 2m+ k − 1

2m− 1
>

�
m+ k − 1

m− 1

�(k−1)/k

=⇒ 2m− 1

2m+ k − 1
<

�
m− 1

m+ k − 1

�(k−1)/k
=

�
1 +

−k
m+ k − 1

�(k−1)/k

=⇒ 2m− 1

2m+ k − 1
< 1 +

−(k − 1)

m+ k − 1
=

m

m+ k − 1

=⇒ mk + 1 < 2m+ k

For the third and sixth implication we used the generalized version of Bernoulli’s
inequality which says that for any two real numbers b > −1 and c ≥ 0 it holds
that (1+b)c ≥ 1+bc if c ≥ 1, and (1+b)c ≤ 1+bc if 0 ≤ c ≤ 1. Since m > k ≥ 2,
the obtained statement implies k = 2. Going back to the result after the fourth
implication and plugging in k = 2, we obtain the following new implications:

2m+ 1

2m− 1
>

�
m+ 1

m− 1

�1/2

=⇒ (2m+1)2(m−1) > (2m−1)2(m+1) =⇒ −1 > 1 .

We obtain a contradication, which proves the lemma statement. ut

Now we can finally prove the desired upper bound.

Theorem 5. Let β =
�
1 + k

m−1

�1/k
and let α be chosen such that αβm−1 < 1.

Then the competitive ratio of Algorithm GeomSearch(α, β) is at most

1 + 2 · m− 1

k
·
�

1 +
k

m− 1

�1+m−1
k

.

Proof. Let Rh be the robot that finds the exit and assume that Rh finds the exit
in its qth exploration step. It follows from the design of our algorithm that the
exit lies on ray ah+(q−1)k (mod m). Note that since αβm−1 < 1 and the exit has
a distance of at least 1 from the junction, we have that q ≥ 2. Let t0 denote the
point in time at which Rh reaches the point on ah+(q−1)k (mod m) with largest
depth that has been explored before by some robot. Let ∆t denote the time Rh
travels on ah+(q−1)k (mod m) between t0 and finding the exit, i.e., Rh finds the
exit at time t0 + ∆t. Furthermore, for each Ri with i 6= h, let Ei denote the
exploration step Ri is performing at the time when Rh starts its qth exploration
step, and let t1(i) denote the point in time at which Ri finishes exploration step
Ei. We note that at time t0, the distance between Rh and the junction is the
depth of the previous exploration step of a robot on ray ah+(q−1)k (mod m) which

is αβh+(q−1)k−m, by the definition of the exploration steps.4 Now, we consider
two cases for each robot Ri:

4 Here we implicitly use that αβm−1 < 1 which ensures that the ray on which Rh

finds the exit, has been previously explored by some robot.



First, consider the case that t0 ≥ t1(i). Then, at time t0, Ri has finished
exploration step Ei and has started with its next exploration step. This implies
that the distance between Ri and the junction at time t0 is smaller than the
distance betweenRh and the junction at time t0, i.e., smaller than αβh+(q−1)k−m.
Thus, at time t0 +∆t, the distance between Ri and the junction is smaller than
αβh+(q−1)k−m+∆t. We conclude that it takes Ri at most 2(αβh+(q−1)k−m+∆t)
time to reach the exit after the exit has been found at time t0 + ∆t. Since Rh
finishes its first q − 1 exploration steps in time

x=q−2∑
x=0

2αβh+xk = 2αβh
x=q−2∑
x=0

(
βk
)x

= 2αβh
β(q−1)k − 1

βk − 1

and it takes Rh another αβh+(q−1)k−m + ∆t time to find the exit, we hence
obtain an upper bound of

2αβh
β(q−1)k − 1

βk − 1
+ 3(αβh+(q−1)k−m +∆t)

for the time it takes Ri to reach the exit.
In order to obtain an upper bound for the competitive ratio (for our first

case), we divide by the length Z of the shortest path from s to z. Note that ∆t
appears with a factor of 3 in the numerator whereas it appears with a factor
of 1 in the denominator. Since the competitive ratio we obtain is larger than 3,
making ∆t larger decreases the competitive ratio (towards 3). Hence, by setting
∆t = 0, we obtain an upper bound of

2αβh β
(q−1)k−1
βk−1 + 3αβh+(q−1)k−m

αβh+(q−1)k−m = 3 + 2
β(q−1)k − 1

(βk − 1)β(q−1)k−m

= 3 + 2
βm

βk − 1
− 2

(βk − 1)β(q−1)k−m

for the competitive ratio, which implies an upper bound of 3 + 2βm/(βk − 1).
Note that the last simplification does not increase the upper bound more than
necessary: The term 2/((βk − 1)β(q−1)k−m) can be made arbitrarily small by
increasing q, i.e., by choosing the exit location accordingly.

