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Abstract

Molecular structure elucidation from NMR data is a crucial process in chemistry,
particularly for applications on small and medium molecules in materials science.
Despite advances in computational methods, traditional approaches remain time-
consuming and data-intensive, necessitating the exploration of more efficient and
automated solutions. We propose a novel application of a pretrained language
model (LM) for structure elucidation using 2D NMR data, marking the first instance
of such an approach with experimental data. Our method generates SMILES strings
representing molecular structures by conditioning on both HSQC peaks and the
molecular formula, achieving a 74% accuracy rate. This surpasses the previous
state-of-the-art achieved with simulated data. By leveraging a pretrained model,
our approach requires significantly less data and compute. To our knowledge, this
work is the first to apply LMs to automated structure elucidation on 2D NMR
spectra, particularly on experimental data.

1 Introduction

The elucidation of molecular structures from NMR data is a critical task in chemistry, particularly in
the context of drug discovery and materials design [1]. Traditionally, this process relies on expert
interpretation of NMR spectra or the use of classical computational methods, which can be both time-
consuming and data-intensive. In recent years, the advent of deep learning and neural network-based
approaches has offered new avenues for automating and accelerating this process [2, 3]. However,
existing approaches, including those based on transformers, have focused primarily on 1D NMR data
and have largely relied on simulated or synthetic datasets, limiting their practical applicability in
real-world scenarios [4].

In this work, we focus on small molecules, which play a crucial role in the design of advanced
materials due to their versatile chemical properties and the ability to serve as fundamental building
blocks for more complex structures. Small molecules are central to the development of materials
with tailored functionalities, such as organic semiconductors, catalysts, and polymers [5, 6]. Their
structure elucidation is, therefore, a crucial step in the accelerated design and discovery of new
materials.

Transformers, originally designed for natural language processing, excel at capturing complex
dependencies within sequences due to their attention mechanisms [7]. This ability to focus on
different parts of the input sequence simultaneously makes transformers particularly well-suited for
handling the intricate relationships found in 2D NMR data. By treating NMR peaks as a sequence of
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information with spatial and intensity values, transformers can leverage their sequence-to-sequence
framework to model these complex relationships more effectively than traditional methods.

Inference with pretrained models is considerably more computationally efficient compared to training
transformers from scratch, which requires extensive datasets and significant resources for effective
sequence generation and generalization [8, 9]. In chemometrics, transfer learning is commonly
used to adapt models trained on large, generalized chemical datasets to specific tasks, improving
accuracy in the presence of minimal task-specific data [10]. Recent advancements highlight the use of
large, general-purpose transformer models, which leverage transfer learning to significantly reducing
computational demands while achieving high accuracy [11].

We present a novel approach that leverages a pretrained T5 transformer model for structure elucidation
from 2D NMR data. To our knowledge, this marks the first application of transformers to 2D NMR
data, and, importantly, the first to do so using experimental data. Our approach conditions the
generation of SMILES strings [12], which represent the molecular structure, on the 2D NMR peaks
and the molecular formula, achieving an accuracy of 74% and exceeding the current state-of-the-art
[4]. By utilizing a pretrained model, we significantly reduce both the amount of data and the compute
required for training, achieving substantial reductions in training time, making our approach both
efficient and scalable. The reduced data requirements and accelerated training times offered by
our approach make it especially well-suited for high-throughput environments, where the ability
to process large volumes of experimental data quickly is crucial. Furthermore, our solution is
computationally inexpensive, allowing for easy fine-tuning on standard machines commonly available
in materials science laboratories.

In summary, our contributions are as follows:

• We are the first to apply a pretrained LM to 2D NMR peaks and molecular formulas for
small molecule structure elucidation, achieving 74% accuracy on experimental data.

• We evaluate different LMs and conditioning signals to accelerate the materials discovery
pipeline, reducing data and compute requirements, and enabling high-throughput screening
of molecular structures.

• We open-source our framework and data augmentation code to facilitate further research in
NMR-based AI materials design.1

2 Method

In this work, we propose the application of a pretrained T5 transformer model for structure elucidation
from 2D NMR peaks and molecular formula. To the best of our knowledge we are the first to propose
such an approach for structure elucidation of 2D NMR.

Pre-trained architecture. The T5 model [13], originally developed for general natural language
processing (e.g., natural language translation), operates in a sequence-to-sequence framework. We
fine-tune a pretrained T5 [14] to map encoded 2D NMR spectral peaks (input) to SMILES strings
(output), representing molecular structures. In our experiments, we use T5-small (60M) and T5-large
(770M) to test both lightweight and expressive models. The T5 encoder processes the formula along-
side the spectral data, generating a high-dimensional latent representation that captures molecular
connectivity, even for complex motifs. The decoder part of the T5 model then takes this latent
representation and sequentially generates a SMILES string that describes the molecular structure. The
decoder operates in a step-by-step manner, predicting the next token (part of the SMILES string) at
each step based on the previously generated tokens. To improve accuracy, we utilize beam search [15]
to explore multiple candidate sequences, increasing the likelihood of finding the correct structure.

