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Abstract—In this paper we study the problem of scheduling
wireless links in a model where successive interference cancel-
lation is combined with the physical interference model and
uniform power assignment. Successive interference cancellation
is based on the observation that interfering signals shouldnot
be treated as random noise, but as well-structured signals.By
exploiting this structured nature, the strongest signal can be
decoded and subtracted from a collision, thus enabling the
decoding of weaker simultaneous signals. The procedure can
be repeated iteratively as long as the collided signals differ in
strength significantly. It has been shown that the problem of
scheduling wireless links with successive interference cancellation
is NP-hard. In this work, we propose a polynomial-time schedul-
ing algorithm that uses successive interference cancellation to
compute short schedules for network topologies formed by nodes
arbitrarily distributed in the Euclidean plane. We prove th at the
proposed algorithm is correct in the physical interferencemodel
and provide simulation results demonstrating the performance of
the algorithm in different network topologies. We compare the
results to solutions without successive interference cancellation
and observe that throughput gains of up to 20% are obtained in
certain scenarios.

I. I NTRODUCTION

The problem of scheduling wireless links is fundamental
in determining the communication capacity of a wireless net-
work. Given a set of communication requests between senders
and receivers, arbitrarily distributed in space, the problem
consists in determining which subsets of links (requests) can
be scheduled concurrently, such that no collisions occur among
them, and how these subsets must be chosen, such that all links
are able to transmit successfully in minimum time.

The link scheduling problem has been studied in a variety
of interference models, such as graph-based models (e.g.
the protocol interference model) and fading channel models
(e.g. the physical interference model). The physical model, to
which we also refer as the SINR (Signal to Interference plus
Noise Ratio) model, provides a more realistic representation
of wireless interference than graph-based models, however,
it might be more challenging when it comes to complexity
analysis and algorithm design. In [1] it was shown that the
link scheduling problem with uniform power assignment is
NP-complete in the physical interference model by a reduction
from the Integer Partition problem.

In the SINR model, a transmission is considered successful
if the signal power of the sender at the intended receiver

sufficiently exceeds the sum of signal powers of all concurrent
transmissions in the network (considered as interference)at the
receiver, i.e., it is assumed that a receiver successfully decodes
one, and only one, message at a time. This “traditional”
approach of handling wireless interference by avoiding or
reducing it is implemented in most of the existing MAC pro-
tocols for wireless LANs, which are based on carrier sensing,
e.g. 802.11. In carrier sense, a transmission is deferred ifthe
sender device senses another transmission in progress. The
idea is to eliminate interference and allow higher SINR at the
receiver. The problem with this approach is that it discourages
spatial reuse, thus wasting available bandwidth. Since radio
devices can typically detect an ongoing transmission over
very large areas, a single ongoing transmission can block
a great number of potential concurrent transmissions spread
over a large area. This basically results in linear scheduling,
i.e., one node transmits at a time, whereas many concurrent
transmissions could be scheduled simultaneously.

There are alternative models that revise the assumption that
interference is necessarily harmful and that a receiver can
only decode one strongest signal at a time. Techniques such
as cochannel separation, analog network coding, MIMO, and
successive interference cancellation have radically changed the
definition of a successful transmission. Cochannel separation
techniques allow the receiver to decode several signals si-
multaneously under the assumption that these signals differ
significantly in their strength [2]. Analog network coding
makes it possible to simultaneously decode two signals of
similar strength, under the assumption that the receiver knows
one of the interfered signals by having overheard or forwarded
it earlier [3]. MIMO systems explore space-time coding tech-
niques by means of antenna arrays and coherent combining
at a receiver [4], [5]. In successive interference cancellation,
one sender’s packet with the strongest signal is first decoded
and “subtracted” from the received collision, such that weaker
simultaneous signals can be then decoded in an iterative
fashion [6].

Given these alternative ways of defining a successful trans-
mission, an interesting question that rises is whether the
computational complexity of the scheduling problem remains
the same. In [7] it was shown that scheduling wireless links
in the SINR model remains NP-hard when two different
forms of decoding collided signals are considered: successive



interference cancellation and analog network coding in a 2-
way relay topology.

