
GRAPHTESTER: Exploring Theoretical Boundaries of
GNNs on Graph Datasets

M. Eren Akbiyik* 1 Florian Grötschla* 1 Béni Egressy* 1 Roger Wattenhofer 1

Abstract
Graph Neural Networks (GNNs) have emerged as
a powerful tool for learning from graph-structured
data. However, even state-of-the-art architectures
have limitations on what structures they can dis-
tinguish, imposing theoretical limits on what the
networks can achieve on different datasets. In
this paper, we provide a new tool called GRAPH-
TESTER for comprehensive analysis of the theo-
retical capabilities of GNNs for various datasets,
tasks, and scores. We use GRAPHTESTER to an-
alyze over 40 different graph datasets, determin-
ing upper bounds on the performance of vari-
ous GNNs based on the number of layers. Fur-
ther, we show that the tool can also be used for
Graph Transformers using positional node encod-
ings, thereby expanding its scope. Finally, we
demonstrate that features generated by GRAPH-
TESTER can be used for practical applications
such as Graph Transformers, and provide a syn-
thetic dataset to benchmark node and edge fea-
tures, such as positional encodings. The pack-
age is freely available at the following URL:
https://github.com/meakbiyik/graphtester.

1. Introduction
Graph-structured data is ubiquitous in various domains, in-
cluding social networks (Newman, 2003), chemistry (Dob-
son & Doig, 2003), and transport (Barthélemy, 2011). An-
alyzing and learning from such data is critical for under-
standing complex systems and making informed decisions.
Graph Neural Networks (GNNs) (Scarselli et al., 2009; Kipf
& Welling, 2017) have emerged as popular tools for learn-
ing from graph data due to their ability to capture local and
global patterns (Bronstein et al., 2017; Wu et al., 2020).

The main approach for analyzing the theoretical power of
GNN architectures relies on showing equivalence to the
Weisfeiler-Lehman (WL) graph isomorphism test (Xu et al.,
2019b). Standard message-passing GNNs are bounded in

*Equal contribution 1ETH Zürich, Switzerland. Correspon-
dence to: M. Eren Akbiyik <eakbiyik@ethz.ch>.

Figure 1. Two non-isomorphic graphs that cannot be distinguished
by 1-WL. The colors stand for the stabilized 1-WL labels.

power by the 1-WL test, and this can be used as a basis
for calculating upper bounds on the performance of said
GNNs on graph classification datasets (Zopf, 2022). We
can extend this concept to different tasks, where these up-
per bounds can tell us what performance is achievable on a
given graph dataset with a GNN. For example, in the task
of categorical predictions for nodes, as long as we can pre-
dict the correct category for every node, we will get perfect
accuracy. This only works if we can differentiate nodes
that have to make different predictions. Once two nodes
“see” precisely the same surrounding, they will always come
to the same conclusion although they might need to make
different predictions (refer Figure 1 for an example). By
using the equivalence to the 1-WL algorithm, we can iden-
tify structurally identical nodes for a GNN and optimize the
overall accuracy by assigning the majority label amongst
similar nodes. We will thus get a theoretical upper bound
that gives us insight into the solvability of a graph dataset.

We present a tool called GRAPHTESTER that computes these
metrics in an automated way and answers the question:
What is the best performance one can achieve on a given
dataset with a GNN? How does this upper bound improve
once we add node or edge features? We further show that
GRAPHTESTER is not only applicable to GNNs following
the message-passing formula but also graph transformers
(GTs), a more recent development integrating a generalized
attention mechanism, if restricted to positional encodings
for nodes.

Our contributions can be summarized as follows:

• We present and use GRAPHTESTER to analyze over
40 graph datasets to determine upper bound scores for
various GNNs. The tool provides support for edge fea-
tures, different performance measures, different num-
bers of GNN layers, and higher-order WL tests. It also
comes with a synthetic dataset to benchmark features

1

https://github.com/meakbiyik/graphtester

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

for nodes and edges, such as positional encodings.

• We prove that graph transformers making use of posi-
tional encodings for nodes are also bounded in power
by the Weisfeiler-Lehman (1-WL) graph isomorphism
test, thereby resulting in the same upper bounds as a
GNN with additional encoding information and mak-
ing our tool applicable as well. In addition, we extend
the existing proofs for GNNs to cover edge features.

The rest of this paper is organized as follows: Section 2
discusses related works; Section 3 presents our theoretical
analysis; Section 4 introduces GRAPHTESTER package; and
Section 5 concludes the paper.

2. Related Work
2.1. Graph Neural Networks

Graph Neural Networks (GNNs) have been widely studied
as an effective way to model graph-structured data (Scarselli
et al., 2009; Kipf & Welling, 2017; Bronstein et al., 2017;
Wu et al., 2020). GNNs learn by propagating informa-
tion through the graph and capturing local and global pat-
terns. They have been applied to various tasks, such as
node classification (Kipf & Welling, 2017), link prediction
(Schlichtkrull et al., 2018), and graph classification (Duve-
naud et al., 2015). There are now many variants, including
Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017), GraphSAGE (Hamilton et al., 2017), and Graph At-
tention Networks (GATs) (Veličković et al., 2018).

2.2. Graph Transformers

Graph transformers are a more recent development in the
GNN literature, inspired by the success of the Transformer
architecture in natural language processing (Vaswani et al.,
2017). They employ self-attention mechanisms to model
interactions between all pairs of nodes in graphs (Dwivedi
& Bresson, 2020; Kreuzer et al., 2021; Dwivedi et al., 2021;
Wu et al., 2022b). This allows them to capture long-range
dependencies with relatively few layers. However, this also
comes with a high computational cost, limiting their ap-
plicability to very large graphs. Some approaches have
been proposed to overcome such limitations and produce
scalable architectures (Rampášek et al., 2022; Wu et al.,
2022a). Graph transformers have shown promising results
on various graph-based tasks, and their flexibility has led
to a growing interest in understanding their capabilities and
limitations. An important component when analyzing their
capabilities is the choice of positional node encodings.

2.3. Theoretical Analysis of GNNs

The Weisfeiler-Lehman (WL) test is a well-known graph iso-
morphism test that has been linked to the expressive power

of message-passing-based GNNs (Morris et al., 2019; Xu
et al., 2019a). There is a hierarchy of WL tests, and the
1-dimensional WL (1-WL) test has been shown to upper-
bound the expressive power of many GNN architectures (Xu
et al., 2019a). The test iteratively refines node labels based
on the labels of neighboring nodes, providing a way to com-
pare the structure of different nodes, graphs, or subgraphs.
The theoretical connection to the WL test provides valuable
insights into the representational power of GNNs, but it
leaves the question of incorporating edge features largely
unaddressed. In this paper, we extend this line of work by
proving that in the absence of positional encodings, graph
transformers are equivalent to the 2-WL algorithm, even
when using edge features. Given the importance of specific
subgraph patterns for certain applications, some works as-
sess the theoretical power of GNNs on more tangible scales
(Chen et al., 2020; Papp & Wattenhofer, 2022).

2.4. Positional Encodings for GNNs

GNNs, including graph transformers, face challenges distin-
guishing nodes and graphs. For example, a basic message-
passing GNN is not able to distinguish two three-cycles
from a six-cycle. One common approach to addressing
this issue, especially with graph transformers, is to use
positional encodings or pre-coloring methods to provide
additional global information about node positions (Mor-
ris et al., 2019; Maron et al., 2020; Dwivedi & Bresson,
2020). Several positional encoding methods have been pro-
posed, such as eigenvector-based encodings (Dwivedi et al.,
2020), Poincaré embeddings (Skopek et al., 2020), and si-
nusoidal encodings (Li et al., 2018). These methods aim to
improve the expressivity of GNNs by enriching the node
features with positional information that can help GNNs
better capture the graph structure. In this paper, we focus
on deterministic positional encoding methods, as they allow
us to quantify fixed and provable improvements.

2.5. Analysis of Graph Datasets

Closest to our work is Zopf (2022), which analyses several
standard GNN benchmark datasets for graph classification
with respect to the 1-WL test. They compute upper bounds
on the accuracy achievable by 1-WL GNNs and confirm that
expressiveness is often not the limiting factor in achieving
higher accuracy. Our work can be seen as an extension
of this paper, going beyond simple graph classification to
all graph-based tasks. GRAPHTESTER provides support
for edge features, positional encodings, node/link targets,
various performance measures, and higher-order WL tests.
In addition, we lay the theoretical basis for extending the
analysis to graph transformers, thereby further expanding
the scope of GRAPHTESTER.

2

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

3. Theoretical Analysis
In this section, we provide the necessary theoretical analysis
to use both edge features and graph transformers restricted
to positional encodings for nodes in our framework.

3.1. Preliminaries

Let G = (V,E,XV ,XE) be an undirected graph, where V
and E denote the node and edge sets, and XV ,XE denote
the node and edge feature matrices. The feature matrices
have shapes (|V | × dV) and (|E| × dE) respectively, with
dV and dE representing the number of different labels/col-
ors each node and edge have. N (v) represents the set of
neighbours of node v ∈ V .

