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Abstract. The increasing popularity of blockchain-based cryptocurren-
cies has made scalability a primary and urgent concern. We analyze how
fundamental and circumstantial bottlenecks in Bitcoin limit the abil-
ity of its current peer-to-peer overlay network to support substantially
higher throughputs and lower latencies. Our results suggest that repa-
rameterization of block size and intervals should be viewed only as a first
increment toward achieving next-generation, high-load blockchain proto-
cols, and major advances will additionally require a basic rethinking of
technical approaches. We offer a structured perspective on the design
space for such approaches. Within this perspective, we enumerate and
briefly discuss a number of recently proposed protocol ideas and offer
several new ideas and open challenges.

1 Introduction

Increasing adoption of cryptocurrencies has raised concerns about their abil-
ity to scale. Since Bitcoin is a self-regulating system that works by discovering
blocks at approximate intervals, its highest transaction throughput is effectively
capped at maximum block size divided by block interval. The current trend of
ever increasing block sizes on Bitcoin portends a potential problem where the sys-
tem will reach its maximum capacity to clear transactions, probably by 2017 [46].
As a result, the cryptocurrency community has been discussing techniques for
improving scalability of blockchains in general, and Bitcoin in particular, for
some time. These debates have been vigorous, and at times acrimonous, and led
to splits within the community, without a clear path forward on which technical
measures ought to be deployed to address the scalability problem.

Today’s representative blockchain such as Bitcoin takes 10 min or longer
to confirm transactions, achieves 7 transactions/sec maximum throughput. In
comparison, a mainstream payment processor such as Visa credit card confirms a
transaction within seconds, and processes 2000 transactions/sec on average, with
a peak rate of 56,000 transactions/sec [10]. Clearly, a large gap exists between
where Bitcoin is today, and the scalability of a mainstream payment processor.
Therefore, the key questions are,

Can decentralized blockchains be scaled up to match the performance of a
mainstream payment processor? What does it take to get there?



This paper aims to place exploration of blockchain scalability on a scientific
footing. We note that “scalability” is not a well-defined, singular property of a
system, but a term that relates several quantitative metrics to each other.

We offer three contributions that illuminate the problem of scaling Bitcoin
and blockchains generally to achieve high-performance, decentralized systems:

Measurement study and exploration of reparametrization. We present
experimental measurements of a range of metrics that characterize the resource
costs and performance of today’s operational Bitcoin network. As a first step to-
ward better scalability in Bitcoin, the community has put forth various proposals
to modify the key system parameters of block size and block interval. Through
further experimental investigation, we show that such scaling by reparametriza-
tion can achieve only limited benefits given the network performance induced
by Bitcoin’s current peer-to-peer overlay network protocol while maintaining its
current degree of decentralization, as measured by number of functioning peers
in the overlay network.

Our results hinge on the key metric of effective throughput in the overlay
network, which we define here as which blocks propagate within an average
block interval period the percentage of nodes to. If the transaction rate exceeds
the 90% effective throughput, then 10% of the nodes in the network would be
unable to keep up, potentially resulting in denied services to users and reducing
the network’s effective mining power. To ensure at least 90% of the nodes in the
current overlay network have sufficient throughput, we offer the following two
guidelines:

– [Throughput limit.] The block size should not exceed 4MB, given today’s
10 min. average block interval (or a reduction in block-interval time). A 4MB
block size corresponds to a maximum throughput of at most 27 transaction-
s/sec.

– [Latency limit.] The block interval should not be smaller than 12s, if full
utilization of the network’s bandwidth is to be achieved.

We stress that the above guidelines seem somewhat intuitive (especially in
hindsight). The community has thus also proposed radically different scaling
approaches, and introduced mechanisms such as Corallo’s relay network, a cen-
tralized block-propagation mechanism. One of our contributions, however, is to
quantify Bitcoin’s current scalability limits within its decentralized components.
Note that as we consider only a subset of possible metrics (due to difficulty in
accurately measuring others), our results on reparametrization may be viewed
as upper bounds: additional metrics could reveal even stricter limits.

Painting a broad design space for scalable blockchains. Our findings lead
us to the position that fundamental protocol redesign is needed for blockchains
to scale significantly while retaining their decentralization. We compile and re-
view various technical approaches that can help blockchains scale. We lay out
a broad design space that encompasses not just incremental improvements, but
also radical rearchitecture. We frame a structured discussion of new protocol de-
sign strategies in terms of a partitioning blockchain systems into distinct planes,



namely: Network, Consensus, Storage, View, and Side Planes. We discuss the
properties of each plane and both recent and new proposals to improve each; we
also discuss open research challenges.

Posing open challenges. Another goal of our paper is to articulate open chal-
lenges in the service of i) better understanding of scalability bottlenecks; and ii)
the design of more scalable blockchains. As mentioned earlier, scalability is not a
singular metric, but captures the tension between various performance and secu-
rity metrics. So far, measurement and understanding of many important metrics
(e.g., fairness and mining power utilization [25]) are lacking — partly because
monitoring and measuring a decentralized blockchain from only a few vantage
points poses significant challenges. We call for better measurement techniques
such that we could continuously monitor the health of decentralized system such
as Bitcoin, and answer key questions such as “To what extent can we push sys-
tem parameters without sacrificing security?” “How robust is the system when
under attack?” Finally, although we paint the broader design space for a scal-
able blockchain, instantiating and combining these ideas to build a full-fledged
system with formally provable security is a non-trivial challenge.