In this work we build upon the results in [7]. We consider
the model where successive interference cancellation is com-
bined with the SINR model and uniform power assignment.
Successive interference cancellation is based on the observa-
tion that interfering signals should not be treated as random
noise, but as well structured signals comprised by modulated
data. By developing a data-dependent model of the signal,
the strongest signal can be decoded and subtracted from the
sum of the interfering signals and noise, thus enabling the
decoding of the remaining weaker signals. The procedure can
be repeated iteratively as long as the collided signals differ in
strength significantly.

We propose a polynomial-time scheduling algorithm that
uses successive interference cancellation to compute short
schedules obeying the SINR constraints for network topologies
formed by nodes arbitrarily distributed in the Euclidean plane.
We provide simulation results demonstrating the performance
of the algorithm in different network topologies. We compare
the obtained schedule lengths to solutions that do not employ
successive interference cancellation and observe that through-
put gains of up to 20% are obtained in certain scenarios.

In Section II we discuss the related work. In Section III
we define the network model that combines SINR and suc-
cessive interference cancellation constraints. We refer to the
scheduling problem defined in this model asScheduling with
Successive Interference Cancellation (SSIC). In Section IV we
present the proposed scheduling algorithm for SSIC and the
corresponding proof of correctness. In Section V we discuss
our simulation results. Finally, in Section VI we present some
conclusions.

II. RELATED WORK

The problem of scheduling wireless requests with uniform
power assignment in the SINR model was shown to be NP-
complete in [1]. After this first hardness result, the analysis
of the problem in the physical model has received a lot of
attention, generating an interesting body of work. In [8] a
constant approximation algorithm was devised for the on-slot
scheduling problem under uniform power assignment. More
recently, a constant approximation algorithm for the joint
problem of scheduling and power control was obtained in [9].
A detailed survey of these and related recent results can be
found in [10].

The possibility of decoding collided simultaneous signals
has been explored in a variety of contexts. Some techniques,
such as cochannel signal separation, explore differences in the
characteristics of interfered signals, such as signal’s strength,
to decode several signals simultaneously [2], [11]. Other
techniques, such as MIMO, allow multiple concurrent trans-
missions using antenna arrays and space-time coding to decode
multiple concurrent transmissions simultaneously [5].

Interference cancellation is a type of multi-user detection
technique in wireless communication networks [12]. Many

of such techniques were originally proposed for CDMA sys-
tems [13], [14] and exploit several resources of the cellular
infra-structure, such as separate areas of reception and cen-
tralized synchronization and power control. In [15] a proofof
concept of interference cancellation applied to wireless LANs
was presented, where a collision between signals with similar
power could be decoded. In [6] a simpler technique called
successive interference cancellation was implemented forthe
802.15.4 (ZigBee) physical layer. In this approach, collided
signals have to differ significantly in power in order to be
decoded, and the strongest signal is successively subtracted
from a collision, allowing the decoding of weaker simultane-
ous signals. Successive interference cancellation has been also
applied in MIMO LANs: in [16] it was used in combination
with interference alignment to improve throughput, and in [4]
it was used for channel training and transmission control to
avoid coordination and increase throughput.

In [17] Gelal et al. analyzed how topology control can
be used to improve the efficiency of successive interference
cancellation in MIMO networks. In a more recent work, Avin
et al. [18] analyzed the effect of interference cancellation on
the topology of “reception zones”, i.e., regions where a signal
can be successfully decoded in the SINR model.

Another group of related work deals with network coding
in the physical layer, or analog network coding (ANC). In
[3], [19] ANC algorithms are proposed with the emphasis on
decoding two signals that interfered with each other, mainly
in the canonical 2-way relay topology. In [20] the concept
of ANC was generalized by showing how collided packets
can be recovered in a 802.11 network usingZigZag decoding,
provided that the network operates at sufficiently high SNR,
not too many packets are involved in a collision and there
are enough retransmissions containing the same packets. A
collision is treated as a linear equation over the involved pack-
ets, which can be recovered if the resulting system of linear
equations has a unique solution. The asymptotic optimalityof
ANC in high SNR regimes was recently proved in [21], and
its asymptotic optimality in terms of degrees of freedom was
shown in [22].

In this work we look at the idea of decoding a collided
signal from a different perspective. Extending the hardness
results presented in [7], we combine the SINR model with
successive interference cancellation capability and analyze the
centralized problem of scheduling wireless requests between
nodes arbitrarily distributed in the Euclidean space. We pro-
pose an algorithm that produces correct and short schedules
in this model.