1-Weisfeiler-Lehman The 1-WL algorithm, also known
as naı̈ve vertex classification or as color refinement, is one
of the early attempts at the graph isomorphism (GI) prob-
lem. Variants of this algorithm are still employed in prac-
tical implementations of GI testers (Kiefer, 2020) such as
nauty, Traces (McKay & Piperno, 2013), and Bliss (Junttila
& Kaski, 2007). The iterative algorithm outputs a stable
coloring of the nodes in a graph through a combination of
neighborhood aggregation and hashing and is described in
Algorithm 1. The function hash is an idealized perfect hash
function that we assume to be injective. We know that the
induced partitioning of the nodes by color stabilizes after
at most |V | − 1 iterations (Kiefer, 2020), resulting in the
maximum number of rounds we execute. Throughout the
definitions, we use curly braces to refer to multisets.

Algorithm 1 1-Weisfeiler-Lehman (1-WL)

Require: G = (V,E,XV)

c
(0)
v ← hash(XV

v) ∀v ∈ V
for i← 1 to (|V | − 1) do
c
(i)
v ← hash(c

(i−1)
v , {c(i−1)

w : w ∈ N (v)}) ∀v ∈ V
end for
return civ

k-Weisfeiler-Lehman The k-WL algorithm is a k-
dimensional extension of Color Refinement where the al-
gorithm hashes over subgraphs of node k-tuples instead of
single nodes. The algorithm can be seen in Algorithm 2. In
addition to the standard notation, we use G[U] to represent
the subgraph of G induced by selecting the set of nodes
U ⊆ V . Induced subgraphs include all edges between the
selected nodes in the original graph, as well as node and
edge attributes associated with them. Furthermore, we use
Ni(v) to represent the neighborhood of k-tuples of node
v at the index i. That is, for a k-tuple v = (v1, v2, ..., vk)
and vi ∈ V , the neighborhood at index i can be written as a

multiset of k-tuples

Ni(v) := {(v1, ..., vi−1, w, vi+1, ..., vk) : w ∈ V } .

Algorithm 2 k-Weisfeiler-Lehman (k-WL)

Require: G = (V,E,XV ,XE)

c
(0)
v ← hash(G[v]) ∀v ∈ V k

for i← 1 to (|V |k − 1) do
c
(i)
v,j ← {c

(i−1)
w : w ∈ Nj(v)} ∀j ∈ [1..k]

c
(i)
v ← hash({c(i−1)

v , c
(i)
v,1, ..., c

(i)
v,k})

end for
return c

(i)
v

Equivalence of 1-WL to k-WL for k = 2 It has been
shown by Immerman and Lander (Immerman & Lander,
1990) that for graphs G and H , 1-WL does not distinguish
G and H if and only if G and H are C2-equivalent (Immer-
man & Lander, 1990). Furthermore, as shown by Cai, Fürer
and Immerman (Cai et al., 1989), k-WL does not distin-
guish G and H if and only if G and H are Ck-equivalent.
Consequently, 1-WL can distinguish G and H if and only if
2-WL can also distinguish G and H . This insight is crucial
when extending 1-WL to use edge features, as the preserva-
tion of this hierarchy is important to connect Graph Neural
Networks and graph transformers to the k-WL literature in
analyzing their expressivity.

Graph Neural Networks GNNs comprise multiple lay-
ers that repeatedly apply neighborhood aggregation and
combine functions to learn a representation vector for
each node in the graph. Rigorously, for an input graph
G = (V,E,XV), the i-th layer of a GNN can be written as

c(i)v = COMBINE(i)
(
c(i−1)
v ,

AGGREGATE(i)
({

c(i−1)
w : w ∈ N (v)

}))
,

where c(i−1)
v represents the state of node v after layer (i−1).

Graph Transformers Transformer models have been
widely used in modeling sequence-to-sequence data in dif-
ferent domains (Vaswani et al., 2017). Although the at-
tention mechanism has commonly been used to learn on
graph-structured data (Veličković et al., 2018), the use of
transformers is relatively recent. A graph transformer layer
relies on global self-attention and is parameterized by query,
key, and value matrices WQ,WK ,W V ∈ Rdin×dout , where
din is the embedding dimension of nodes before the applica-
tion of the transformer layer and dout is the output dimension.
For the sake of simplicity, we restrict ourselves to single-
headed attention. We assume that node embeddings c(i−1)

v

3

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

are stacked in a matrix C(i−1) ∈ Rn×din . C is then pro-
jected with the query and key matrices before a softmax
function is applied row-wise and the value matrix is multi-
plied:

ATTN(C(i)) =

softmax

(
C(i−1)WQ(C(i−1)WK)T√

dout

)
C(i−1)W V

States C(i−1) can be passed through a learnable function
before and after the global attention ATTN is applied. Posi-
tional encodings are commonly used with graph transform-
ers to give every node a sense of where it is located in the
graph. Positional encodings can come in the form of node
encodings (Rampášek et al., 2022) that are essentially fea-
tures added to the nodes before the attention block is applied
or node-pair encodings, where each node-pair is endowed
with features such as shortest-path distances (Ying et al.,
2021). Node-pair encodings have the downside that the full
attention matrix has to be materialized. In this case, one can-
not profit from faster attention mechanisms (Rampášek et al.,
2022) that scale better than O(n2), making it practically in-
feasible. Here, we restrict ourselves to node encodings.
Theorem 3.1. The 1-WL test is at least as powerful as GTs
with positional encodings for nodes, e.g., GraphTrans (Wu
et al., 2022b) or GraphGPS (Rampášek et al., 2022), if node
encodings are also provided as initial color classes for the
1-WL algorithm.

Proof sketch. To prove that 1-WL is an upper bound in
terms of expressiveness for GTs with node encodings, we
first consider the color classes of a 1-WL execution on the
fully-connected graph, instead of the original topology. As
we input positional encodings as color classes to 1-WL,
and we can reconstruct all attention scores from the 1-WL
labels in every iteration, it becomes clear that 1-WL can
simulate a GT. We then show that any two nodes with the
same color class in a fully connected graph will stay in
the same color class, meaning no more refinement of color
classes is possible for a transformer layer.

See proof on page 12.

3.2. Edge-Feature-Aware 1-WL Algorithm

We now present the edge-feature-aware 1-WL (1-WLE). At
each iteration, the algorithm updates the node labels based
on both the neighboring node labels and the edge labels
of the connecting edges. Formally, the edge-feature-aware
1-WL is defined in Algorithm 3.
Theorem 3.2. The Edge-Feature-Aware 1-WL test is equiv-
alent in power to a GIN with edge features, as proposed by
Hu et al. (Hu et al., 2019).

Proof sketch. To show the equivalence between 1-WLE and

Algorithm 3 Edge-Feature-Aware 1-WL (1-WLE)

Require: G = (V,E,XV ,XE)

c
(0)
v ← hash(XV

v) ∀v ∈ V
for i← 1 to (|V | − 1) do

c
(i)
v ← hash(c

(i−1)
v , {(XE

(v,w), c
(i−1)
w) : w ∈ N (v)})

end for
return civ

GIN with edge features, one can extend the original proof
for equivalence of 1-WL and GIN. What changes is that
the aggregation now gets node states with additional edge
labels, but an injective aggregation will still maintain this
information.

See proof on page 12.

3.3. Equivalence to 2-WL Test

We now provide a proof that our edge-feature-aware 1-WL
extension is equivalent to the 2-WL test. First, for some sim-
ple operator, we show that 1-WLE over a graph with edge
features is equivalent to 1-WL with the same graph when
the operator is applied. Then, we point to the equivalence
of 2-WL with 1-WL under the operator, and finally, show
the equivalence of 2-WL over a graph with edge features,
and the same graph under the given operator.

Incidence graph operator Consider the graphs in the
form G = (V,E,XV ,XE). We denote operator T : G→
G as the incidence graph operator as follows: for the given
input graph G with edge labels, T creates a new node w
for each edge (u, v) ∈ E with the edge feature assigned
as the node label, connects two ends of the edge to the
node with new edges (u,w), (w, v), and finally removes the
original edge (u, v). The final graph is also referred to as
the ”incidence graph” of graph G. In the output graph, there
are no edge labels. For an example application, see Figure
2.

x1

x2

x3

x4

x5

x6

a

b

b

a

c

b

x1

x2

x3

x4

x5

x6

a

b

b

a

c

b

Figure 2. Incidence graph operator T applied on the input graph on
the right, outputs the final graph on the left with no edge features,
and each edge converted to a node with the original edge label.

Theorem 3.3 (Equivalence of 1-WLE to 1-WL(T (G))). 1-
WLE on graph G is equivalent to 1-WL over graph T (G) so
that there is an injective map f for which f(1-WLE(G)) =

4

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

1-WL(T (G)) up to isomorphism.

See proof on page 12.
Observation 3.4. As 1-WL(G) is equivalent to 2-WL(G) as
shown by Immerman et al., 1-WL(T (G)) is equivalent to 2-
WL(T (G)), and consequently, 1-WLE(G) ≡ 2-WL(T (G)).

Theorem 3.5 (Equivalence of 2-WL(T (G)) to 2-WL(G)).
2-WL on graph G is equivalent to 2-WL over graph T (G)
so that there is an injective map f for which f(2-WL(G)) =
2-WL(T (G)) up to isomorphism.

See proof on page 15.

Corollary 3.6. 1-WLE(G) ≡ 2-WL(G)

See proof on page 15.