2 Bitcoin Scalability Today: A Reality Check

We analyze some of the key metrics of the Bitcoin system as it exists today.

Maximum throughput. The maximum throughput is the maximum rate at
which the blockchain can confirm transactions. Today, Bitcoin’s maximum through-
put is 3.3–7 transactions/sec [1]. This number is constrained by the maximum
block size and the inter-block time.

Latency. Time for a transaction to confirm. A transaction is considered con-
firmed when it is included in a block, roughly 10 minutes in expectation.1

Bootstrap time. The time it takes a new node to download and process the
history necessary to validate the current system state. Presently in Bitcoin, the
bootstrap time is linear in the size of the blockchain history, and is roughly four
days (averaged over five fresh t2.medium Amazon EC2 nodes that we connected
to the network running the most recent master software).

Cost per Confirmed Transaction (CPCT). The cost in USD of resources
consumed by the entire Bitcoin system to confirm a single transaction. The
CPCT encompasses several distinct resources, all of which can be further decom-
posed into operational costs (mainly electricity) and capital equipment costs:

1. Mining: Expended by miners in generating the proof of work for each block.

2. Transaction validation: The cost of computation necessary to validate that
a transaction can spend the outputs referenced by its inputs, dominated by
cryptographic verifications.

1 Although we define latency in Bitcoin as the time to obtain a single confirmation,
some payment processors accept “zero-confirmation” transactions, while others fol-
low common advice to wait for 6 confirmations before accepting a payment.



3. Bandwidth: The cost of network resources required to receive and transmit
transactions, blocks, and metadata.

4. Storage: The cost (1) of storing all currently spendable transactions, which is
necessary for miners and full nodes to perform transaction validation, and (2)
of storing the blockchain’s (much larger) historical data, which is necessary
to bootstrap new nodes that join the network.

Table 1 presents our estimates of these various costs. As the table shows, the
majority of the cost is attributable to mining. Our calculation suggests that, at
the maximum throughput, the cost per confirmed transaction is $1.4 – $2.9,
where 57% is electricity consumption for mining. If the de facto Bitcoin through-
put is assumed, the CPCT is as high as $6.2. We proceed to explain our cost-
estimation methodology.

To measure the cost per transaction for Bitcoin, we perform a back-of-the-
envelope calculation by summing up the electricity consumed by the network
as a whole, as well as the hardware cost of mining equipment. We project our
estimates based on the AntMiner S5+ mining hardware [8], which is the currently
available hardware that has the highest hash rate per joule, and the highest hash
rate per dollar according to this comparison as of October 2015 [2]. We assume
a 1 year effective lifetime for the hardware, and that the average hashing rate
of the network is 450,000,000 GH/s based on statistics from October 2015 [3].
Based on the power consumption of the selected hardware (0.445 W/GH), the
total power consumed by the network will be about 200 MegaWatt. Furthermore,
we assume the average price per KWh is $0.1 [48].

There are two interesting scenarios: The first scenario is when the Bitcoin
network is operating at maximum throughput, namely 3.3–7 transactions/sec.
This maximum throughput is mainly constrained by Bitcoin’s 1MB maximum
block size and the variable transaction size. The lower bound of the maximum
throughput is inferred from the current average transaction size, about 500 bytes,
while the upper bound is based on an oft-cited estimate from [1] which corre-
sponds to unusually small (250 byte) transactions. The second scenario is the de
facto average throughput for the Bitcoin network, which is, based on statistics
collected in October 2015, 1.57 transactions/sec [4].

Table 1 shows ballpark estimates for the transaction validation, storage,
and bandwidth costs. These estimates are attained assuming that the entire
network contains 5400 full nodes — a coarse-grained estimate obtained from
https://bitnodes.21.co/. We assume that each full node incurs roughly the
running cost of an EC2 micro-instance (∼ $0.01/hour) to validate transactions;
alternatively, assuming a $500 processor with a 5-year life-time would yield the
same ballpark estimate. We assume that transactions are stored on an SSD drive
with a 5-year lifetime, costing about $0.3/GB today. We also assume all nodes
store the entire history, to maintain the system’s security. We assume each node
maintains a home-grade Internet connection (about $100/month) whose cost is
amortized over all transactions. We stress that an EC2 micro instance and a
home-grade Internet connection provide sufficiently large computation/network
bandwidth at the operating scale of today’s Bitcoin.

https://bitnodes.21.co/


at max throughput at de facto throughput
cost/tx percentage cost/tx percentage

Mining: proof-of-work ∼ $0.8 − $1.7 ∼ 56% ∼ $3.6 ∼ 56%
Mining: hardware ∼ $0.6 − $1.3 ∼ 42% ∼ $2.7 ∼ 42%
Transaction validation ∼ $0.002 ∼ 0.2% ∼ $0.008 ∼ 0.2%
Bandwidth ∼ $0.02 ∼ 2% ∼ $0.08 ∼ 2%

Storage (running cost) ∼ $0.0008/5years

Table 1: Bitcoin cost breakdown. Includes cost incurred by all nodes.