III. M ODEL

The input to the link scheduling problem is a set of links
L = l1, . . . , ln, where each linklx represents a communication
request from a sendersx to a receiverrx. We assume that
nodes live in Euclidean plane. The distance between two nodes
sx, ry is denoted bydxy = d(sx, ry). The length of a linklx
is denoted bydxx. The received powerPrx(sx) of a signal



transmitted by sendersx at receiverrx is defined as

Prx(sx) =
P

dαxx
,

whereP is the transmission power, andd−α
xx is the propagation

attenuation (link gain). The path-loss exponentα > 2 is a
constant, whose exact value depends on external conditionsof
the medium, such as humidity, obstacles, etc.

In the physical interference model, a receiverrx success-
fully decodes a transmission from a sendersx iff

SINRrx(St) =
Prx(sx)

∑

sy∈Stsy 6=sx
Prx(sy) +N

≥ β, (1)

where St is the set of nodes concurrently transmitting in
time-slott, andβ is the minimum signal-to-interference-plus-
noise-ratio (SINR) required for a successful message decoding.
Typically, it is assumed thatβ > 1.

The objective of theScheduling problem is to compute a
minimum-length scheduleS = {S1 . . .ST } of size T , such
that all links in every time slotSt ∈ S can be scheduled
successfully according to inequality (1).

We consider the case where all nodes transmit with the same
power levelP , i.e., we assume a uniform power assignment
scheme [23].

In order to capture the capability of decoding several signals
from a collision, we work with a new definition of a successful
transmission, which we introduce below.

A. Successive Interference Cancellation

Successive interference cancellation is based on the fact that
interfering signals, unlike noise, obey a certain structure, deter-
mined by the data being transmitted. The idea is to exploit this
structured nature in order to decode several collided signals.
Firstly, the basic SINR model is used to decode the strongest
signal received in a collision, and then the bits decoded from
the signal are used to generate an approximated model used
to subtract its contribution from the overall interferenceof the
collided signal. As described in [6], a typical receiver would
perform the following steps:

1) Detect a collision, by scanning for strong amplitude
variations in the incoming signal;

2) Decode the strongest signal using the inequality 1;
3) Use the decoded digital data from (2) and the properties

of the physical layer standard, e.g. 802.15.4, to develop
an approximated model for the received signal;

4) Use the model developed in (3) to cancel out the
strongest signal from the overall interference by iterating
through the data and aligning the phase of the model and
the received samples;

5) Iterate to decode the remaining packets.

In order to model successive interference cancellation, we
assume that a receiverr is able to decode several signals
simultaneously, provided that these signals differ in strength
significantly.

Consider a set of concurrently scheduled linksSt, and
a subset ofk signals sorted in decreasing order of power

received at a noder: Υ = {Pr(s1), Pr(s2), · · · , Pr(sk)}. We
assume that the receiverr is able to decode allk signals inΥ
if and only if the following condition holds∀x ∈ {1, · · · , k}:

Pr(sx)
∑

sy∈St,
Pr(sy)∈Υ,

Pr(sy)<Pr(sx)

Pr(sy) +
∑

sz∈St

Pr(sz)/∈Υ
Pr(sz) +N

≥ β, (2)

where the first component of the denominator is the accumu-
lated interference caused by transmissions inΥ, which have
weaker power level thanPr(sx); the second component of
the denominator is the accumulated interference of all other
concurrent transmissions in the network, which are not inΥ;
N is the ambient noise; andβ is the minimum SINR threshold.

The idea is that, one by one, each signalPr(sx) ∈ Υ can be
filtered out from the accumulated interference, provided that
the SINR between this signal and the remaining interference
is above the thresholdβ. The key point here is that a receiver
r is able to decode not only the strongest signal, as in the
traditional physical interference model, but also a relatively
weak signal, provided that each of the stronger signals has
been filtered out. Therefore, a signalPr(sx) can be correctly
decoded if and only if all concurrently scheduled stronger
signals (Pr(sy)) obey the following constraints:

Pr(sy)

Pr(sx) +
∑

sz∈St

sz 6=sx
Pr(sz)<Pr(sy)

Pr(sz) +N
≥ β,

∀sy ∈ St, wherePr(sy) > Pr(sx), and (3)
Pr(sx)

∑

sz∈St

Pr(sz)<Pr(sx)
Pr(sz) +N

≥ β. (4)

The objective of theScheduling with Successive Interference
Cancellation problem (SSIC) is to compute a minimum-length
scheduleS = {S1 . . .ST } of size T , such that all links
in every time slotSt ∈ S can be scheduled successfully
according to inequality (2), or equivalently, inequalities (3)
and (4).