We see value in pointing out here that using edge features
in concatenation phase of every iteration, as shown in Algo-
rithm 3, is not identical with injecting edge features into the
node features as a preprocessing step, which is used to over-
come the deficiencies of some GNN architectures that do not
natively admit edge features. The proof by counter-example
can be found in Theorem 3.7.

Theorem 3.7. 1-WL over a graph with edge feature re-
duction (where edge features are concatenated with the
neighboring node features before running the algorithm) is
strictly weaker than 1-WLE.

See proof on page 15.

4. GRAPHTESTER: Theoretical Analysis of
Graph Datasets

In this section, we introduce GRAPHTESTER, our theoreti-
cal framework for analyzing graph datasets in terms of the
GNN and graph transformers’ capability to model them. We
describe the methodology used to compute the score upper
bounds for varying number of layers, and how we assess
the impact of positional encodings and edge features on
the graph transformers’ performance. We analyze over 40
graph datasets (refer to Table 1) and provide insights into
the maximum achievable metrics for different tasks, consid-
ering both the presence and absence of original node/edge
features.

4.1. Python Package: GRAPHTESTER

We provide GRAPHTESTER to the research community in
the form of a Python package that automates the process of
evaluating graph datasets and positional encodings for their
processing. This package provides an easy-to-use interface
for practitioners, allowing them to perform in-depth analysis
of their datasets and make informed decisions on the design
of GNNs and graph transformers for their tasks.

4.2. Data loading

GRAPHTESTER admits datasets in various different formats
such as PyG (Fey & Lenssen, 2019), DGL (Wang et al.,
2019), or simply a list of NetworkX (Hagberg et al., 2008)
graphs with associated labels. Internally, GRAPHTESTER
converts them to igraph (Csardi & Nepusz, 2006) objects to
efficiently run various isomorphism and labeling algorithms.
The datasets analyzed in this paper can be simply loaded by
their names.

4.3. Running 1-WL Algorithm

After preprocessing the input dataset and converting it to in-
ternal Dataset format, GRAPHTESTER is able to run 1-WLE
on all the graphs in the dataset efficiently until convergence.
The final node labels then can be used to create graph-level,
link-level and node-level hashes that stays stable across the
dataset.

In addition to 1-WL, GRAPHTESTER can run k-WL algo-
rithm for any k ≤ 6. To the knowledge of the authors,
there are no other functional open source implementations
of k-WL that takes k as an input parameter. GRAPHTESTER
can also run the folklore variant of k-WL, which is more
expressive than the default variant.

4.4. Computing Score Upper Bounds

For calculating the upper score bounds associated with a
specified number of layers, we utilize the congruence of
Graph Neural Networks (GNNs) and graph transformers
with the 1-Weisfeiler-Lehman test (1-WLE), as established
earlier in the paper. For each dataset and 1-WLE iteration
k ≥ 1, GRAPHTESTER determines the hash values for every
node within a particular dataset. Through these node hashes,
graph hash can calculated by hashing the lexicographically
sorted hash of all nodes in a graph. Similarly, link hashes
are estimated from lexicographically sorted hashes of inter-
connected nodes.

For classification measures such as F1 score and accuracy,
GRAPHTESTER assigns a label to each node, graph or link
hash based on the majority rule, following the methodology
outlined by Zopf (Zopf, 2022). For regression measures
like Mean Square Error (MSE), it assigns the value that
minimizes the estimate, which most frequently happens to
be the mean. A dataset can be loaded and evaluated through
this approach in only a couple of lines of code.

import graphtester as gt
dataset = gt.load("ZINC")
evaluation = gt.evaluate(dataset)
print(evaluation.as_dataframe())

See Table 1 for the estimation of maximum achievable tar-
get metrics for different datasets that has varying tasks and

5

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

DGL Dataset

PyG Dataset

List of graphs

Graph/node/link
labels

GRAPHTESTER Framework

Preprocess

GRAPHTESTER
Dataset

Data input

GRAPHTESTER can admit datasets in
various different formats such as PyG,
DGL, or simply a list of NetworkX
graphs. Internally, it converts these
datasets into a list of igraph graphs to
run 1-WL algorithm and label
estimations efficiently.

1-WLE algorithm

For each graph in the
dataset, GRAPHTESTER runs
1-WLE algorithm until
convergence and estimates
the converged labels for
each node.

GRAPHTESTER can also run
arbitrary -WL for .

graph hash

node hash

graph label
class 1

0.235

1.0

link hash

node label

link label

Majority vote

Mean

(some arbitrary maximizer for

the subsequent metric)

Dataset evaluation

For graph, node or link targets, as well as classification or
regression tasks, GRAPHTESTER estimates the maximizing
label or value to assign to each hash for the target score.
These scorings are implemented in a way that abstracts
away the underlying graph, and only focuses on the
alignment of a set of hashes and labels for arbitrary input.

In graph classification, GRAPHTESTER additionally supports
evaluating the hashes of each node for the target graph
prediction to provide more fine-grained information on the
graph uniqueness.

c1 c1 c1

c1 c1 c1
graph label

node hashes

Majority vote

Accuracy

Accuracy

Mean Squared
Error

Score estimator

Upper Bound Accuracy (Graph)

Upper Bound Accuracy (Graph - Node)

Lower Bound MSE (Link) Evaluator

Labeler Structural Features

Best
scores &
features

Feature evaluation

Finally, GRAPHTESTER can make use of its
evaluator to assess the quality of potential
positional encoding methods that would improve
the upper bound scores of the given dataset,
and embed it on datasets as a pretransform for
GNN training.

Natively, it supports a wide range of features
from classical centrality metrics to substructure
counts, and even some uniquely crafted metrics
that make use of subconstituent information.

Pretransform

Figure 3. An overview of the GRAPHTESTER framework. Overall, the package has four major components: preprocessing, 1-WLE
algorithm, dataset evaluation and feature evaluation.

targets. We have estimated the best scores for these datasets
in the presence of node and edge features separately by
running the 1-WLE algorithm for up to 3 iterations. Con-
sidering that 1-WL converges in 2 iterations for nearly all
graphs (Kiefer, 2020), we believe that our results paint a
near-definitive picture on what can be theoretically achiev-
able in these datasets.

Overall, a considerable number of datasets in the literature
appear to be non-fully-solvable for the target metrics. For
the ones that are solvable, often more than a single layer
is required. One other important observation here is the
need for using available edge features in 1-WL context to
achieve better upper bounds — note that this is not the same
as combining edge features with node features as a pre-
processing step and running a GNN over it as required for
some architectures that do not natively admit edge features
(Xu et al., 2019a), as shown in Theorem 3.7.

4.5. Assessing the Impact of Additional Features

Having evaluated the datasets with respect to the application
of available node and edge features, an ensuing question
emerges: Can these upper boundaries be enhanced, poten-
tially improving overall GNN/Transformer performances
on such graph datasets, by incorporating deterministic, pre-
computed metrics derived from the literature? These metrics
have been examined in the context of both GNNs and Trans-
formers, most notably as Subgraph Counting (Bouritsas
et al., 2020) in the case of the former, and the positional
encoding concept for the latter.

1 2 4 8 16 32
Dimension count

0.0001

0.001

0.01

0.1

1

10

M
ea

n
sq

ua
re

d
er

ro
r (

M
SE

)

LapPE
RWSE
Baseline

Figure 4. Feature evaluation results for ZINC dataset from
GRAPHTESTER framework for RWSE and LapPE encoding meth-
ods. ”Dimension count” refers to the number of eigenvectors used
for LapPE method, and the walk steps evaluated in RWSE, both
of which corresponds to the positional encoding dimensionality.
The values are Mean Squared Error, for each node hash mapping
to their graph’s label. Lower is better.

For this target, GRAPHTESTER offers an interface for re-
searchers to try out various metrics and their combinations
in the context of 1-WLE test to assess the potential upper
bound improvements. A straightforward use case for this
interface is to answer the question ”how many dimensions
of positional encoding do I need for my dataset?”.

To answer this question in the context of ZINC dataset,
we analyzed the methods random-walk structural encoding
(RWSE) and Laplacian eigenvectors encoding (LapPE) in

6

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

Table 1. Analysis of over 40 datasets, providing upper bounds on GNN performance when using different numbers of GNN layers and
different input features (when available). Layer count 0 is not included for the cases with edge features, since they are equivalent to the
cases where they are not present.