We note that it is a fallacy to assume that transaction costs necessarily have
to be offset by transaction fees. In particular, the operational costs of running full
nodes may be offset by financial externalities, such as being able to confirm one’s
own transactions without trusting third parties, or by network effects, such as
selling items whose costs factor in the cost of operating a node. Miners, however,
are bereft of these two factors and need to be compensated in the steady state,
especially as the block subsidy is reduced over time.

Other metrics. The above is of course not an exhaustive list of potentially
interesting metrics. For example, while we have focused on Bitcoin’s role as a
transaction medium, it also serves as a store of value. We might therefore consider
the cost per stored dollar as an alternative to CPCT. Many other metrics are of
interest and it is an open research question which can best inform technical and
policy decisions.

3 Scaling by Parameter Tuning and Fundamental Limits

The Bitcoin community has several propositions under discussion for increas-
ing the maximum block size (or to remove the limit altogether [42]). Bitcoin Im-
provement Proposals (BIPs) 100, 101, 102, and 103, all involve a fork, triggered
by a combination of time and miner buy-in as reflected in the blockchain [13,
23, 26, 27, 50]. These proposals differ primarily on the initial date of the first
increase, the block size change strategy (none vs. linear vs repeated doublings vs
optional reductions), and the percent of miner buy-in to trigger a change. The
segregated witness proposal [23] amends the blocksize by less than a factor of
2 through a “soft fork” implementation, wherein legacy nodes do not need to
upgrade, but end up implicitly trusting the miners with transaction validation.
The developer community has been further fragmented into various proposals
(Core, XT, Classic and Unlimited) that embody different combinations of fea-
tures and rollout schedules. There is, as of yet, no clear winner, partly because
it is difficult to determine, a priori, which change schedule will best fit future
changes in node provisioning. It is an open question whether reparametrization
alone can adequately address the growth needs of a medium-to-large transaction
processing system. In the rest of this section, we explore its limitations.



3.1 Measurement Study

A critical reference point for Bitcoin’s performance is Decker and Watten-
hofer’s 2012 measurement study of the Bitcoin network’s block propagation [20].
At the time, the median and 90-percentile time for Bitcoin nodes to receive a
block was 6.5 seconds and 26 seconds respectively. This study also showed that
for small blocks, less than roughly 20KB in size, latency was a significant factor
in block propagation times. Beyond this size, throughput was the dominating
factor, and was invariant in block size; thus they found that for large enough
blocks the block propagation times grew linearly with respect to the block size.

At the time of their measurement, the average block size was 87KB. This
means that back in 2012, it would have taken 5 minutes for 90% of the nodes to
receive a full 1MB block — a significant fraction of the block interval.

Since nodes’ bandwidth provisioning and the network topology have evolved
since 2012, we repeated their measurement recently in 2014 and 2015. Our mea-
surement indicates that the 10%, median, and 90% block propagation times are
0.8 seconds, 8.7 seconds, and 79 seconds respectively. Further, the average block
size is now roughly 540KB. Projecting to a 1MB block size, the 90%, median, and
10% block propagation times would be 2.4min, 15.7sec, and 1.5sec respectively.

X% effective throughput. We define the metric “X% effective throughput”
as X% effective throughput := (block size)/(X% block propagation delay).

Our measurement study suggests the following X% effective throughputs for
the network (with translation to transactions/sec for 250-byte transactions):

X% X% effective throughput translated to transactions/sec c.f. Visa

50% 496 Kbps 248 tx/sec
2000 tx/sec

90% 55 Kbps 26 tx/sec

We additionally performed experiments to determine the minimum block size
for throughput to dominate over latency, similarly mirroring the 2012 study by
Decker and Wattenhofer [20]. The results are depicted in Figure 1. That figure
shows the overall rate (“network propagation rate”) at which blocks propagated
to 50%, 75%, and 90% of nodes, capturing the combined effects of latency plus
throughput. As block sizes grow from zero, the network propagation rate in-
creases until it levels off at roughly 80KB, suggesting that when the block size
is above 80KB, throughput dominates over latency. At this point, the propaga-
tion rate for 90% of nodes is about 55 Kbps, which is consistent with the 90%
effective throughput observed in the table above for the current overlay network.

As the data are noisy, we do not provide an estimate of the latency. As it is
negligible for blocks of size above 80KB, we disregard it elsewhere in the paper.

3.2 Limits of Scalability by Reparametrization

We now explore the potential of reparametrization to scale Bitcoin. If the
average block size reaches the X%-effective capacity during a block interval,
then (100-X)% of the nodes on the network would be unable even to receive
blocks as they arrive, and thus would be effectively disabled.
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Fig. 1: Network propagation rate (capturing both latency and throughput) vs.
block size.

We assume that it is desired to maintain nearly the current degree of de-
centralization, as measured by the number of properly functioning nodes in the
peer-to-peer overlay network. For the purpose of our study, we take 90% to be
our target. It is difficult to quantify what each node contributes towards the
overall virtue implied by decentralization. Not all nodes are necessarily miners;
and while some nodes can be associated with service providers and individual
users, there is no absolute measure of the economic significance of each node.
Our definition reflects an equal weighting of each node.