Our approach (see Figure 1) involved fine-tuning a conditional version of the T5 model
(T5Conditional), which incorporates additional input to guide the model during training. Rather
than treating the molecular formula as a token preceding the peak list, we treat is as secondary input
conditioning the model on the formula, ensuring that the generated SMILES string matches the
number and type of atoms.

1Codebase available at https://github.com/ETH-DISCO/2DNMR-to-structure
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Tokenization. Inspired by [4], our models encodes 2D NMR peaks as a list of (x, y, intensity)
values separated by ¦, where x corresponds to the chemical shift in the proton (1H) dimension and
y to the carbon (13C) heteronuclear dimension. Values of x and y rounded to 4 decimal points and
intensity normalized between 0 and 1. The intensity reflects the peak height, proportional to the
number of contributing nuclei. This structured input, processed as text in the embedding layer, allows
the model to interpret both spatial and intensity information as a sequence, similar to a language
translation task, facilitating accurate molecular structure reconstruction when conditioned on the
molecular formula.

Figure 1: Overview of the tokenization process and T5 model structure for formula and 2D NMR
peaks. Beam search explores multiple candidate sequences to generate the most probable SMILES.
The molecular formula is used as a conditioning input to ensure atom count consistency.

2.1 Dataset

Our data set consists of 943 unique spectra taken from the Human Metabolomics Database [16] and
NP-MRD [17]. Due to data availability and to maintain homogeneity, the spectra are all HSQC. All
spectra correspond to experimental measurements previously defined as “Excellent” (76%) or “Very
good” (24%) quality. This dataset focuses exclusively on HSQC spectra for small-sized and medium-
sized molecules, all of which have SMILES strings with lengths less than 70 characters. The spectra
exhibit well-resolved peaks with clear cross-peaks corresponding to heteronuclear scalar couplings
between 1H and 13C nuclei with chemical shifts spread over a broad range ([-0.5097, 11.3513] for
1H and [-4.9942, 195.9225] for 13C), reflecting diverse functional groups and environments. The
selected SMILES contain a limited variety of atoms, primarily including carbon (C), hydrogen (H),
oxygen (O), nitrogen (N), and halogens (F, Cl, Br, I). They include up to 4 simple ring systems (e.g.,
benzene rings), 12 basic functional groups (e.g., -OH, -NH2, -COOH), including sequences of up to
14 single (-), double (=), and triple (#) bonds and 2 chirality centers (@@) [18].

3 Results

Given the novel application of transformers in the field of automated structure elucidation from 2D
NMR data, and the lack of prior work in this specific area, we use an established baseline for 1D
NMR [4], applying the same training parameters. This baseline serves as a comparison for evaluating
the effectiveness of the pretrained T5 model versus a transformer trained from scratch. We applied
the baseline to 2D NMR as well as to (1) only 1D proton spectra (1H), (2) only 1D carbon spectra
(13C), and (3) joint 1D proton/carbon spectra (1H+13C). These control experiments allow us to assess
whether the model is truly learning from the additional 2D information. We also tested the baseline
on 2D NMR with the ChemBERTa tokenizer, which is trained on millions of SMILES strings,
to determine whether its domain-specific handling of SMILES data would improve the model’s
ability to process molecular structures. All models were run for 200k steps on an RTX 3070 GPU.
In addition to accuracy, our evaluation metrics include Top-5 and Top-10 measures, which assess
whether the correct SMILES string appears within the top 5 or top 10 predictions generated by the
model. We also measure Validity, which tracks the percentage of syntactically valid SMILES strings
generated (checked with RDKit [19]), ensuring the model outputs chemically plausible structures.
The percentage of correctly-generated isomers is also measured as explained in the Appendix section.

As observable from Table 1, the baseline model failed to leverage the complex relationships between
the 2D NMR peaks and the molecular formula within the constraints of the given training steps. This
difficulty likely stemmed from the model’s inability to sufficiently capture the complex patterns due to
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Table 1: Overview of model performance and training time. Base+ChemBERTa refers to the baseline
approach with the ChemBERTa tokenizer. Seq. refers to models treating the molecular formula as
a token, and Cond. refers to conditional models incorporating the molecular formula as additional
input during training. We report Accuracy, Top-5, Top-10, Validity, Isomers, and training time (TT).