Dataset name Task Metric w/out features w/node features w/edge features w/both features

0 1 2 3 0 1 2 3 1 2 3 1 2 3

AIDS (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.9985 0.9985 1.0 1.0 1.0 1.0 1.0 1.0 0.9995 1.0 1.0 1.0 1.0 1.0
AmazonCoBuy (McAuley et al., 2015) Node Cl. Accuracy ↑ 0.3751 0.3778 0.9777 0.9871 0.9996 1.0 1.0 1.0 0.9903 0.9903 0.9903 1.0 1.0 1.0
BZR MD (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.6503 0.6503 0.6503 0.6503 0.8922 0.8922 0.8922 0.8922 1.0 1.0 1.0 1.0 1.0 1.0
BZR (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.8198 0.9432 0.9728 0.9778 1.0 1.0 1.0 1.0 - - - - - -
CIFAR10 (Dwivedi et al., 2022) Graph Cl. Accuracy ↑ 0.1507 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Citeseer (Sen et al., 2008) Node Cl. Accuracy ↑ 0.2107 0.2438 0.4968 0.7151 0.9994 0.9997 0.9997 0.9997 - - - - - -
CLUSTER (Dwivedi et al., 2022) Node Cl. Accuracy ↑ 0.9488 0.9488 1.0 1.0 1.0 1.0 1.0 1.0 - - - - - -
CoauthorCS (Shchur et al., 2018) Node Cl. Accuracy ↑ 0.2256 0.2298 0.8756 0.9914 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CoauthorPhysics (Shchur et al., 2018) Node Cl. Accuracy ↑ 0.5052 0.5077 0.9493 0.9979 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
COIL-DEL (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.1151 0.7992 0.8849 0.8851 1.0 1.0 1.0 1.0 0.9446 0.9503 0.9503 1.0 1.0 1.0
COIL-RAG (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.0444 0.0851 0.0851 0.0851 1.0 1.0 1.0 1.0 0.88 0.88 0.88 1.0 1.0 1.0
COLLAB (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.607 0.9842 0.9844 0.9844 - - - - - - - - - -
Cora (Sen et al., 2008) Node Cl. Accuracy ↑ 0.3021 0.3143 0.764 0.9465 1.0 1.0 1.0 1.0 - - - - - -
COX2 MD (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.5776 0.5776 0.5776 0.5776 0.901 0.901 0.901 0.901 1.0 1.0 1.0 1.0 1.0 1.0
COX2 (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.7923 0.833 0.9101 0.9379 1.0 1.0 1.0 1.0 - - - - - -
Cuneiform (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.206 0.206 0.206 0.206 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
DD (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.837 1.0 1.0 1.0 1.0 1.0 1.0 1.0 - - - - - -
DHFR MD (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.7023 0.7023 0.7023 0.7023 0.8702 0.8702 0.8702 0.8702 1.0 1.0 1.0 1.0 1.0 1.0
DHFR (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.6587 0.8585 0.9259 0.9656 1.0 1.0 1.0 1.0 - - - - - -
ENZYMES (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.385 0.9883 1.0 1.0 1.0 1.0 1.0 1.0 - - - - - -
ER MD (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.7018 0.7018 0.7018 0.7018 0.8655 0.8655 0.8655 0.8655 1.0 1.0 1.0 1.0 1.0 1.0
Fingerprint (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.5186 0.5304 0.5343 0.5371 0.9257 0.9257 0.9257 0.9257 0.8596 0.8596 0.8596 0.9257 0.9257 0.9257
FRANKENSTEIN (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.6338 0.7812 0.8891 0.8955 1.0 1.0 1.0 1.0 - - - - - -
IMDB-BINARY (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.606 0.886 0.896 0.896 - - - - - - - - - -
IMDB-MULTI (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.4413 0.6327 0.6393 0.6393 - - - - - - - - - -
MNIST (Dwivedi et al., 2022) Graph Cl. Accuracy ↑ 0.2075 0.9999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MSRC 9 (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.3122 1.0 1.0 1.0 1.0 1.0 1.0 1.0 - - - - - -
Mutagenicity (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.6255 0.8427 0.9403 0.9555 0.923 0.9813 0.9988 1.0 0.9175 0.9592 0.9744 0.982 0.9988 1.0
MUTAG (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.8617 0.9149 0.9628 0.9681 0.9309 0.9574 0.9947 1.0 0.9362 0.9894 0.9947 0.9574 0.9947 1.0
NCI109 (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.6346 0.8551 0.9891 0.9932 0.9166 0.9973 0.9988 0.999 - - - - - -
NCI1 (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.637 0.8521 0.9922 0.9942 0.9134 0.9954 0.9981 0.9983 - - - - - -
ogbg-molbbbp (Hu et al., 2020) Graph Cl. Accuracy ↑ 0.7916 0.9225 0.9799 0.9819 0.9951 0.9956 0.9956 0.9956 0.9848 0.9872 0.9872 0.9956 0.9956 0.9956
ogbg-molesol (Hu et al., 2020) Graph Reg. MSE ↓ 2.5357 1.1065 0.7343 0.7208 0.0215 0.0017 0.0005 0.0005 0.4403 0.3907 0.3859 0.0016 0.0005 0.0005
ogbg-molfreesolv (Hu et al., 2020) Graph Reg. MSE ↓ 12.3188 7.5293 6.434 6.3917 0.0877 0.0002 0.0002 0.0002 3.2991 3.0111 3.0111 0.0 0.0 0.0
ogbg-molhiv (Hu et al., 2020) Graph Cl. Accuracy ↑ 0.9652 0.9744 0.9915 0.9932 0.9969 0.9997 1.0 1.0 0.9928 0.9965 0.9966 0.9997 1.0 1.0
ogbg-mollipo (Hu et al., 2020) Graph Reg. MSE ↓ 1.3464 0.8129 0.0816 0.0673 0.0099 0.0005 0.0002 0.0 0.0674 0.0415 0.0403 0.0005 0.0002 0.0
ogbn-arxiv (Hu et al., 2020) Node Cl. Accuracy ↑ 0.1613 0.18 0.7682 0.9568 0.9998 1.0 1.0 1.0 - - - - - -
PATTERN (Dwivedi et al., 2022) Node Cl. Accuracy ↑ 0.3341 0.3365 1.0 1.0 1.0 1.0 1.0 1.0 - - - - - -
PROTEINS (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.7323 0.9524 0.9748 0.9748 1.0 1.0 1.0 1.0 - - - - - -
PTC FM (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.6619 0.8367 0.894 0.894 0.9169 0.9599 0.9828 0.9828 0.9226 0.9542 0.9542 0.9742 0.9971 0.9971
PTC FR (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.6923 0.8661 0.9259 0.9259 0.9288 0.9772 0.9886 0.9886 0.9402 0.963 0.963 0.9858 0.9972 0.9972
PTC MM (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.6696 0.8512 0.9048 0.9048 0.9256 0.9732 0.9881 0.9881 0.9345 0.9554 0.9554 0.9851 0.997 0.997
PTC MR (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.6512 0.8401 0.8983 0.8983 0.9186 0.9797 0.9913 0.9913 0.907 0.939 0.939 0.9826 0.9942 0.9942
Pubmed (Namata et al., 2012) Node Cl. Accuracy ↑ 0.3994 0.4134 0.6901 0.9251 0.9999 1.0 1.0 1.0 - - - - - -
REDDIT-BINARY (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.8385 1.0 1.0 1.0 - - - - - - - - - -
REDDIT-MULTI-5K (Morris et al., 2020) Graph Cl. Accuracy ↑ 0.5517 1.0 1.0 1.0 - - - - - - - - - -
ZINC (Dwivedi et al., 2022) Graph Reg. MSE ↓ 3.7182 2.9306 0.2457 0.0251 0.5056 0.0 0.0 0.0 0.5779 0.0027 0.0021 0.0 0.0 0.0

identifiability of each graph through individual node hashes.
The results can be seen in Figure 4. It is somewhat surprising
to note that although RWSE highly benefits from increased
step counts, LapPE provides optimal results even in a single
iteration for ZINC dataset.

Another possible use case for feature evaluation might ap-
pear to be to choose the encoding method that brings the
most benefits in the target upper bound score. However,
such use of 1-WL framework to improve GNN performance
does not seem to have a strong basis. Indeed, Figure 4 is
a counter-example here: although LapPE provides better
upper bound scores in node-based matching of graphs to
their labels, RWSE have proven to be the better encoding in
GraphGPS study (Yuan et al., 2021). A possible reason for
the mismatch is also noted in the referenced work, and is
sourced from the domain mismatch of LapLE in molecular
datasets. It is argued that improved node-based identifiabil-
ity only leads the network to overfit to the spurious variance
introduced by the positional encoding. We recommend to
choose the encoding method according to the domain of

the task, but possibly tune the parameters of the encoding
via GRAPHTESTER, ideally choosing the minimal encoding
that provides a sufficient level of identifiability.

4.6. Injecting Arbitrary Features into Training Pipelines

After analyzing a dataset and evaluating potential posi-
tional encodings, labeling methods implemented in GRAPH-
TESTER package can easily be embedded into the training
pipeline. For this purpose, we expose a pretransform method
in the package itself, that can admit different feature names,
and be provided to PyG dataset objects to transform datasets
before the training.

4.7. Performance on Real-World Datasets

GRAPHTESTER implements various classical centrality met-
rics and positional encoding methods for graph dataset anal-
ysis and pre-transform. To demonstrate that GRAPHTESTER
features can be straightforwardly used in practice and even
the simplest centrality metrics may carry value, we add
them as positional encodings to GraphGPS (Rampášek et al.,

7

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

Table 2. Performance of seven simple GRAPHTESTER features
when used as positional encodings for GraphGPS. We keep the
same setup as the best GPS model, only changing the positional
encodings. Mean and standard deviation are reported over five
runs each.