We also stress that our results assume the use of Bitcoin’s current peer-to-
peer overlay network. If the size or properties of the network change, that would
affect the X% effective throughput. We note, however, that Bitcoin’s overlay
network has remained stable in size from Nov. 2014 to Nov. 2015 at between
∼4500 to ∼6300 full nodes [5]. For brevity, we use the term “current overlay
network” to refer to these assumed conditions.

Throughput limit. We observe that the block size and interval must satisfy:

block size

X% effective throughput
< block interval.

Consequently, for a 10 minutes (or shorter) block interval, the block size
should not exceed 4MB for X=90%; and 38MB for X=50%.

Observation 1 (Throughput limit) Given the current overlay network and
today’s 10 minute average block interval, the block size should not exceed 4MB.
A 4MB block size corresponds to a throughput of at most 27 transactions/sec.

Latency limit. To improve the system’s latency, we can in principle simply
reduce the block interval. To do so while retaining high effective throughput,
however, would also require a reduction in the block size. Our experiments re-
flected in Figure 1

Propagating a block of size smaller than 80KB would not make full use of the
network’s bandwidth, as latency would still be a significant factor in the block’s
propagation time. To propagate a 80KB block to 90% of the nodes would take
roughly 12 seconds, given that the 90% effective throughput of the network today
is 55Kbps. Thus the following guideline.



%
Max. BW Tx thruput

Mbps tx/sec

90% 3.03 758
50% 33.03 8.3K
10% 186.10 46K

(a) Lower bound on per-node provi-
sioned bandwidth: measuring 4565 Bit-
coin nodes.

Resource
Max. thruput
[1000 tx/sec]

Tx validation on a modern
4quad-core processor

(2 signatures per Tx)

Disk I/O
Rotational 100MB/sec 200
SSD 300MB/sec 600

(b) Maximum throughput analysis.

Table 2: Per-node resource and bottleneck analysis.

Observation 2 (Latency limit) Given today’s overlay network, to retain at
least 90% effective throughput and fully utilize the bandwidth of the network, the
block interval should not be significantly smaller than 12s.

How to interpret/use these numbers. We stress that the above are conser-
vative bounds on the extent to which reparametrization alone can scale Bitcoin’s
peer-to-peer overlay network given its current size and underlying protocols.
Other, more difficult-to-measure metrics could also reveal scaling limitations.
One example is fairness. Our measurement results (see Section 3.1) suggest that
in today’s Bitcoin overlay network, when nodes are ordered by block propagation
time, the top 10% of nodes receive a 1MB block 2.4min earlier than the bottom
10% — meaning that depending on their access to nodes, some miners could
obtain a significant and unfair lead over others in solving hash puzzles. Due to
complicating factors, e.g., the fact that many miners today do not rely on a
single overlay node to obtain transactions (and indeed often rely on a separate,
faster mining backbone to propagate blocks), we believe that this figure cannot
directly inform reparametrization discussions. It is illustrative of other metrics,
however, that may be important but difficult to measure. Consequently, until
the Bitcoin system undergoes fundamental protocol changes, gradual or conser-
vative parameter changes may be prudent. Finally, note that our throughput
guidelines apply whether parameters are determined by market outcome or en-
forced by hard-coded limit.

3.3 Bottleneck Analysis

While scaling the blockchain protocol by parameter tuning is possible, we
find that best achievable throughput is significantly smaller than the limit posed
by the underlying infrastructure.

In Table 2a, we show results from our measurement study where we perform
a per-node bandwidth measurement to more than 4000 Bitcoin nodes. Table 2a
suggests that individual nodes are provisioned with significantly higher network
bandwidth than the overall network throughput attained by Bitcoin today —
recall that the 90% effective throughput today is 55Kbps (see Section 3.1). The
reason why Bitcoin’s network stack cannot reach the per-node link bandwidth is
likely due to the combination of several factors. For example, each transaction



is transmitted twice, first for gossiping the transaction; and then after a block is
mined, the newly mined block will be propagated again including all transactions
it contains. Moreover, due to lack of pipelining, propagation over multiple overlay
hops introduce delay proportional to the length of the path. Finally, Table 2b
shows that the cryptographic overheads associated with transaction verification,
and disk I/O are unlikely the bottleneck.

4 Rethinking the Design of a Scalable Blockchain

We discuss techniques that will allow blockchains to scale beyond the pa-
rameters of today’s Bitcoin. They range from incremental changes atop today’s
decentralized blockchain to more radical redesigns. The goal of this section is not
to propose an end-to-end system, but rather to paint the design space, suggest
promising approaches, and pose open challenges to the community.

We organize our discussion around a decomposition of the Bitcoin system
into a set of abstraction layers that we call planes. Ordered in a hierarchy of
dependency from bottom to top, the five planes we consider are the Network,
Consensus, Storage, View, and Side Planes.

In our exposition here, the ledger is the full history of the system, the complete
output of the Consensus Plane, as we define it below. A more precise definition
is possible that also specifies a particular confirmation policy, as ledger contents
may be subject to change, as in decentralized cryptocurrencies. For simplicity,
we do not model this feature of decentralized cryptocurrencies and instead treat
writes to the ledger as confirmed.