Now consider the second case, namely, that t0 < t1(i). Then, Ri is still
performing exploration step Ei at time t0. It follows that at the time the exit is
found, Ri is still performing Ei or Ri has distance at most ∆t from the junction.
Thus, we can bound (from above) the total time it takes Ri to reach the exit
by the sum of 1) the time it takes Ri to perform its exploration steps up to
and including Ei, 2) two times ∆t, which bounds the time between reaching the
junction after Ei and reaching the junction possibly again after being told the
location of the exit and 3) αβh+(q−1)k−m +∆t, the time it takes Ri to reach the
exit from the junction. The first of the three summands in turn can be bounded
by the time it takes Rh−1 (mod m) to perform its exploration steps up to and



including Eh−1 (mod m), by the definition of Ei and Observation 4.5 Hence, we
obtain an upper bound of

x=q−1∑
x=0

2αβh−1+xk + 2∆t+ αβh+(q−1)k−m +∆t

= 2αβh−1
βqk − 1

βk − 1
+ αβh+(q−1)k−m + 3∆t

for the time it takes Ri to reach the exit. By an argumentation analogous to
the one in the previous case, we obtain an upper bound of 1+2βm+k−1/(βk−1)
for the competitive ratio. By Lemma 4, this upper bound is larger than the
upper bound for the competitive ratio obtained in the first case. Now replacing

β by (1 + k/(m− 1))
1/k

yields the lemma statement. ut

We note that the choice of β in Theorem 5 is not arbitrary: The given β
precisely minimizes the obtained upper bound of 1 + 2(βm+k−1)/(βk− 1) as can
be shown by taking the derivative.

Interestingly, for k = 1, our upper bound coincides with the competitive ratio
of 1+2mm/(m−1)m−1 from the optimal search strategy for a single robot, given
in [4,21].

We now extend GeomSearch(α, β) to the setting where the robots are not
required to start in the junction. As we will prove, even if the robots do not
know the number of rays when they start, they can still achieve a competitive
ratio of at most

1 + 2 · m− 1

k
·
�

1 +
k

m− 1

�1+m−1
k

. (1)

Before describing the extension of GeomSearch(α, β), we present a lemma
claiming that at a certain point in time during Algorithm GeomSearch(α, β),
the distribution of the robots satisfies certain properties that will be of great use
later on.

Lemma 6. Let x be some positive real number. Consider GeomSearch(α, β) for

β =

�
1 +

k

m− 1

�1/k

and α =
x�

1 + k
m−1

�2 .

Let t0 denote the time at which R0 is at the tip (i.e., exactly in the middle) of
its third exploration step. Then, at time t0, each robot has a distance of at most
x from the junction and no robot Ri with i ≥ 1 is on the same ray as R0, except
possibly in the junction.

5 For the following calculation of the upper bound, we assume for simplicity that if
h = 0, then Rh−1 (mod m) performs a 0th exploration step of length αβ−1 before its
1st exploration step. Since this can only increase the upper bound, the given bound
also holds if h = 0.



Proof. By the definition of the exploration steps,

t0 = 2αβ0 + 2αβk + αβ2k >
2x�

1 + k
m−1

� + x ≥ 2x .