Feature MNIST ↑ CIFAR10 ↑ PATTERN ↑
Best GPS 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059

Local transitivity 98.016 ± 0.054 72.466 ± 0.273 85.979 ± 0.179
Eccentricity 98.030 ± 0.148 71.830 ± 0.695 85.805 ± 0.405
Eigenvector centrality 97.996 ± 0.084 72.514 ± 0.268 86.234 ± 0.215
Burt’s constraint 97.890 ± 0.072 72.456 ± 0.421 86.302 ± 0.150
Closeness centrality 97.890 ± 0.070 73.006 ± 0.380 85.959 ± 0.077
Betweenness centrality 97.956 ± 0.067 72.140 ± 0.538 86.267 ± 0.288
Harmonic centrality 97.974 ± 0.156 72.282 ± 0.314 85.889 ± 0.060

2022) and measure the performance of the resulting model.
After the features are generated for nodes, we apply one lin-
ear layer to encode them together with input node features.
Results for seven GRAPHTESTER features are summarized
in Table 2. We can observe that all tested features can
get relatively close to the best encodings on MNIST, CI-
FAR10, and PATTERN, even beating the best encodings on
CIFAR10.

4.8. A Synthetic Dataset for Benchmarking of Node and
Edge Features

Additional features provide a way for GNNs and GTs to
identify nodes in a graph. Our findings reinforce the efficacy
of these methods in enhancing node and graph identifiability.
Nevertheless, there remains a notable gap in the existing
literature: the absence of a dataset specifically designed to
benchmark features such as positional encoding methods
based on their performance across different graph classes.

As the final contribution of this work, we address this short-
fall by introducing a synthetic graph dataset that is pro-
vided as part of the GRAPHTESTER package. This dataset
uniquely serves as a rigorous testing ground for the effec-
tiveness of node and edge pre-coloring methods within the
1-Weisfeiler-Lehman (1-WL) framework. Using GRAPHT-
ESTER framework, researchers can label this dataset with
an arbitrary feature encoding of their own, and evaluate it
to acquire its comparative standing with respect to other
pre-coloring methods in the literature, as well as k-WL test
for k ≥ 2.

An overview of the graph classes contained in the GRAPH-
TESTER dataset, as well as the definitions of these graph
classes can be found in Appendix B. As a baseline, we evalu-
ated the methods available in the GRAPHTESTER framework
against the dataset. We report the results for noteworthy
graph classes and pre-coloring methods in Table 3. Refer to
the Appendix C for a discussion on some of the results in
this table, and how to overcome the difficulties of identify-
ing graphs in 1-WL framework.

Table 3. Failure counts of all tests conducted for all graph pairs in
the given graph classes with noted orders. Only noteworthy graph
classes and methods are listed.

graph class: All Highly irregular Strongly regular

node count: 6 7 8 8 9 10 11 12 13 16 25 26 28 29 36 40

1-WL (≡ 2-WL) 4 22 350 1 0 8 0 165 0 1 105 45 6 820 16110 378
3-WL 0 0 0 0 0 0 0 0 0 1 105 45 6 820 16110 378
4-WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Closeness centrality 2 14 202 1 0 2 0 32 0 1 105 45 6 820 16110 378
Eigenvector centrality 3 20 335 1 0 8 0 165 0 1 105 45 6 820 16110 378
Harmonic centrality 2 14 202 1 0 2 0 32 0 1 105 45 6 820 16110 378

Betweenness centrality 1 2 16 0 0 0 0 0 0 1 105 45 6 820 16110 378
Eccentricity 3 16 243 1 0 6 0 136 0 1 105 45 6 820 16110 378

Local transitivity 0 0 21 0 0 1 0 3 0 1 105 45 6 820 16110 378
Burt’s constraint 0 0 6 0 0 1 0 3 0 1 105 45 6 820 16110 378

Edge betweenness 0 0 0 0 0 0 0 0 0 1 105 45 6 820 16110 378
Convergence degree 2 8 57 0 0 0 0 0 0 1 105 45 6 820 16110 378

4-clique count of edges 4 18 247 1 0 8 0 137 0 0 0 2 0 0 309 4
5-path count of edges 0 0 0 0 0 0 0 0 0 1 105 45 6 820 16110 378

6-path count of vertices 0 0 1 0 0 0 0 0 0 1 105 45 6 820 16110 378
6-cycle count of vertices 0 1 8 0 0 0 0 3 0 1 105 45 6 820 16110 378

5. Conclusion
This paper introduces GRAPHTESTER, a powerful tool
designed for in-depth theoretical analysis of Graph Neu-
ral Networks (GNNs) and graph transformers. GRAPHT-
ESTER has demonstrated its capability to discern the upper
bounds of performance across various datasets, taking into
account aspects like edge features, different performance
measures, varying numbers of GNN layers, and higher-order
Weisfeiler-Lehman (WL) tests. Together with the package,
we make public a 55,000-graph synthetic dataset for the
purpose of benchmarking positional encoding methods, that
contains many graphs that are hard to distinguish in k-WL
framework.

We have also established critical theoretical insights regard-
ing GNNs and graph transformers, proving that the latter’s
power is bounded by the 1-WL test if positional encodings
are only used for nodes, and placed them on a theoretical
basis in the presence of edge features. This underscores the
fundamental role of positional encodings in amplifying the
expressive power of these models.

A key aspect of our work has been the comprehensive anal-
ysis of over 40 graph datasets from the literature using
GRAPHTESTER. This extensive study has revealed that
not all datasets are fully solvable with the tasks at hand,
pointing to inherent complexities in graph data that may
challenge even state-of-the-art GNN architectures. Further-
more, we found that even when a dataset is theoretically
solvable, the effective use of edge features is vital. Our
theoretical analysis underscores that edge features, when
appropriately incorporated, can substantially enhance the
expressiveness and performance of GNNs.

Overall, GRAPHTESTER not only advances our theoretical
understanding of GNNs and graph transformers but also of-
fers practical guidance for their optimal deployment across
a variety of tasks and datasets. Future work will aim to
extend the capabilities of GRAPHTESTER to accommodate
different graph dataset formats and tasks, and delve deeper
into the role of positional encodings.

8

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

References
Barthélemy, M. Spatial networks. Physics Reports, 499

(1-3):1–101, 2011.

Bouritsas, G., Frasca, F., Zafeiriou, S., and Bronstein,
M. M. Improving graph neural network expres-
sivity via subgraph isomorphism counting. CoRR,
abs/2006.09252, 2020. URL https://arxiv.org/
abs/2006.09252.

Brandes, U. A faster algorithm for betweenness centrality.
The Journal of Mathematical Sociology, 25, 03 2004. doi:
10.1080/0022250X.2001.9990249.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Brouwer, A. E. and Van Maldeghem, H. Strongly Reg-
ular Graphs. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 2022. doi:
10.1017/9781009057226.

Cai, J.-Y., Furer, M., and Immerman, N. An optimal lower
bound on the number of variables for graph identification.
In 30th Annual Symposium on Foundations of Computer
Science, pp. 612–617, 1989. doi: 10.1109/SFCS.1989.
63543.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? Advances in neural
information processing systems, 33:10383–10395, 2020.

Csardi, G. and Nepusz, T. The igraph software package
for complex network research. InterJournal, Complex
Systems:1695, 2006. URL https://igraph.org.

Dobson, P. D. and Doig, A. J. Distinguishing enzyme struc-
tures from non-enzymes without alignments. Journal of
molecular biology, 330(4):771–783, 2003.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bombarell,
R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P. Con-
volutional networks on graphs for learning molecular fin-
gerprints. In Advances in neural information processing
systems, volume 28, pp. 2224–2232, 2015.

Dwivedi, V. P. and Bresson, X. A generalization
of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. In
Advances in Neural Information Processing Systems, vol-
ume 33, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph neural networks with learnable
structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio,
Y., and Bresson, X. Benchmarking graph neural networks,
2022.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Gago, S., Hurajová, J., and Madaras, T. Betweenness-
selfcentric graphs. Betweenness-selfcentric graphs,
Apr 2012. URL http://hdl.handle.net/2117/
15768.

Hagberg, A., Swart, P., and S Chult, D. Exploring net-
work structure, dynamics, and function using networkx.
1 2008. URL https://www.osti.gov/biblio/
960616.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Advances in
Neural Information Processing Systems, pp. 1024–1034,
2017.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks, 2019. URL https://arxiv.org/abs/
1905.12265.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Immerman, N. and Lander, E. Describing Graphs:
A First-Order Approach to Graph Canonization, pp.
59–81. Springer New York, New York, NY,
1990. ISBN 978-1-4612-4478-3. doi: 10.1007/
978-1-4612-4478-3 5. URL https://doi.org/10.
1007/978-1-4612-4478-3_5.

Junttila, T. and Kaski, P. Engineering an efficient canonical
labeling tool for large and sparse graphs. In Proceedings
of the Meeting on Algorithm Engineering & Expermi-
ments, pp. 135–149, USA, 2007. Society for Industrial
and Applied Mathematics.

Kiefer, S. Power and limits of the Weisfeiler-
Leman algorithm. Dissertation, RWTH Aachen
University, Aachen, 2020. URL https:
//publications.rwth-aachen.de/record/
785831. Veröffentlicht auf dem Publikationsserver der
RWTH Aachen University; Dissertation, RWTH Aachen
University, 2020.

