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a b s t r a c t

This article investigates selfish behavior in games where players are embedded in a social
context. A framework is presented which allows us to measure the Windfall of Friendship,
i.e., how much players benefit (compared to purely selfish environments) if they care about
the welfare of their friends in the social network.

As a case study, a virus inoculation game is examined. We analyze the Nash equilibria
and show that the Windfall of Friendship can never be negative. However, we find that
if the valuation of a friend is independent of the total number of friends, the social welfare
may not increase monotonically with the extent to which players care for each other;
intriguingly, in the corresponding scenario where the relative importance of a friend
declines, the Windfall is monotonic again.

This article also studies convergence of best-response sequences. It turns out that in
social networks, convergence times are typically higher and hence constitute a price of
friendship. While such phenomena may be known on an anecdotal level, our framework
allows us to quantify these effects analytically. Our formal insights on the worst case equi-
libria are complemented by simulations on larger social graphs, shedding light on robust-
ness and fairness aspects, as well as on the structure of other equilibria.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction
This article makes a first step to combine two active
threads of research: social networks and game theory.
We introduce a framework taking into consideration that
people may care about the well-being of their friends. In
particular, we define the Windfall of Friendship (WoF)
which captures to what extent the social welfare improves
in social networks compared to purely selfish systems.

In order to demonstrate our framework, as a case study,
we provide a game-theoretic analysis of a virus inoculation
game. Concretely, we assume that a virus spreads along the
social network, and that the players have the choice
between inoculating by buying anti-virus software and
1389-1286/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
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risking infection. We assume that a player pi takes into
account the cost (or utility) of a friend pj, i.e., a neighbor
pj 2 CðpiÞ in the social graph, by adding player pj’s cost to
its own cost using a weighing factor Fi;j 2 ½0;1�. While
many of our results hold for general Fi;j values, two special
scenarios are considered in more detail: (1) An uniform
friendship model where players care about their friends to
the same extent, i.e., for all i; j (where pj 2 CðpiÞ), Fi;j � F,
independently of the number of friends; and a relative
friendship model where the friendship value depends on
the number of friends (i.e., neighbors) j CðpiÞ j of a given
player pi : Fi;j ¼ F= j CðpiÞ j for some constant F and
pj 2 CðpiÞ. In other words, the relative importance of a
friend decreases with the total number of friends, and a
player with many friends cares less about the welfare of
a specific friend compared to a player who only has one
or two friends.
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Our analysis confirms the expectation that, in both the
uniform and the relative friendship model, the players al-
ways benefit from caring about the other participants in
the social network rather than being selfish. Intriguingly,
however, we find that in the uniform friendship model,
the Windfall of Friendship may not increase monotonically
with stronger relationships. Despite the phenomenon
being an ‘‘ever-green’’ in political debates, to the best of
our knowledge, this is the first article to quantify this effect
formally.

This article also presents upper and lower bounds on
the Windfall of Friendship in simple, archetypical graphs.
For example, the Windfall of Friendship under the uniform
friendship model in a complete graph (describing a situa-
tion where all players are friendly) is at most 4=3; this is
tight in the sense that there are problem instances where
the situation can indeed improve by this much. Moreover,
we show that in star graphs (the other extreme, where
friendship is concentrated on a single player), friendship
can help to eliminate undesirable equilibria. Generally,
we discover that even in simple graphs the Windfall of
Friendship can attain a large spectrum of values, from con-
stant ratios up to HðnÞ;n being the network size, which is
asymptotically maximal for general graphs.

For the relative friendship model where the importance
of an individual friend declines with a larger number of
friends, the Windfall of Friendship is still positive, we show
that the non-monotonicity result is no longer applicable.
Moreover, it is proved that in both models, computing the
best and the worst friendship Nash equilibrium isNP-hard.

The article also initiates the discussion of implications
on convergence. We give a potential function argument
to show convergence of best-response sequences in vari-
ous models and for simple, cyclic graphs. Moreover, we
report on our simulations which indicate that the conver-
gence times are typically higher in social contexts, and
hence constitute a certain price of friendship.

Finally, we complement our formal analysis with a sim-
ulation studying more general social graphs and equilibria,
and we initiate the discussion of robustness and fairness.

1.1. Organization

The remainder of this article is organized as follows.
Section 2 reviews related work and Section 3 formally intro-
duces our model and framework. The Windfall of Friendship
on general graphs is studied in Section 4. Section 5 takes a
closer look at the Windfall of Friendship on special graphs
and for the uniform friendship model. Section 6 studies
the similarities and differences for the relative friendship
model. Aspects of best-response convergence are examined
in Section 7. In our simulations (Section 8) we study more
realistic social network topologies and investigate addi-
tional aspects which were not studied analytically. Finally,
we conclude the article in Section 9.