Moreover, at time t0, robot R0 is exactly in distance x from the junction. By
Observation 4, this implies that the distance of Ri from the junction is at most
x, for any 1 ≤ i ≤ k − 1. The fact that at time t0, R0 is the only robot on the
ray it currently occupies, follows directly from the definition of the exploration
steps in conjunction with Observation 4. ut

We call the distribution of the robots at time t0 in Lemma 6 the third dis-
tribution. The general idea of our extended algorithm is that the robots sim-
ulate Algorithm GeomSearch(α, β) where they consider s as the junction and
the path between s and j as m − 1 separate paths (that just happen to be
glued together). In order to be able to compute the appropriate β in Algorithm
GeomSearch(α, β), they first have to determine the number of rays, which they
do by exploring the ray they are on in both directions until they find the junc-
tion. At the point in time when the junction is found, the robots have already
“wasted” some time; therefore they do not return to the junction and only then
start the simulation of GeomSearch(α, β), but instead jump into a hypotheti-
cal execution of GeomSearch(α, β), i.e., they move to a configuration of points
that will be reached by GeomSearch(α, β) (for some suitably chosen α) at some
point in time. From there, they simply follow GeomSearch(α, β). For a formally
correct description of the extended version of GeomSearch(α, β) we need some
notation:

Let a0 be the ray on which s is located and a1, . . . , am−1 the remaining m−1
rays. We denote the path obtained by deleting sj from a0 by a′0 and the paths
obtained by appending a1, . . . , am−1 to js by a′1, . . . , a

′
m−1, respectively. We may

now consider s as the junction of the m rays a′0, . . . , a
′
m−1. Therefore, provided

we know m, any m-ray algorithm where the robots start in the junction can be
simulated on our given input where s plays the role of the junction. In particular,
the achieved competitive ratio of the simulation on our input is the same as the
competitive ratio of the simulated m-ray algorithm. In the following, we describe
the extension of GeomSearch(α, β) more formally:

Robots R0 and R1 start by exploring the ray they are located on in opposite
directions until one of the two finds the exit or the junction (while everyone else
simply stays in s). If the exit is found before or at the same time as the junction,
then all robots immediately travel to the exit, which yields a competitive ratio
of 3 (which is clearly smaller than the term given in (1), for any 2 ≤ k < m).
Thus, in the following, assume that the junction is found before the exit. W.l.o.g.
assume that R1 finds the junction (which happens at time sj). From here, the
robots move as quickly as possible to a configuration of points that corresponds
to the third distribution6 in the (hypothetical) execution of GeomSearch(α, β)

6 Here, a detail has to be mentioned: By changing the mapping of the m labels
a′0, . . . , a

′
m−1 to the m actual rays, we can change which robot is on which ray.



on the m rays a′0, . . . , a
′
m−1 where

β =

�
1 +

k

m− 1

�1/k

and α =
sj�

1 + k
m−1

�2 .

By Lemma 6 moving to this configuration from the situation where the junction
has just been found takes at most time sj, i.e. the robots reach this config-
uration in a total time of at most 2sj. By the proof of Lemma 6 the (hypo-
thetical) execution of GeomSearch(α, β) needs at least time 2sj to reach the
third distribution, i.e., this configuration. Thus, the robots can just wait in the
reached configuration until time 2sj (if they should have reached their respective
points early) and then simulate the execution of GeomSearch(α, β) mentioned
above, thereby reaching any point at least as fast as the (original) execution of
GeomSearch(α, β) and hence achieving a smaller or equal competitive ratio as
the one in Theorem 5.

Here two remarks are in order: First, since we assume that the junction is
closer to s than the exit is to s, the exit can only be found after the robots moved
to the third distribution. Hence, it is indeed enough to consider only the exits
found (and therefore the competitive ratios achieved) during the simulation of
GeomSearch(α, β). Second, so far, for the sake of the exposition, we ignored the
detail that Theorem 5 actually requires αβm−1 < 1. This can easily be remedied
by dividing the current α repeatedly by βk until αβm−1 < 1 holds. Note that
Lemma 6 then still holds with an analogous argumentation. Essentially, the only
resulting change in the above considerations is that it takes GeomSearch(α, β)
even longer to get to the configuration of points with which the above simulation
starts.

By our above considerations, we obtain the following theorem:

Theorem 7. There is an extension of Algorithm GeomSearch(α, β) for the case
where the robots are not required to start in the junction that achieves a compet-
itive ratio of at most

1 + 2 · m− 1

k
·
�

1 +
k

m− 1

�1+m−1
k

.

4.2 A Lower Bound on the Competitive Ratio

In this section, we use a simple but fundamental technique to bound the com-
petitive ratio for the general case of k robots on m > k rays from below.

Theorem 8. There is no wireless evacuation algorithm for k robots on m > k
rays that achieves a competitive ratio of less than 3 + 2b(m− 1)/kc.