4.1 Network Plane

The function of the Network Plane is to propagate transaction messages.
It supports a broadcast abstraction in which a transaction message from any
player is transmitted to all (full) nodes in the Bitcoin network. The Network
Plane in Bitcoin is not a pure broadcast medium, however. Nodes only propagate
messages that represent valid transactions and thus the abstraction only accepts
valid transactions as inputs.

Our measurements have shown that Bitcoin’s network protocol and imple-
mentation do not fully utilize underlying network bandwidth, making Bitcoin’s
Network Plane the bottleneck in transaction processing. A natural direction to
improve scaling in Bitcoin is thus to improve the design of its Network Plane.

Two inefficiencies in Bitcoin’s Network Plane stand out. First, to avoid denial-
of-service by propagation of invalid transactions, a node must fully receive and
validate a transaction before further propagating it. (To be deemed valid, a trans-
action must ingest and produce legitimate transaction outputs and not conflict
with previous transactions.) This local validation of transactions contributes
significantly to the overall propagation time. Second, Bitcoin’s network-layer
protocol first propagates all transactions, and then propagates a block (contain-
ing previously propagated transactions) again when it is mined. This effectively
requires each transaction to be transmitted twice.



There have been several proposals to improve Bitcoin’s network-layer proto-
col. One possibility, to avoid transferring each transaction twice, is to rely on
a set reconciliation protocol in which nodes only fetch transactions that they
do not possess in a newly mined block [6, 31, 38, 47]. Another option, in use by
miners today, is to use a dedicated, centralized, high-speed relay network for
inter-miner communication [19].

A different direction is to improve the network layer’s function as a broadcast
channel. The Network Plane could be designed as a robust P2P overlay topology,
with strong connectivity between honest nodes and a low diameter. Such overlay
topologies are usually expander graphs, which have known low-latency broad-
cast protocols [28,32]. To limit influence of adversarial nodes, the overlay could
randomize the location of all peers (outside of their control). Several previous
distributed systems have adopted this approach [14,43]. To further limit denial-
of-service, nodes could rate-limit transmissions from their peers. Designing such
an overlay which maintains a strong connectivity between honest nodes (in the
presence of byzantine adversaries) is well-known for static networks [22,35], but
for highly dynamic networks is an active area of research [30].

A longstanding issue involving the Network Plane is the incentivization of
the participants. Researchers have noted that Network Plane lacks an incentive
structure for the dissemination of transactions, and have proposed a modified
fee splitting structure to provide robust incentives. Many other aspects of the
network protocol rely on voluntary participation and require ad hoc defenses to
stem flooding and denial of service attacks.

4.2 Consensus Plane

The function of the Consensus Plane is to designate a globally accepted
set of transactions for processing, as well as a total or partial order on these
transactions. As a general abstraction, this plane ingests messages from the
Network Plane and outputs transactions for insertion into the system ledger. In
Bitcoin, the Consensus Plane is the functionality that mines blocks and reaches
consensus on their integration into the blockchain.

Improving proof-of-work protocols. Bitcoin’s blockchain protocol intro-
duces a tradeoff among consensus speed, bandwidth, and security. By improving
the former two, one introduces an increased number of forks, leading to a loss
of the mining power that secures the system and to reduced fairness [25]. Many
cryptocurrencies (e.g. [9]) favor consensus speed over security, employing a stan-
dard Bitcoin blockchain with a high block-generation frequency.

This three-way tradeoff, however, is not inherent in decentralized cryptocur-
rencies. The GHOST protocol [45] of Sompolinsky et al. as well as Lewenberg
et al. [36] demonstrate that fairness and mining power utilization can be im-
proved by changing the chain selection rule, in particular, by being inclusive
to forks outside the main chain as well. In more recent work, Bitcoin-NG [25]
demonstrates that the inherent tradeoffs in Bitcoin can be eliminated with an al-
ternative blockchain protocol, offering a consensus delay and bandwidth limited
only by the Network Plane.



Proof of stake. Various proposals (e.g. [11, 33]) use proof of stake to achieve
consensus, eliminating the computational expense of proofs of work. In proof of
stake, principals gain the right to create blocks by depositing funds they own.
These techniques, however, lack formal guarantees of system convergence [18].

Consortium consensus. Decentralization carries a performance cost. A trust
model with stronger assumptions than those in Bitcoin can support a more
efficient consensus protocol, achieving better latency and throughput with less
computation, bandwidth, and storage. Specifically, using a standard Byzantine
Fault Tolerant (BFT) replication protocol with a small number of pre-designated
trusted entities removes many of the scaling obstacles in Bitcoin.

Settings involving BFT protocols executed by small sets of trusted entities
have received little treatment in the academic literature, but are of considerable
interest in practice, and mainstream financial institutions are actively exploring
their use [44]. They are sometimes referred to as “consortium blockchains.”

Consortium blockchains are worth investigation both as an alternative to de-
centralized cryptocurrencies and to characterize the performance cost that de-
centralized blockchains incur by distributing trust. In Appendix A, we present
performance figures and microbenchmarking results on experiments with a pop-
ular BFT protocol (PBFT) across a range of different system parametrizations
and with nodes dispersed across eight geographies worldwide. Our results illus-
trate the attractiveness of BFT as a basis for the consensus layer in a cryp-
tocurrency (given acceptance of its strong trust assumptions). Even with dozens
of nodes, PBFT greatly outperforms Bitcoin in both transaction latency and
throughput. For example, 64 nodes processing batches of 8192 transactions can
achieve a throughput of 4.5K tx/sec., average transaction latency of 1.79 sec.,
and an estimated resource cost per transaction of just $3.95 × 10−7.2 Scaling to
hundreds of nodes, however, would greatly degrade the performance of the sys-
tem. As we now explain, a promising approach to scaling and an open research
direction is how to shard a BFT protocol.