9

https://arxiv.org/abs/2006.09252
https://arxiv.org/abs/2006.09252
https://igraph.org
http://hdl.handle.net/2117/15768
http://hdl.handle.net/2117/15768
https://www.osti.gov/biblio/960616
https://www.osti.gov/biblio/960616
https://arxiv.org/abs/1905.12265
https://arxiv.org/abs/1905.12265
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-1-4612-4478-3_5
https://publications.rwth-aachen.de/record/785831
https://publications.rwth-aachen.de/record/785831
https://publications.rwth-aachen.de/record/785831

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Adap-
tive embedding dimension selection in graph neural net-
works. In Advances in Neural Information Processing
Systems, volume 31, pp. 7458–7468, 2018.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.
Provably powerful graph networks. In Advances in Neural
Information Processing Systems, volume 33, 2020.

McAuley, J., Targett, C., Shi, Q., and van den Hengel, A.
Image-based recommendations on styles and substitutes,
2015.

McKay, B. D. and Piperno, A. Practical graph isomorphism,
ii, 2013. URL https://arxiv.org/abs/1301.
1493.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks. Proceedings
of the AAAI Conference on Artificial Intelligence, 33:
4602–4609, 2019.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of
benchmark datasets for learning with graphs. CoRR,
abs/2007.08663, 2020. URL https://arxiv.org/
abs/2007.08663.

Namata, G. M., London, B., Getoor, L., and Huang, B.
Query-driven active surveying for collective classification.
In Workshop on Mining and Learning with Graphs, 2012.

Newman, M. E. The structure and function of complex
networks. SIAM review, 45(2):167–256, 2003.

Papp, P. A. and Wattenhofer, R. A theoretical comparison
of graph neural network extensions. In International Con-
ference on Machine Learning, pp. 17323–17345. PMLR,
2022.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Rombach, M. P. and Porter, M. A. Discriminating power of
centrality measures. CoRR, abs/1305.3146, 2013. URL
http://arxiv.org/abs/1305.3146.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg,
R., Titov, I., and Welling, M. Modeling relational data
with graph convolutional networks. In Proceedings of the
15th European Semantic Web Conference, pp. 593–607.
Springer, 2018.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI Magazine, 29(3):93, Sep. 2008. doi: 10.1609/
aimag.v29i3.2157.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. Relational
Representation Learning Workshop, NeurIPS 2018, 2018.

Skopek, O., Ganea, O., and Günnemann, S. Message pass-
ing with poincaré embeddings and hyperbolic graph atten-
tion networks. In Proceedings of the Eighth International
Conference on Learning Representations, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, volume 30, pp. 5998–6008, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,
G., Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works. arXiv preprint arXiv:1909.01315, 2019.

Wu, Q., Zhao, W., Li, Z., Wipf, D. P., and Yan, J. Node-
former: A scalable graph structure learning transformer
for node classification. Advances in Neural Information
Processing Systems, 35:27387–27401, 2022a.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems,
2020.

Wu, Z., Jain, P., Wright, M. A., Mirhoseini, A., Gonzalez,
J. E., and Stoica, I. Representing long-range context for
graph neural networks with global attention. 2022b.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How pow-
erful are graph neural networks? In Proceedings of the
International Conference on Learning Representations
(ICLR), 2019a.

10

https://arxiv.org/abs/1301.1493
https://arxiv.org/abs/1301.1493
https://arxiv.org/abs/2007.08663
https://arxiv.org/abs/2007.08663
http://arxiv.org/abs/1305.3146

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How pow-
erful are graph neural networks? In Proceedings of the
International Conference on Learning Representations,
2019b.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do transformers really perform badly for
graph representation? Advances in Neural Information
Processing Systems, 34:28877–28888, 2021.

Yuan, Z., Huang, W., and Xu, K. Graphgps: Graph gen-
erative pre-training with semantic preserving. In Pro-
ceedings of the International Conference on Learning
Representations, 2021.

Zopf, M. 1-wl expressiveness is (almost) all you need, 2022.
URL https://arxiv.org/abs/2202.10156.

11

https://arxiv.org/abs/2202.10156

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

A. Proofs
Proof of Theorem 3.1. First, we consider the fully-connected graph for 1-WL and show that this is at least as powerful as a
GT with only node features. As 1-WL hashes all neighbor states with an injective function, we can observe states from all
nodes in the graph in the aggregated multiset at node v. We can then compute the outcome of the attention module at every
node:

ATTN(c(i)v) = softmax

(
c
(i−1)T

v WQ(C(i−1)TWK)T√
dout

)
C(i−1)W V ,

where C(i−1) is computed by stacking all aggregated states and the state c
(i)
v as row-vectors in a matrix. The order does not

matter here. This only works because we receive the state from every node, which is not the case if the graph is not fully
connected. We further show that color classes for 1-WL in a fully-connected graph are refined no further, meaning that
the execution of a global self-attention layer does not improve expressiveness. Consider two nodes u and v with the same
color c(i−1)

u = c
(i−1)
v in such a setting. Then, both nodes will receive exactly the same multiset of neighboring node states: It

contains all c(i−1)
w for w ̸= u, v, plus c(i−1)

u for node v and c
(i−1)
v for node v, which are the same.

The proof shows that one layer of global self-attention does not improve expressiveness, as color classes cannot be refined,
which makes it applicable to GraphTrans where only one such layer is applied at the end, but also GraphGPS, where layers of
message-passing are interleaved with global self-attention layers. It should be noted that this does not work for architectures
adding information to any node-pair for the attention computation, such as shortest path distances in Graphormer (Ying
et al., 2021).

Proof of Theorem 3.2. A more rigorous proof of equivalence can be crafted by following the work on Graph Isomorphism
Networks (Xu et al., 2019b). We will simply sketch the connection here. GIN convolution layers with edge features (also
known as GINEConv) are defined as follows:

c(i)v = COMBINE(i)
(
c(i−1)
v ,AGGREGATE(i)

({(
XE

(v,w), c
(i−1)
w

)
| w ∈ N (v)

}))
.

For an injective function AGGREGATE(i) that operates on multisets, and an injective function COMBINE(i), it is shown
that without edge features GINs are as powerful as 1-WL (Xu et al., 2019b).

To extend this argument to GIN with edge features, we need AGGREGATE(i) to be an injective function operating on
multisets of tuples. In GINEConv, concatenation is used to connect each neighboring node embedding XE

(v,w) with its

corresponding edge features c(i−1)
w , whence the aggregation step continues as in GIN with an injective function acting on

multisets. Since the node and edge features have fixed lengths, concatenation is injective. Then, since the composition of
injective functions is also injective, this approach ensures that AGGREGATE(i) remains injective when edge features are
used.

The rest of the argument follows along the same lines as the proofs in Xu et al. (2019b). This shows that GINEConv can be
as powerful as 1-WLE.

On the other hand, to show that GINEConv (and extensions of other message-passing GNNs) can be at most as powerful as
1-WLE, one can follow the same inductive proof as in Lemma 2 of Xu et al. (2019b).

Proof of Theorem 3.3. We denote the initial node labels for the original nodes v in both the 1-WL and the 1-WLE algorithms
as

c(0)v ← hash(XV
v) ∀v ∈ V.

We denote the initial node labels for the newly added nodes for the 1-WL algorithm as

c
(0)
(v,w) ← hash(XE

(v,w)) ∀(v, w) ∈ E

For the first iteration of 1-WLE over graph G, we have the node features

c(1)v ← hash(c(0)v , {(XE
(v,w), c

(0)
w) | w ∈ N (v)})

12

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

For 1-WL over graph T (G), we distinguish the sets of original nodes v and newly added nodes. For the first iteration, these
sets can be written as

c′(1)v ← hash(c(0)v , {c(0)(v,w) | w ∈ N (v)})

c′
(1)
(v,w) ← hash(c

(0)
(v,w), {c

(0)
v , c(0)w })

While writing the second step of 1-WL over T (G), WLOG we can replace the hash function with an identity function for
the proof, as it is assumed to be injective:

c′(2)v ← (c′(1)v , {c′(1)(v,w) | w ∈ N (v)})

c′
(2)
(v,w) ← (c

(0)
(v,w), {c

(0)
v , c(0)w }, {c′(1)v , c′(1)w })

The labels of the original nodes can be rewritten

c′(2)v ← (c′(1)v , {c′(1)(v,w) | w ∈ N (v)})

≡ ((c(0)v , {c(0)(v,w) | w ∈ N (v)}), {c′(1)(v,w) | w ∈ N (v)})

≡ ((c(0)v , {XE
(v,w) | w ∈ N (v)}), {c′(1)(v,w) | w ∈ N (v)})

≡ ((c(0)v , {XE
(v,w) | w ∈ N (v)}), {(XE

(v,w), {c
(0)
v , c(0)w }) | w ∈ N (v)})

≡ (c(0)v , {(XE
(v,w), {c

(0)
v , c(0)w }) | w ∈ N (v)})

≡ (c(0)v , {(XE
(v,w), c

(0)
w) | w ∈ N (v)})

≡ c(1)v

We can observe that c(1)v ≡ c′
(2)
v , that is, two steps of 1-WL over graph T (G) outputs equivalent labels for the original

nodes as one step of 1-WLE over graph G. Now, we only need to answer whether the labels of the newly added nodes add
any information to the process. We can similarly rewrite the node labels of the new nodes

c′
(2)
(v,w) ← (c

(0)
(v,w), {c

(0)
v , c(0)w }, {c′(1)v , c′(1)w })

≡ (c
(0)
(v,w), {c

′(1)
v , c′(1)w })

≡ (XE
(v,w), {(c

(0)
v , {c(0)(v,k) | k ∈ N (v)}), (c(0)w , {c(0)(w,j) | j ∈ N (w)})})

≡ (XE
(v,w), {(c

(0)
v , {XE

(v,k) | k ∈ N (v)}), (c(0)w , {XE
(w,j) | j ∈ N (w)})})

≡ ({c′(1)v , c′(1)w })

since XE
(v,w) is included in both hashes c′

(1)
v and c′

(1)
w . Indeed, the same argument shows that for all k ≥ 2, c′(k)(v,w) ≡

{c′(k−1)
v , c′

(k−1)
w }, since c(k) is always a refinement of c(k−1).