IV. A LGORITHM FOR SSIC

In this section we present a scheduling algorithm that
exploits successive interference cancellation in the physical
interference model. The algorithm greedily schedules links,
checking for successive interference cancellation opportunities
at each step. The result is a schedule of lengthT , where in
each time slot all transmissions can be decoded successfully
according to equation (2). Note that we do not provide approx-
imation guarantees for this algorithm, i.e., we do not know
how well it performs in comparison to an optimal solution
to the SSIC problem. However, in Section V, we compare
its performance to scheduling algorithms that do not employ
interference cancellation techniques through simulations, and
observe a significant improvement in throughput.

We start by defining a functionSSIC(r,Υ, I, β′), which
returns true iff a receiver r is able to decode all signals
in a given setΥ with SINR thresholdβ′. More precisely,
given a set ofk signals (sorted in decreasing order of power



received byr) Υ = {Pr(s1), Pr(s2), · · · , Pr(sk)}, a set of
all other concurrent signalsI, and an SINR thresholdβ′,
SSIC(r,Υ, I, β′) = true iff the following condition holds
∀x ∈ {1, · · · , k}:

Pr(sx)
∑

sy∈St,
Pr(sy)∈Υ,

Pr(sy)<Pr(sx)

Pr(sy) +
∑

Pr(sz)∈I Pr(sz) +N
≥ β′.

Algorithm 1 starts by setting two constants:β′ = 3β/2,
a slightly higher SINR threshold than the originalβ; and c,
a constant defined in (6). The algorithm schedules links in
increasing order of their length. Once a linklx is selected
to be scheduled in time slott (line 8), some of the remaining
links ly (those that have not been scheduled yet) are eliminated
from the current time slot (and put into setD) in two steps. To
do that, the signals which have already been scheduled in this
time-slot (li ∈ St) are divided into two subsets:Υ, containing
signals from senders located within distancedyy of receiverry
(line 10), andI, containing signals from the remaining senders
in St (line 11). In the first elimination step (line 12), all links
ly that do not meet the decoding conditionSSIC(ry,Υ, I, β′)
and have anSINRry (St) (ratio of signal to the interference
from senders inSt, plus noise) lower thanβ′ are removed. In
the second elimination step (line 13), all links whose senders
are within distancec · dxx from receiverrx are removed. This
process is repeated until all links have been either scheduled
in time-slott or deleted. The whole process is repeated using
the deleted links as input, until all links have been scheduled.

Algorithm 1 SSIC Algorithm

1: input: Set of linksL = {l1, . . . , ln};
2: output: ScheduleS = {S1, . . . ,ST } of lengthT , meeting

feasibility conditions SSIC (2);
3: Setc according to (6);
4: β′ := 3β/2;
5: t := 0;
6: repeat
7: D := ∅;
8: St := ∅;
9: repeat

10: St := St ∪ {lx}, wherelx = argminli∈L\{St∪D} dii;
11: for ly ∈ L \ {St ∪D} do
12: Υ := {Pry(si), si ∈ St|d(ry , si) ≤ dyy};
13: I := {Pry (si), si ∈ St \Υ};
14: if !SSIC(ry,Υ, I, β′) and SINRry(St) < β′

then D := D ∪ {ly};
15: else if d(rx, sy) ≤ c · dxx then D := D ∪ {ly};
16: end for
17: until L \ {St ∪D} = ∅
18: L := L \ St;
19: t := t+ 1;
20: until L = ∅
21: return S;

In the following theorem we prove that the scheduleS

obtained by Algorithm 1 is correct, i.e., all selected linkscan
be scheduled concurrently without collisions using successive
interference cancellation.

Theorem 4.1: Algorithm 1 produces a valid schedule ac-
cording to SSIC feasibility conditions, defined in (2).