Sharding. One possible technique for improving the scalability of the Consensus
Plane is to shard it, that is, split up the task of consensus among concurrently
operating sets of nodes, with the aim of improving throughput and reducing
per-node processing and storage requirements. Sharding is commonly employed
in distributed databases, such as Dynamo, MongoDB, MySQL, and BigTable,
although performance typically does not grow linearly with shard count. This
is due to the need to reach consensus among the shards when operations span
multiple shards. One possibility, explored in a non-Byzantine environment in
past work [24,29, 51], is to use a separate consensus protocol, such as Paxos, to
achieve agreement among the shards. Such schemes, however, can incur substan-
tial overhead when cross-shard coordination is required in a Byzantine setting,
so sharding protocols for blockchains are an open area of research.

2 Transactions in our experiments are 190 bytes long, all that is needed for a basic
money transfer; given the roughly 500 byte average size of Bitcoin transactions, the
system would achieve 1.7k tx/sec.



Delegation of trust and a hierarchy of sidechains. Another technique for
scaling is to create a hierarchy of lower-tier “consensus instances,” commonly
referred to as “sidechains.” Sidechains can potentially have a lower degree of de-
centralization than the top-level blockchain. Sidechains may also run non-proof-
of-work consensus protocols, such as BFT. One sidechain structure, proposed by
Back et al. [15], permits transactions to move funds among independent chains.

The introduction of sidechains raises three technical challenges. First, the
sidechains must be secured independently of the main blockchain. Merged min-
ing techniques [15] allow separate chains to share their mining power, but require
miner coordination. Without such coordination, the maintenance of sidechains
dilutes the mining power in the system, rendering the individual chains vulner-
able. Second, if sidechains are widely adopted, the chances that a given source
of funds and a desired destination are on the same sidechain are small, requir-
ing inter-chain transactions. Inter-chain transactions will have to go through the
main blockchain, possibly requiring two separate transactions, and therefore may
place more of a burden on the main blockchain and thus have an adverse impact
on scalability. Finally, transactions involving more than one decentralized chain
may incur high latency. Decentralized blockchains require the accumulation of
a number of blocks to ensure that a transaction will remain in the blockchain
with high probability. Transactions among chains will require a sequence of such
block accumulations, one per chain.

4.3 Storage Plane

The Storage Plane functions as a global memory that stores and provides
availability for authenticated data produced by the Consensus Plane. It may
be regarded as an abstraction with two interfaces: (1) It ingests and processes
memory-modification instructions—write and (potentially) delete operations—
from the Consensus Plane and (2) It services read requests from any entity in the
system. The storage plane contains the ledger of the system but may also con-
tain other state produced by consensus, such as smart contract state or “views”
supported by the View Plane.

There are several ways to implement the Storage Plane in a cryptocurrency.
In Bitcoin, the Storage Plane may be regarded as storing the Bitcoin ledger.
The Bitcoin reference implementation today by default stores the entire ledger;
as a result, the system stores many duplicates of the entire ledger. The Storage
Plane in Bitcoin accepts only writes that append data, namely newly mined
blocks, and does not support delete operations. The only generally supported
read operation for the Bitcoin Storage Plane downloads the contents of the entire
ledger, a process that requires four days (see Section 2). (Given the current height
of the blockchain, a downloaded ledger may be authenticated by reference to the
genesis block.) Thus, Bitcoin’s Storage Plane has notable inefficiencies.

Other implementations of and interfaces for the Storage Plane are possible.
The community has proposed interesting ideas that can essentially shard the
storage of a UTXO data structure [37] (see below). It is not clear how these
ideas would generalize to other forms of state that might go into the Storage
Plane, e.g., the state associated with smart contracts. How to shard a general-



purpose Storage Plane such that not all consensus nodes have to store it in its
entirety and such that its contents can be authenticated during read operations
is an open research challenge. Distributed Hash Tables (DHT) are a possible
start, coupled with suitable data authentication techniques.

4.4 View Plane

For Bitcoin miners, it is unnecessary to operate on the full ledger that stores
the entire transaction history. Thus miners and nodes in Bitcoin locally com-
pute and operate on a view of the ledger called the unspent transaction outputs
(UTXO) set, which in effect specifies the current balance of all entities in the sys-
tem. Similarly, in Ethereum smart contracts can define state that resides in the
ledger. Parties to a smart contract may wish to access and authenticate this state
without reading other parts of the ledger. For this reason, a key performance
requirement in cryptocurrencies (both decentralized and probably centralized)
is support for views.3

A view is a data structure derived from the full ledger whose state is obtained
by applying all transactions. For performance reasons, a view may be stored in
the Storage Plane and distributed in an authenticated fashion — Bitcoin did
not implement this optimization, and therefore new miners would now need four
days to reconstruct the UTXO set (which can be considered as a view) from the
beginning of time. In general, the view can be an arbitrary function of the full
ledger, not necessarily the UTXO set. As a piece of data in the Storage Plane, a
view must be determined either implicitly or explicitly by the Consensus Plane
and must be authenticable by any entity executing a Read operation against it.
There are a number of options for implementing a view, including the following.