2. Related work

Social networks are a fascinating research area. Social
networks are studied intensively not only by social scien-

tists, psychologists, ethnologists, and economists, but also
by mathematicians and computer scientists. The advent
of social networks on the Internet, e.g., Facebook, LinkedIn,
MySpace, Orkut, or Xing, to name but a few, heralded a new
kind of social interactions, and the mere scale of online
networks and the vast amount of data constitute an
unprecedented treasure for scientific studies. The topolog-
ical structure of these networks and the dynamics of the
user behavior has interesting mathematical and algorith-
mic dimensions. Especially the famous small world experi-
ment [29] conducted by Stanley Milgram 1967 has raised
the interest of the algorithm community [21] and inspired
research on topics such as decentralized search algorithms
[22], routing on social networks [13,26] and the identifica-
tion of communities [11,33]. The dynamics of epidemic
propagation of information or diseases has been studied
from an algorithmic perspective as well [23]. Knowledge
on effects of this cascading behavior is useful to under-
stand phenomena as diverse as word-of-mouth effects,
the diffusion of innovation, the emergence of bubbles in
a financial market, or the rise of a political candidate. It
can also help to identify sets of influential players in net-
works where marketing is particularly efficient (viral mar-
keting). For a good overview on economic aspects of social
networks, we refer the reader to [6], which, i.a., compares
random graph theory with game theoretic models for the
formation of social networks.

Another area which currently experiences a renaissance
and attracts much interest from mathematicians and com-
puter scientists, is game theory. In particular, mathemati-
cians and computer scientists are interested in the
important algorithmic problems posed by game theory,
e.g., on the existence of pure equilibria [34]. Moreover,
game theory is also used to model distributed systems
such as the Internet: the structure and organic growth of
the Internet depends on various actors and stake-holders;
accordingly, many specific aspects have been studied from
a game-theoretic point of view, e.g., routing [35,36], multi-
cast transmissions [10], or network creation [9,31].

This article seeks to combine the two research areas and
to apply game theory to the domain of social networks.
While game theory typically relies on the assumption of
purely selfish behavior, we argue that in the context of so-
cial networks where different players may have different
personal relationships to each other, new models are
needed: in social networks, players may not be completely
selfish and autonomous but have friends about whose
well-being they care to some extent.

We demonstrate our mathematical framework with a
virus inoculation game on social graphs. There is a large
body of literature on the propagation of viruses
[4,14,19,20,38]. Miscellaneous misuse of social networks
has been reported, e.g., email viruses1 have used address
lists to propagate to the users’ friends. Similar vulnerabilities
have been exploited to spread worms on the mobile phone
network [12] and on the Internet telephony tool Skype.2

1 For example, the Outlook worm Worm.ExploreZip.
2 See http://news.softpedia.com/news/Skype-Attacked-By-Fast-Spread-

ing-Virus-52039.shtml.
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Moreover, there already exists interesting work on
game theoretic and epidemic models of propagation in
social networks. For instance, Montanari and Saberi [30]
attend to a game theoretic model for the diffusion of an
innovation in a network and characterize the rate of con-
vergence as a function of graph structure. The authors
highlight crucial differences between game theoretic and
epidemic models and find that the spread of viruses, new
technologies, and new political or social beliefs do not have
the same viral behavior.

The articles closest to ours are [2,32]. Our model is in-
spired by Aspnes et al. [2]. The authors apply a classic
game-theoretic analysis and show that selfish systems
can be very inefficient, as the Price of Anarchy is HðnÞ,
where n is the total number of players. They show that
computing the social optimum is NP-hard and give a
reduction to the combinatorial problem sum-of-squares
partition. They also present a Oðlog2nÞ approximation.
Moscibroda et al. [32] have extended this model by intro-
ducing malicious players in the selfish network. This
extension facilitates the estimation of the robustness of a
distributed system to malicious attacks. They also find that
in a non-oblivious model, intriguingly, the presence of
malicious players may actually improve the social welfare.
In a follow-up work [24] which generalizes the social con-
text of [32] to arbitrary bilateral relationships, it has been
shown that there is no such phenomenon in a simple net-
work creation game. The Windfall of Malice has also been
studied in the context of congestion games [3] by Babaioff
et al. In contrast to these papers, our focus here is on social
graphs where players are concerned about their friends’
benefits.

There is other literature on game theory where players
are influenced by their neighbors. In graphical economics
[16,18], an undirected graph is given where an edge be-
tween two players denotes that free trade is allowed be-
tween the two parties, where the absence of such an
edge denotes an embargo or an other restricted form of di-
rect trade. The payoff of a player is a function of the actions
of the players in its neighborhood only. In contrast to our
work, a different equilibrium concept is used and no social
aspects are taken into consideration.

Note that the nature of game theory on social networks
also differs from cooperative games (e.g., [5]) where each
coalition C # 2V of players V has a certain characteristic
cost or payoff function f : 2V ! R describing the collective
payoff the players can gain by forming the coalition. In
contrast to cooperative games, the ‘‘coalitions’’ are fixed,
and a player participates in the ‘‘coalitions’’ of all its
neighbors.