We now claim that every two iterations of 1-WL over graph T (G) lead to the same node refinement as a single iteration of
1-WLE over G. That is:

c′(2k)v ≡ c(k)v (for all k ≥ 1)

13

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

We can prove this claim by induction, following the same argument as above.

c′(2(k+1))
v ← (c′(2k+1)

v , {c′(2k+1)
(v,w) | w ∈ N (v)})

≡ ((c′(2k)v , {c′(2k)(v,w) | w ∈ N (v)}), {c′(2k+1)
(v,w) | w ∈ N (v)})

≡ (c′(2k)v , {c′(2k+1)
(v,w) | w ∈ N (v)})

≡ (c(k)v , {c′(2k+1)
(v,w) | w ∈ N (v)})

≡ (c(k)v , {{c′(2k)v , c′(2k)w } | w ∈ N (v)})
≡ (c(k)v , {{c(k)v , c(k)w } | w ∈ N (v)})
≡ (c(k)v , {c(k)w | w ∈ N (v)})
≡ (c(k)v , {(XE

(v,w), c
(k)
w) | w ∈ N (v)})

≡ c(k+1)
v

The penultimate equivalence follows since XE
(v,w) is already considered in the kth refinement of the nodes, i.e. c(k)v and c

(k)
w ,

for all k ≥ 1. The final equivalence follows by definition.

Therefore, we get the same partition of nodes for 1-WL over graph T (G) as for 1-WLE over G. Hence, the two are
equivalent.

In essence, the newly added (edge) nodes add no information to the hash of the overall graph after the first iteration and act
merely as messengers between nodes corresponding to neighboring nodes in the original graph G.

Proof of Theorem 3.5. We provide a high-level proof sketch for this theorem. We start with some formulas, but then aim to
give the intuition behind the proof, rather than providing pages of formulas.

We separate the node tuples into tuples formed only from original nodes, only from the newly added (edge) nodes – added
by the T operator, and tuples formed from a mix of the two.

c(0)v ← hash(G[v]) ∀v ∈ V 2

c′(0)v ← hash(T (G)[v]) ∀v ∈ V 2

c′(0)e ← hash(T (G)[e]) ∀e ∈ E2

c′
(0)
(e,v) ← hash(T (G)[{e, v}]) ∀{e, v} ∈ E × V

As these subgraph hashes are only determined by the features of the nodes in the tuples and the existence/features of the
edges between them, we can rewrite these initializations.

c(0)v ← hash({XV
v1
,XV

v2
},1(v1,v2)∈E ,X

E
(v1,v2)

) ∀v ∈ V 2

c′(0)v ← hash({XV
v1
,XV

v2
}) ∀v ∈ V 2 (There are no edges between original nodes under operator T)

c′(0)e ← hash({XE
e1
,XE

e2
}) ∀e ∈ E2 (There are no edges between newly added nodes under operator T)

c′
(0)
(e,v) ← hash({XE

e ,X
V
v },1(e,v)∈ET (G)

) ∀{e, v} ∈ E × V

As in the proof of Theorem 3.3, we can again WLOG replace the hash function with an identity function. For the first
iteration of 2-WL over graph G, we have the 2-tuple features:

c(1)v ← (c(0)v , {c(0)w | w ∈ N1(v)} ⊎ {c(0)w | w ∈ N2(v)}})

≡ (c(0)v , {c(0)(u,v2) | u ∈ V } ⊎ {c(0)(v1,u) | u ∈ V })

≡ (({XV
v1
,XV

v2
},1(v1,v2)∈E ,X

E
(v1,v2)

),

{({XV
u ,X

V
v2
},1(u,v2)∈E ,X

E
(u,v2)

) | u ∈ V }⊎

{({XV
v1
,XV

u },1(v1,u)∈E ,X
E
(v1,u)

) | u ∈ V }})

14

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

For 2-WL over graph T (G) in the first iteration, we have the 2-tuple features

c′(1)v ← (c′(0)v , {c′(0)w | w ∈ N1(v)} ⊎ {c(0)w | w ∈ N2(v)})

≡ (c′(0)v , {c′(0)(u,v2) | u ∈ V ∪ E} ⊎ {c′(0)(v1,u) | u ∈ V ∪ E}}).

There are three cases to consider. (i) For v := (v1, v2) ∈ V 2, we can simplify the above expression:

c′(1)v ← ({XV
v1
,XV

v2
}, {c′(0)(u,v2) | u ∈ V ∪ E} ⊎ {c′(0)(v1,u) | u ∈ V ∪ E})

≡ ({XV
v1
,XV

v2
}, {{XV

u ,X
V
v2
} | u ∈ V } ⊎ {{XV

v1
,XV

u } | u ∈ V }⊎
{({XE

e ,X
V
v1
},1(e,v1)∈ET (G)

) | e ∈ E} ⊎ {({XE
e ,X

V
v2
},1(e,v2)∈ET (G)

) | e ∈ E}})

≡ ({XV
v1
,XV

v2
},

{({XE
e ,X

V
v1
},1(e,v1)∈ET (G)

) | e ∈ E} ⊎ {({XE
e ,X

V
v2
},1(e,v2)∈ET (G)

) | e ∈ E}})

The final equivalence follows because all node tuples v := (v1, v2) ∈ V 2 will receive the sets {{XV
u ,X

V
v2
} | u ∈ V }

and {{XV
v1
,XV

u } | u ∈ V }, with the only difference being the XV
v1

and the XV
v2

. There this information is equivalent to
knowing {XV

v1
,XV

v2
}.

What does this last line represent? From the first element, we have the set of features of the two nodes in v. The last two
elements tell us how many edges (with associated edge features) the nodes of the given tuple v have in the original graph.
However, it doesn’t tell us whether these edges in the original graph connect the two nodes in the tuple with each other, nor
whether they connect to a common neighbor thereby forming a path of length two in the original graph. So similar to 1-WL,
the first iteration essentially just tells us the degrees of the two nodes, and the set of features associated with those edges.

The edge tuples gain even less from the first iteration, since the “edge nodes” all have degree two. However, vertex-edge
tuples will “know” whether the edge is incident to the vertex in the original graph, thanks to the indicator function in c′

(0)
(e,v).

And then after one iteration for neighboring nodes u and v (with e = (u, v) ∈ E), c′(1)(e,v) will “see” the edge (e, u) and

c′
(1)
(e,u) will “see” the edge (e, v).

As such, when we update c′
(2)
v in the next iteration, then v1 and v2 will “know” that they are connected to a node with the

corresponding features by an edge with the given edge features. They will also “know” the edge and node features of any
other neighbors they might have. But this is exactly the information contained in c

(1)
v . In other words two iterations of 2-WL

on T (G) is equivalent to one iteration of 2-WL on G, in terms of distinguishing nodes.

By showing that vertex-edge and edge-edge tuples do not contain any additional information and then turning this into
an inductive argument, we can confirm that c′(2k)v ≡ c

(k)
v for all v ∈ V 2 and for all k ≥ 0. This is similar to the proof of

Theorem 3.3.

Proof of Theorem 3.5. 1-WLE(G) ≡ 1-WL(T (G)) by Theorem 3.3, 1-WL(T (G)) ≡ 2-WL(T (G) by the equivalence of
1-WL and 2-WL, and 2-WL(T (G)) ≡ 2-WL(G) by Thereom 3.5.

Proof of Theorem 3.7. First, we start by focusing on the edge feature tuples, that is, a simple neighborhood aggregation of
the edges.

xv ← {XE
(u,v) ∀u ∈ N (v)}

For this simplified reduction, we provide the following counterexample in Figure 5. In this graph, assume all node features
are identical. For this structure, 1-WLE and 1-WL with reduced edges (according to the simplified definition above)
output different node hashes: the former can distinguish x1 and x′

1 while the latter cannot. This is because node labels
are symmetric for both sides of the graph when using initial features with 1-WL. With 1-WLE, they will differ after two
iterations as x1 is connected over an edge with label 2 to x4, whereas x′

1 is connected to x′
4 over an edge with label 1.

15

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

x1

x2

x3

x4

x5

x′
1

x′
2

x′
3

x′
4

x′
5

0

1

2

2

1

3

2 1

1 2

3

Figure 5. Counterexample for the expressive power of a simplified reduction. Assume that all nodes are unlabeled, and edge labels are the
numbers written over them.