Views via replication. Bitcoin [39], Ethereum [49], and other popular decen-
tralized cryptocurrencies require all consensus nodes to verify all transactions
(and/or smart contracts), and based on the result of the computation, update
their respective views, e.g., UTXO sets, locally. In this case, the view is an im-
plicit output of the Consensus Plane and may be regarded as residing in the
Storage output: provided that it is correctly computed, it represents the com-
putation that an honest set of consensus nodes would produce, and of course it
has high availability.

Outsourcing views via cryptography. It is possible to outsource the com-
putation of a view to a third-party service provider. This provider may release
a cryptographic digest (e.g., Merkle-tree root) of this view along with a proof
of its correctness. By relying on verifiable computation techniques such as suc-
cinct non-interactive arguments of knowledge (SNARKs) [17, 40], the provider
can produce a proof of correctness for the digest, supporting authentication of
the view. The view may then be inserted into the Storage Plane. If availability
is not essential, the view can alternatively be stored within some other part of
the system, e.g., by the provider itself, rather than in the Storage Plane.

3 We adapt the term “view” from its meaning in database theory, where it refers to
the result set of a stored query.



One advantage of this approach is that consensus nodes now need not store
the entire ledger. They can instead operate over suitably chosen views. A key
question that must be answered, however, is whether cryptographic techniques
such as SNARKs are practically viable. In the Appendix, we present experimen-
tal results showing that the amortized cost of employing SNARKs can be as low
as $0.0154 per transaction for computing a simple view that essentially stores
all users’ balances.

4.5 Side Plane

Much as sidechains allow off-the-main-chain consensus, we can consider off-
chain functionalities. Off-chain transactions have been demonstrated in payment
networks [12,21,41], in which payments are routed along paths of pre-established
“collateral” channels. Each such channel represents a quantity of bitcoin reserves
set aside, such that parties can repeatedly adjust their relative stake by exchang-
ing out-of-band messages until the channel is finalized (and the reserves paid
out). While payment networks have been heralded as a solution to Bitcoin’s in-
herent limitations, much of their operation, and the guarantees they can offer,
rely critically on the nature of the links formed between parties. Even when
payment networks use the same underlying transaction format as Bitcoin, as
do the Lightning Network [41] and full duplex channels [21], they essentially
form a separate Network Plane as well as an independent, peer-to-peer Consen-
sus Plane, backed by Bitcoin. As a result, their capacity, ability to find routes,
achieved throughput, latency, and privacy guarantees depend fundamentally on
emergent properties of the payment network graph, such as the value capacity
of peer-to-peer channels, the discoverability of routes, the online status of nodes
involved, and so on. Further, payment channels may embody a similar tradeoff
between performance and centralization in the payment network; a centralized
hub-and-spoke topology that simplifies routing embodies inherent problems with
centralization, such as loss of privacy. The design of protocols for efficient, scal-
able, privacy-preserving payment networks is an ongoing area of research: it is
far from a given that they can outperform Bitcoin’s Network and Consensus
layers overall.

5 Conclusion

This paper explored the challenges in scaling Bitcoin and blockchains in gen-
eral. Supported by measurement studies, we showed that reparametrization of
the block size and interval in Bitcoin is only a first step toward substantial
throughput and latency improvements while retaining significant system decen-
tralization. More aggressive scaling will in the longer term require fundamental
protocol redesign. Through a structured presentation of the design landscape
for blockchain protocols, we illustrated the variety of potentially successful ap-
proaches to such scaling, categorized a range of recently proposed and new ideas,
and framed a number of important open technical challenges for the community.
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Table 3: Consortium blockchain scalability. Results of running PBFT over
geographically distributed EC2 nodes for some representative (n, k) parameter-
izations. As for any BFT protocol, the throughput drops as the number n of
nodes increases. Conversely, in this small experiment, enlarging the batch size k
may be seen to increase throughput at the cost of a small increase in latency.

# of Nodes (n) Batch size (k) Latency Throughput Price per tx 500 byte tx

4 nodes (1 region) 32768 288 ms 113K tx/sec $9.83 ×10−10 42.9K tx/sec

8 nodes 8192 0.58 sec 14.0K tx/sec $1.59 ×10−8 5.3K tx/sec

8 nodes 32768 1.48 sec 22.2K tx/sec $1.00 ×10−8 8.4K tx/sec

16 nodes 8192 0.69 sec 11.9K tx/sec $3.73 ×10−8 4.5K tx/sec

16 nodes 16384 1.04 sec 15.8K tx/sec $2.81 ×10−8 6.0K tx/sec

32 nodes 2048 0.48 sec 4.3K tx/sec $2.07 ×10−7 1.6K tx/sec

32 nodes 8192 0.925 sec 8.8K tx/sec $1.01 ×10−7 3.3K tx/sec

64 nodes 2048 0.824 sec 2.4K tx/sec $7.40 ×10−7 0.9K tx/sec

64 nodes 8192 1.79 sec 4.5K tx/sec $3.95 ×10−7 1.7K tx/sec

A BFT Experiments (Consortium Consensus)

Here we report on our experiments on BFT performance. Table 3 illustrates
the attractiveness of BFT as a basis for the consensus layer in a cryptocurrency
(given acceptance of its strong trust assumptions). Even with dozens of nodes,
PBFT greatly outperforms Bitcoin in both transaction latency and throughput.
Scaling to hundreds of nodes, however, would greatly degrade the performance
of the system.