Model Acc. (%) Top-5 (%) Top-10 (%) Val. (%) Iso. (%) TT (hours)

Baseline 1H 30.0 43.0 47.0 96.0 25.0 8.0
Baseline 13C 35.0 47.0 52.0 97.0 30.0 8.2
Baseline 1H+13C 42.0 50.0 57.0 98.0 36.0 10.0

Baseline 2D 46.5 53.2 60.1 98.7 41.0 11.0
Base+ChemBERTa 47.7 54.1 61.3 99.0 43.5 11.0
Cross-val Formula 37.8 44.0 50.3 76.5 31.2 6.8
Cross-val Peaks 30.2 36.1 41.0 73.8 25.9 5.9

Seq. T5-small 68.8 77.5 82.1 99.8 60.2 3.5
Seq. T5-large 68.3 76.8 81.4 99.6 58.9 4.3
Cond. T5-small 74.0 82.8 87.9 100 70.5 5.5
Cond. T5-large 73.8 83.2 88.3 100 70.8 6.7

the relatively small size of the dataset, which may not have provided enough variability and examples
for the model to generalize effectively. The differences in performance stem from the information
each NMR type provides. Proton (1H) spectra offer limited structural details, while carbon (13C)
spectra’s wider ppm range provide more framework-specific insights, slightly boosting accuracy.
Combined 1H+13C data provides complementary information from both environments but yields
lower accuracy compared to 2D NMR data, which contains detailed cross-peak correlations that
map atomic connectivity, indicating that the model effectively learns from the additional structural
information present in the 2D spectra. The T5-large model shows slightly lower accuracy but
better Top-5 and Top-10 performance because it has a larger capacity to explore and rank multiple
candidate sequences, allowing it to identify and generate more relevant SMILES strings within
the top predictions. Cross-attention is a powerful mechanism that allows transformers to focus
on different parts of input sequences simultaneously, potentially enhancing the model’s ability to
capture relationships between data sources such as peaks and molecular formulas [20, 21]. In our
study, we explored two cross-attention strategies: (1) cross-attention solely among 2D NMR peaks,
and (2) cross-attention between the peaks and the molecular formula. As observable in Table 1,
both approaches performed significantly worse than the baseline. The presence of experimental
noise, combined with the high variability in the length of peak lists, caused significant challenges in
relationship extraction. The model incorrectly correlated the number of peaks with the abundance of
certain atoms in the formula, leading to poor generalization.

4 Conclusion

In this work, we demonstrated that fine-tuning a pretrained sequence-to-sequence model such as T5
can effectively tackle the challenge of molecular structure elucidation from 2D NMR spectra. Our
approach outperformed previous state-of-the-art methods, while also being the first to operate on real
experimental data. By leveraging transfer learning, we achieved high performance with relatively
small datasets, reducing the need for large-scale data collection and extensive computational resources.
This makes our method particularly suitable for resource-constrained environments such as standard
chemometric laboratories. Unlike prior approaches that trained custom transformers from scratch, we
show that fine-tuning on curated datasets of small molecules not only reduces training time but also
improves accuracy. With 74% accuracy in generating correct SMILES representations, our method
demonstrates the potential of pre-trained transformers to manage the complexities of 2D NMR data,
offering a practical solution for small molecule structure elucidation.

Future research could explore hybrid models that combine transformers with convolutional neural
networks to better capture spatial relationships in 2D NMR data. Furthermore, it could be interesting
to develop long-context sequence transformers tailored to larger molecules, leveraging extended
datasets to improve performance on more complex structures.
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A Appendix

Data Augmentation. The selected spectra have been augmented to obtain a dataset of 190k records.
We introduced a shift of up to ±0.5 ppm in the x-dimension and up to ±5 ppm in the y-dimension.
These specific values were chosen based on the typical range of chemical shift variations observed in
experimental NMR spectra, as defined in [22]. The rationale behind these shifts lies in the natural
chemical environment’s impact on NMR signals, where small perturbations in chemical structure or
environmental conditions can lead to minor variations in chemical shifts [23].

Isomers. In structure elucidation, a known problem is given by generating the correct structure for
different isomers [24]. In materials science, the performance characteristics of a material, such as
conductivity or stability, can be heavily influenced by the specific isomeric form of its constituent
molecules [25]. In this study, we ensured that our dataset included a diverse set of isomers to fully
capture the complexity and challenge of the structure elucidation task. By including isomers, we
ensure the model does not place excessive focus on the chemical formula, while also testing its
ability to capture subtle differences in atomic connectivity and spatial arrangement [26]. In our model
molecules with identical atom count and molecular mass can only be distinguished by structure by
relying heavily on the analysis of the NMR peaks. In order to train our model to generalize well
starting from a rather limited dataset, we ensured 12% of our dataset to be isomers (97 records).
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