B. Definition of Various Graph Classes
An overview of the graph classes and the number of graph counts per class can be found in Table 4.

Table 4. Graph classes and counts available in the GRAPHTESTER dataset. Except for distance-regular graphs, all graph classes are
exhaustive until the given degree.

Graph class Max. vertex count Graph count

All nonisomorphic 8 13595
Eulerian 9 2363
Planar connected 8 6747
Chordal 9 13875
Perfect 8 9974
Highly irregular 13 624
Edge-4-critical 11 1399
Self-complementary 13 6368
Distance-regular 40 115
Strongly regular 40 280

All graphs (|V | < 9) We consider all graphs below a certain order, without considering any additional properties..

Eulerian graphs (|V | < 10) A graph is Eulerian if it contains only even-degree vertices.

Planar connected graphs (|V | < 9) A graph is planar if it can be drawn on a plane without any intersecting edges.

Chordal graphs (|V | < 10) A graph is chordal if every cycle of length 4 and more has a chord, that is, an edge connecting
the non-adjacent nodes of the cycle.

Perfect graphs (|V | < 8) A graph is perfect if every odd cycle of length 5 and more has a chord, and the same is true of
the complement graph.

Highly irregular graphs (|V | < 14) A graph is highly irregular if for every vertex in that graph, all neighbors of that
vertex have distinct degrees.

Edge-4-critical graphs (|V | < 12) A graph is edge-4-critical if it is connected, is (vertex) 4-colourable, and removal of
any edge makes it 3-colourable.

Self-complementary graphs (|V | < 14) A graph is self-complement if it is isomorphic to its complement.

16

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

Distance-regular graphs (|V | < 41) For a graph with order n and diameter d, any vertex u and for any integer i with
0 ≤ i ≤ d, let Gi(u) denote the set of vertices at distance i from u. If v ∈ Gi(u) and w is a neighbour of v, then w must be
at distance i-1, i or i+1 from u. Let ci, ai and bi denote the number of such vertices w. A graph is distance-regular if and
only if these parameters ci, ai and bi depends only on the distance i, and not on the choice of u and v.

Strongly regular graphs (|V | < 41) A graph is a strongly regular graph with parameters (n, k, λ, µ) if it has n nodes
with all degree k, and any two adjacent vertices have λ common neighbours, and any two non-adjacent vertices have µ
common neighbours. A non-trivial (non-complete) strongly regular graph has diameter at most two, and are precisely the
diameter-2 distance-regular graphs with intersection array parameters b0 = k, a1 = λ and c2 = µ.

C. Discussions on GRAPHTESTER Dataset Results
C.1. Why Are Strongly Regular Graphs Hard?

Strongly regular and distance-regular graphs, by definition, have certain properties of regularity that makes it difficult to
distinguish nodes based on commonly used centrality measures. It turns out, this regularity is very well-connected with
some of these metrics to the point that the parametrization of strongly regular graphs actually determine the values of some
of these centrality metrics.

It is straightforward to note that for degree centrality d(v), variance of the node degrees in a distance-regular graph is
zero, that is, var(dG) = 0. In 2012, Gago et al. have shown that this is the case for betweenness centrality bc(v) as well,
var(bcG) = 0 (Gago et al., 2012). One year later, Rombach et al. have proven the same for closeness centrality cc(v) by
noting that var(ccG) = 0 (Rombach & Porter, 2013). Below, we go one step further by using their results in the context of
color refinement.

Theorem C.1. Let G1 and G2 be two strongly regular graphs with the same intersection array. Then, d(v) = d(u) ,
bc(v) = bc(u) , and cc(v) = cc(u) for all v ∈ VG1

, u ∈ VG2
.

Proof. Consider a strongly regular graph with parametrization (v,k,λ,µ), i.e., with the following abbreviated intersection
array:

{b0 : k, b1 : k − 1− λ; c1 : 1, c2 : µ}.

Then, degree centrality of all vertices in this graph is k by definition.

Using the results from Gago et al. (Gago et al., 2012), the geodesic ratio of a vertex v in this strongly regular graph can be
written explicitly. Note that diameter of any strongly regular graph is 2, therefore 1 ≤ d(u, v) ≤ 2 ∀u ̸= v ∈ V . Using the
betweenness formula from the same work, we can expand the expression as follows (for some other nodes u,v of which w is
on the shortest path in between, d(a, b) is the distance between nodes a and b)

bc(w) =
∑

u,v ̸=w

 ∏d(u,w)
i=1 ci∏d(u,v)

i=d(u,v)−d(u,w) ci


=
∑

u,v ̸=w

(
c1∏2
i=1 ci

)
(d(u, v) = 2 and d(u,w) = d(v, w) = 1 as w is on the shortest path u− v)

=
∑

u,v ̸=w

1

µ

=
k(k − λ− 1)

2µ
(#neighbors × #non-adjacent neighbors, halved for repeated paths)

Consequently, the value can be derived solely through the intersection array.

For closeness centrality, we write the derivation of Rombach et al. (Rombach & Porter, 2013) for distance-regular graphs,
using the strongly regular graph parametrization above. We first define a generalization of the neighborhood of a node,
Γr(i) := {j|d(i, j) = r}, as the nodes at distance r from the source node i. Then, using the derivations from the same work,

17

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

we can write closeness centrality of some node w ∈ V as

cc(w) =
n− 1∑d

r=1 r|Γr(w)|

=
n− 1

k +
2k(k − λ− 1)

µ

=
µ(n− 1)

µk + 2k(k − λ− 1)

which only depends on the strongly regular graph parametrization.

Corollary C.2. Strongly regular graphs of same parametrization are indistinguishable with degree, betweenness or closeness
centralities.

Corollary C.3. For strongly regular graphs,

cc(w) =
n− 1

d(w) + 4bc(w)
.

C.2. A New Class of Features: Node Signature

Resolving this inherent regularity is most likely not possibly with distance- or path-based centrality metrics. What are the
components of a strongly regular graph that are not necessarily regular? It turns out, such a feature requires us to look at the
subgraphs induced by the neighborhoods of each node.

n-th subconstituent of a vertex, denoted by Γn(v), is the subgraph induced by the nodes at distance n from the node, minus
itself. 1st subconstituent of a node is also called local graph. For strongly regular graphs, the second subconstituent at x is
the graph induced on the set of vertices other than x and nonadjacent to x.

Turns out, such a graph is most of the times not strongly regular, and quite descriptive of the strongly regular graphs
themselves (Brouwer & Van Maldeghem, 2022). Using the observation from Table 3 on the power of edge betweenness in
distinguishing non-distance-regular graphs, we propose a new family of features named n-th subconstituent signature to
use as pre-coloring for 1-WL algorithm, created with Algorithm 4.

Algorithm 4 n-th subconstituent signature

Require: graph G = (V,E), integer n ≥ 1
for v ← V do
Ev ← EdgeBetweenness(Γn(v)) {Outputs set of EB values per edge}
cv ← hash(Ev) {Permutation-invariant hash, e.g., sort and concatenate}

end for
return {c1, c2, ..., c|V |}

Lemma C.4. n-th subconstituent signatures of a connected graph can be estimated in worst-case complexity O(|V |m3),
where m is the maximum degree.

Proof. Using Brandes’ algorithm, we can estimate the edge betweenness of undirected graphs in O(|V ||E|) (Brandes,
2004). For each node, the worst case estimation of the EB values for maximum node degree takes O(m3) where m is the
maximum degree. Hashing and subgraph extraction can be done inO(m2) andO(|V |+ |E|) times respectively independent
of n, latter done by running a breadth-first search.

Finally, with the note that m3 ≥ m2 ≥ |V | and m3 ≥ m2 ≥ |E| for connected graphs, the worst-case complexity of
Algorithm 4 can be written as O(|V |m3).

C.3. Benchmarking Results for the Signature

Using the same GRAPHTESTER infrastructure to compare the power of signature with other methods, we created the Table 5
that depicts the performance of the proposed method over alternatives on particularly challenging graph classes.

18

GRAPHTESTER: Exploring Theoretical Boundaries of GNNs on Graph Datasets

Table 5. Failure counts of all tests conducted for all graph pairs in the given graph classes with noted orders for node signature features.
Only noteworthy graph classes and methods are listed.

graph class: All nonisomorphic Highly irregular Strongly regular

node count: 3 4 5 6 7 8 8 9 10 11 12 13 16 25 26 28 29 36 40

1-WL (≡ 2-WL) 0 0 0 4 22 350 1 0 8 0 165 0 1 105 45 6 820 16110 378
3-WL 0 0 0 0 0 0 0 0 0 0 0 0 1 105 45 6 820 16110 378
4-WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Neighborhood 1st subconstituent signatures 0 0 0 0 0 6 0 0 1 0 3 0 0 0 0 0 0 1 2
Neighborhood 2nd subconstituent signatures 0 0 0 1 2 12 0 0 0 0 0 0 0 0 0 0 0 0 0
Neighborhood 1st subconstituent signatures +

Edge betweenness 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2

Neighborhood 2nd subconstituent signatures +
Edge betweenness 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This method, as well as other associated methods are provided as part of the GRAPHTESTER package. Note that this
feature is not necessarily feasible as a positional encoding since it varies in dimension per node, therefore is required to be
preprocessed by a dynamic and permutation-invariant layer.

19