Proof: Consider a time-slott and an arbitrary linklx
scheduled inSt. Let S−

x be the set of links shorter thanlx,
i.e., those added toSt beforelx, andS+

x be the set of links
longer thanlx, i.e., those added afterlx. When a link lx is
added to the solution, two conditions hold: (1) the signal from
the intended sendersx can be decoded with SINR threshold
β′ = 3β/2, sincelx either satisfiesSSIC(rx,Υ, S−

x \Υ, β′) or
SINRrx(S

−
x ) ≥ b′, whereΥ = {Prx(si)|si ∈ St|d(si, rx) ≤

dxx}; and (2) senders inS+
x are located outside the disc

of radius c · dxx. It remains to show that the additional
interference fromS+

x is small enough to allow the signal
from sx to be decoded with SINR thresholdβ. We need to
show that eitherSSIC(rx,Υ, {S−

x \ Υ} ∪ S+
x , β)=true or

SINRrx(S
−
x ∪ S+

x ) ≥ β, i.e.:
• SSIC(rx,Υ,St \Υ, β) or
• SINRrx(St \ sx) ≥ β.
In order to bound the interference fromS+

x we use the
fact that, by the second elimination criterion of the algorithm,
discs of radiusc · djj around each receiverrj ∈ S+

x do not
contain any sendersz 6= sj . Using this fact and the triangular
inequality, we can lower bound the distance between any two
senders(sj , sz) ∈ S+

x as d(sj , sz) ≥ d(rj , sz) − djj ≥ c ·
djj − djj = djj(c− 1) ≥ dxx(c− 1). Therefore, discsDj of
radiusdxx(c− 1)/2 around senders inS+

x do not intersect.
We partition the space into concentric ringsRingk of width

c · dxx around the receiverrx. Each ringRingk contains all
senderssj ∈ S+

x , for whichk(c·dxx) ≤ d(sj , rx) ≤ (k+1)(c·
dxx). We know that the first ringRing0 does not contain any
sender. Consider all senderssy ∈ Ringk for some integer
k > 0. All discs of radiusdxx(c− 1)/2 around eachsj must
be located entirely in an extended ringRingk of area

A(Ringk) = [(dxx(k + 1)c+ dxx(c− 1)/2)2 −

(dxxkc− dxx(c− 1)/2)2]π

< (2k + 1)d2xx2c
2π.

Since discs of areaA(Dy) ≥ (dxx(c − 1)/2)2π around
senders inS+

x do not intersect, and the minimum distance
betweenrx andsy ∈ Ringk, k > 0 is k(c · dxx), we can use
an area argument to bound the number of senders inside each
ring. The total interference coming from ringRingk, k ≥ 1 is
then bounded by

Irx(Ringk) ≤
∑

sy∈Ringk

Irx(sy)

≤
A(Ringk)

A(Dy)

P

(kcdxx)α

≤
(2k + 1)P23c2

kαdαxxc
α(c− 1)2

≤
1

k(α−1)

P253

dαxxc
(α)

,



where the last inequality holds sincek ≥ 1 ⇒ 2k + 1 ≤ 3k
and c ≥ 2 ⇒ (c − 1) ≥ c/2. Summing up the interferences
over all rings yields

Irx(S
+
x ) <

∞
∑

k=1

Irx(Ringk)

≤
∞
∑

k=1

1

kα−1

P253

dαxxc
(α)

<
α− 1

α− 2

P253

dαxxc
(α)

≤
Prx(sx)

3β
, (5)

where the last two inequalities hold sinceα > 2 and c is
defined as follows

c = max

(

2,

(

2532β
α− 1

α− 2

)
1

α

)

. (6)

If we define Υ+
i to be the set of signals inΥ coming

from senders located closer torx than si, we know that,
sinceSSIC(rx,Υ, S−

x , β′)=true or SINRrx(S
−
x ) ≥ β′, the

following bounds on interference hold:

Irx(S
−
x \Υ+

i ) +N ≤
Prx(si)

β′

≤
2Prx(si)

3β
, ∀Prx(si) ∈ Υ,

in case successive interference cancellation is used, and

Irx(S
−
x ) +N ≤

Prx(sx)

β′
=

2Prx(sx)

3β
,

in case no interference cancellation is performed. In both
cases, by using the bound (5) onIrx(S

+
x ) (and the fact that

Prx(si) ≥ Prx(sx), ∀Prx(si) ∈ Υ), we obtain

Irx({S
−
x \Υ+

i } ∪ S+
x ) +N ≤

2Prx(si)

3β
+

Prx(sx)

3β

≤
Prx(si)

β
, ∀Prx(si) ∈ Υ.