Experiments were conducted using t2.medium Amazon EC2 instances. The
results are displayed in Table 3. The 4 node experiment represents a best-case
setting; all nodes were located in the US East N. Virginia region. In all other
experiments the nodes, plus a client furnishing transaction inputs but not par-
ticipating in the consensus protocol, were evenly distributed across 8 geographi-
cal regions: Northern Virginia, Oregon, Northern California, Ireland, Frankfurt,
Tokyo, Sydney, Sao Paulo. As instance costs vary by region, we conservatively
assume each node incurs the highest observed fee of $0.10 per hour. We ex-
perimented with several batch sizes in order to locate the point at which each
configuration becomes bandwidth bound. Here, a transaction message is 190
bytes in length and is modeled after a Bitcoin transaction, including a pay-to-
public-key-hash scheme and a digital signature.

We observed that configurations with a larger number of nodes became band-
width bound at smaller batch sizes. This is due to the primary node broadcast-
ing each batch to every other node participating in the protocol. Increasing the
batch size beyond this bound for a given configuration increases latency while
leaving throughput relatively unchanged. For smaller batch sizes the bottleneck
was local processing, primarily signature verification for the batch as a whole.



Table 4: Verifiable outsourcing of ledger storage and maintenance using SNARKs
Rate Total Proof Verification Proof # of Total Cost Cost per tx

tx/block time (prover) time (verifiers) Size EC2s (prover) (prover)

25 496 sec 0.01 sec 288 bytes 1 $0.385
$0.01544200 (7tx/sec) 588 sec 1.68 sec 48 kbytes 168 $64.68

6000 (10tx/sec) 628 sec 2.4 sec 68 kbytes 240 $92.40

Once an ordering of batches has been agreed upon and committed, individual
transactions may be processed and verified independently from the consensus
protocol. However, we expect to see a much larger slowdown when scaling to
hundreds of nodes, as the number of messages in standard BFT protocols grows
quadratically in the number of nodes.

B Use of SNARKs for Outsourcing View Computation

We now explain how SNARKs may be used to support computation of views
by a service provider, rather than individually by every node in the network (as
happens today). In our experiment, we assume that a simple view is adopted
containing all users’ account balances.

To support the secure outsourcing of view derivation, the provider (or prover,
as we might call it) must store the balance for each Bitcoin address used in the
transactions so far. As in Bitcoin, we assume 2160 possible public addresses.
The prover will maintain a Merkle tree of height 160, where each leaf stores
the balance of the public address identified by the path to the leaf. (Unused
zero-balance leaves do not have to be stored explicitly.) Computing the initial
digest of the tree when all balances are zero can be done by utilizing the similarity
across levels. Later, when a transaction is received, the system checks the balance
of the sender address, and if it is sufficient, transfers the desired amount to the
receiver’s balance. (In case of a mining reward, the initial check is not necessary.)
The prover then updates the ledger digests accordingly.

Using SNARKs, the service provider will be able to prove the correct appli-
cation of a set of transactions, and the correct update of digests. We evaluated
a SNARK circuit that checks and applies 25 1-sender 1-receiver transactions to
the ledger. Each transaction in that case specifies the desired amount of money
to be transferred. This is equivalent to 1-input 2-output transactions in Bitcoin,
where one of the outputs is a remainder going back to the sender’s address, but
the remainder does not have to be specified explicitly in our setting. The prover
then outputs the modified digest with a vector representing which transactions
were valid, and possibly the modified balances. To make the circuit efficient, we
used a SNARK-friendly collision resistant function based on subset sum [16], at
80-bit of security as in [34]. To experiment at higher transaction rate, multiple
circuits can be run in a nearly-parallel mode, by computing and feeding the next
digest quickly from one circuit to the next one without waiting for the proof to
complete.

Table 4 shows the estimated cost incurred by the prover (provider) and the
verifiers (relying miners or consensus nodes) to produce the proof at multiple set-



tings. We ran the experiment for the first case using an Amazon EC2 r3.8xlarge
instance [7] (using 32-cores for the proof computation, and single core for verifica-
tion) and using libsnark [17] as a backend, and estimated the overall performance
and cost accordingly assuming throughputs of 7 tx/sec, and 10 tx/sec. The table
shows that the computation cost for applying one transaction to the ledger is
about $0.0154, but at high throughput, the waiting time for proof computation
is about or more than 10 minutes (implying a higher delay if higher security
level is used).

By adopting SNARKs, miners no longer need to store the full ledger nor the
necessary views to validate transactions. In this way, decentralized storage and
replication of the ledger and views can be decomposed from the consensus pro-
tocol and the view computation. Additionally, in our current experiments, we
assume that the consensus nodes are validating the signatures on the transac-
tions, and this signature validation is not performed within SNARKs (otherwise
the cost of SNARKs would be more expensive).