We assume that the labels are changed in a way that ensures that R0 is actually on
ray a0 in the third distribution.



Proof. Set x = b(m − 1)/kc. Consider any wireless evacuation algorithm A for
k robots on m > k rays. We assume that all robots start in the junction (which
we may choose to be the case as we are going to prove a lower bound). Since A
solves the problem of wireless evacuation, there must be a point in time where all
rays have been explored up to some depth that is strictly larger than 1, provided
that the exit has not been found so far. Consider the last point in time where
at least one ray has not been explored up to some depth > 1, and denote the
point in time one time unit earlier by t0. It follows that at time t0 there must
be some robot Ri at the junction or on a ray which at time t0 + 1 has not been
explored up to some depth > 1.

Let ε > 0. Let P be the set of points in distance t0/(2x)+ε from the junction
and observe that t0/(2x) ≥ 1 since t0 ≥ 2b(m − 1)/kc. We claim that at time
t0 + t0/(2x), robot Ri has explored at most x − 1 points in P : Since Ri starts
in the junction and, at time t0, is again in the junction or on a ray where the
corresponding point from P will not be explored up to and including time t0 +1,
it must travel a total distance of at least 2y(t0/(2x) + ε) in order to explore y
points from P up to time t0. Thus, we obtain 2y(t0/(2x) + ε) ≤ t0 which implies
y < x and thereby proves the claim. Note that robot Ri cannot explore a point
from P between t0 and t0 + t0/(2x) because of its location at time t0.

Moreover, we claim that at time t0 + t0/(2x), any robot Rh with h 6= i has
explored at most x points in P : Similarly to above, in order to explore y points
from P starting in the junction, robot Rh has to travel a distance of at least
(2y−1)(t0/(2x)+ε). We obtain (2y−1)(t0/(2x)+ε) ≤ t0+t0/(2x) which implies
y < x + 1 and thereby proves the claim. Hence, at time t0 + t0/(2x), at most
kx − 1 ≤ m − 2 points from P have been explored in total. Thus, there exist
two points p1, p2 ∈ P that have not been explored at time t0 + t0/(2x). Let t1
and t2 be the points in time when p1 and p2 are explored (for the first time),
respectively. W.l.o.g. assume that t1 ≤ t2.

Now consider the input instance where the exit is at point p2. Since some
robot is at p1 at time t1 ≥ t0 + t0/(2x), this robot cannot be at p2 before time
t1 + 2(t0/(2x) + ε), by the definition of P . We obtain a lower bound of

t0 + t0
2x + 2( t02x + ε)
t0
2x + ε

= 2 +
2x+ 1

1 + 2εx
t0

for the competitive ratio. By making ε arbitrarily small our lower bound gets
arbitrarily close to 3+2x = 3+2b(m−1)/kc which proves the theorem statement.

ut

5 Concluding Remarks

We studied the problem of collaboratively evacuating k robots on m concurrent
rays, using wireless communication. To the best of our knowledge, our work
is the first that considers not starting on the junction j of the m rays, and
also to consider k < m robots for the specific problem of wireless collaborative
evacuation on m rays.



For the case of k = m robots, a simple waiting strategy gives a competitive
ratio of 4, with a constructive lower bound of 2 +

√
7/3 ≈ 3.52753 for every

k = m ≥ 3. For the specific case of k = m = 3, we develop a parametrized class
of algorithms with a nearly matching competitive ratio of 2 +

√
3 ≈ 3.73205,

where the parameter choice decides on the first search depth beyond the junction
j, once the junction is found.

Unlike prior work, not starting on the junction j allows to consider the sce-
nario of the robots being initially oblivious to the number of rays. Our optimiza-
tion over the parameter space of a geometric search strategy yields an algorithm

with a competitive ratio of 1 + 2 · m−1k ·
�
1 + k

m−1

�1+m−1
k

. For a lower bound,

we give a simple but fundamental argument, resulting in the fact that no al-
gorithm can obtain a better competitive ratio than 3 + 2 b(m− 1)/kc for every
combination of k,m with k < m – even when starting on j.
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29. Alejandro López-Ortiz and Sven Schuierer. The ultimate strategy to search on m

rays? Theor. Comput. Sci., 261(2):267–295, 2001. doi:10.1016/S0304-3975(00)

00144-4.
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