⇒ SSIC(rx,Υ,St \Υ, β) for encoded transmissions, and

Irx(S
−
x ∪ S+

x ) +N ≤
2Prx(sx)

3β
+

Prx(sx)

3β

≤
Prx(sx)

β
.

⇒ SINRrx(St\sx) ≥ β for non-encoded transmissions. This
completes the proof.

V. SIMULATION RESULTS

In this section we present some simulation results to illus-
trate the gain in throughput obtained by using successive in-
terference cancellation. We generated a topology, where nodes
are distributed on a square field of sizeW = 1000, and links
have different levels of variance in length. More precisely, nC

length classes were defined, such that the link lengthlk in

each classck, 1 ≤ k ≤ nC is uniformly distributed between
lmax = W/2k and lmin = W/2k+1 + W/2k+2. In each
length class,n/nC receiver nodes were distributed uniformly
at random in the deployment field, and the respective senders
were positioned uniformly at random at distancelk from their
intended receivers. With high-link-length-diversity topologies
we tried to simulate scenarios, where more interference can-
cellation opportunities would arise.

We compare the performance of Algorithm 1 to the per-
formance of three scheduling algorithms without coding:
GreedyPhysical (proposed in [24]), ApproxDiversity (pro-
posed in [1]), and ApproxLogN (proposed in [8]). As the SSIC
Algorithm, all these algorithms are polynomial in time and are
specifically designed for the SINR model.

In all experiments, the number of simulations was chosen
large enough to obtain sufficiently small confidence intervals.
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when variablen, α = 5, β = 1.2)

Firstly, we analyze the size of the obtained schedule as a
function of the number of length classes (see Figure 1(a)).
It can be seen that the more diverse the link lengths, the
more interference cancellation opportunities exist in thenet-
work, and the higher the gain of the successive interference
cancellation approach relative to non-interference cancellation
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scheduling algorithms. In Figure 1(b) we analyze the influence
of the total number of nodes on the relative performance of the
algorithms. Since the number of length classes is maintained
constant, the number of successive interference cancellation
opportunities does not significantly change. Therefore, the gain
in throughput due to network coding does not vary much with
varying network density. In Figure 2(a) we analyze the impact
of the path-loss exponentα. It can be observed that when
α < 3, the GreedyPhysical algorithm achieves slightly better
performance than the SSIC algorithm. This can be explained
by the fact that the second elimination step of Algorithm 1
depends on the constantc, defined in (6), which increases
sharply whenα approaches 2. For higher values ofα, however,
the successive interference cancellation approach becomes
increasingly more efficient. In Figure 2(b) we analyze the
impact of the SINR thresholdβ. It can be seen that the value
of β does not influence the performances of the algorithms,
which is expected, given thatβ is just a ratio. In Figures 1(a)
through 2(b), it can be observed that the throughput gain
of coding is the smallest relative to algorithm ApproxLogN.
This is due to the fact that ApproxLogN outperforms the
other algorithms. Nevertheless, the coding approach achieves
gains that vary from3.5% (whennC = 2) up to 10% (when

nC = 10) and20% (whennC = 10 andα = 6).
Overall, the simulation results showed that the gain of

successive interference cancellation depends both on the topol-
ogy of the network and on the SINR parameters. The more
interference cancellation opportunities a network topology
generates, the more explicit the gain of the SSIC algorithm
over traditional scheduling algorithms is. In particular,since
network topologies with high link length diversity exhibit
stronger power variation between simultaneous packets at
the receivers, they induce higher throughput gains due to
interference cancellation.

VI. CONCLUSION

In this work we wanted to obtain an efficient algorithm for
scheduling wireless links in the physical interference model
with successive interference cancellation capability. Given that
interference cancellation changes the definition of a successful
transmission, allowing a receiver to decode several messages
simultaneously, it is interesting to analyze whether signifi-
cantly shorter schedules can be obtained for nodes arbitrarily
distributed in the Euclidean space.

We proposed a scheduling algorithm that explores interfer-
ence cancellation opportunities in the network. We showed
through simulations that better throughput can be obtained
in certain network topologies. In particular, the strongerthe
signal power variation between simultaneous packets at the
receivers in a network topology, the higher are the induced
throughput gains due to successive interference cancellation.
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