A preliminary version of this article appeared at ACM EC
2008 [28], and there have been several interesting results
related to our work since then. For example, [8] studies
auctions with spite and altruism among bidders, and pre-
sents explicit characterizations of Nash equilibria for
first-price auctions with random valuations and arbitrary
spite/altruism matrices, and for first and second price auc-
tions with arbitrary valuations and so-called regular social
networks (players have same out-degree). By rounding a
linear program with region-growing techniques, Chen
et al. [7] present a better, Oðlog zÞ-approximation for the

best vaccination strategy in the original model of [2],
where z is the support size of the outbreak distribution.
Moreover, the effect of autonomy is investigated: a benev-
olent authority may suggest which players should be vac-
cinated, and the authors analyze the ‘‘Price of Opting Out’’
under partially altruistic behavior; they show that with po-
sitive altruism, Nash equilibria may not exist, but that the
price of opting out is bounded.

We extend the conference version of this article [28] in
several respects. We generalize our model and results for
individual friendship factors and relative friendship, initiate
the discussion of convergence aspects, and complement
the formal insights with an extensive simulation study
on Kleinberg and Facebook graphs, also considering fair-
ness and robustness properties. More specifically, we gen-
eralize our original model where each node values all its
neighbors with the same friendship factor to a model
where the weight of a neighbor’s cost can vary. As a special
case, we study a model where the relative importance of a
neighbor declines with the total number of friends. We
find that while friendship is still always beneficial, the
non-monotonicity result no longer applies: unlike in the
uniform friendship model, the Windfall of Friendship can
only increase with stronger social ties. Regarding conver-
gence times, it turns out that compared to purely selfish
environments, it can take longer until an equilibrium is
reached: this constitutes another price of friendship. We
present a potential function argument to prove conver-
gence in some simple cyclic networks, and complement
our study with simulations on Kleinberg graphs. Our sim-
ulation study also looks at the welfare distribution among
players (fairness), and considers a faulty scenario where
supposedly inoculated players still propagate the virus,
increasing the attack component. Finally, there are several
minor improvements, e.g., we generalized the bound in
Theorem 4.4 from n > 7 to n > 3.

3. Model

This section introduces our model and the game-theo-
retic framework for social networks. As a case study to gain
insights into the Windfall of Friendship, we study a virus
inoculation game on a social graph. We revisit the model
of this game, and then show how it can be extended to
incorporate social aspects.

3.1. Virus inoculation game

The virus inoculation game we consider in this article
was introduced in [2]. We are given an undirected network
graph G ¼ ðV ; EÞ of n ¼j V j players (or synonymously:
nodes) pi 2 V , for i ¼ 1; . . . ;n, who are connected by a set
of edges (or links) E. Every player has to decide whether
it wants to inoculate (e.g., purchase and install anti-virus
software) which costs C, or whether it prefers saving
money and facing the risk of being infected. We assume
that being infected yields a damage cost of L (e.g., a com-
puter is out of work for L days). In other words, an instance
I of a game consists of a graph G ¼ ðV ; EÞ, the inoculation
cost C and a damage cost L. We introduce a variable ai
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for every player pi denoting pi’s chosen strategy. Namely,
ai ¼ 1 describes that player pi is protected whereas for a
player pj willing to take the risk, aj ¼ 0. In the following,
we will assume that aj 2 f0;1g, that is, we do not allow
players to mix (i.e., use probabilistic distributions over)
their strategies. These choices are summarized by the strat-
egy profile, the vector~a ¼ ða1; . . . ; anÞ. After the players have
made their decisions, a virus spreads in the network. The
propagation model is as follows. First, one player p of the
network is chosen uniformly at random as a starting point.
If this player is inoculated, there is no damage and the pro-
cess terminates. Otherwise, the virus infects p and all
unprotected neighbors of p. The virus now propagates
recursively to their unprotected neighbors. Hence, the
more insecure players are connected, the more likely they
are to be infected. The vulnerable region (set of unprotected
players that form a connected component, also referred to
as an attack component) in which an insecure player pi lies
is referred to as pi’s attack component.

We only consider a limited region of the parameter
space to avoid trivial cases. If the cost C is too large, no
player will inoculate, resulting in a totally insecure net-
work and therefore all players eventually will be infected.
On the other hand, if C � L, the best strategy for all players
is to inoculate. Thus, we will assume that C 6 L and C > L=n
in the following.

A player incurs the following expected costs.

Definition 3.1 (Actual Individual Cost). The actual individ-
ual cost of a player pi is defined as

caði;~aÞ ¼ ai � C þ ð1� aiÞL � ki=n

where ki denotes the size of pi’s attack component. If pi is
inoculated, ki stands for the size of the attack component
that would result if pi became insecure. In the following,
let c0

aði;~aÞ refer to the actual cost of an insecure and
c1

aði;~aÞ to the actual cost of a secure player pi.
The total social cost of a game is defined as the sum of

the cost of all participants: Cað~aÞ ¼
P

pi2V caði;~aÞ.
As in the classic prisoners’ dilemma game, the cost/util-

ity of a player’s decision depends on the decision of other
players and hence it might look favorable for a player to
change its mind. Classic game theory assumes that all play-
ers act selfishly, i.e., each player seeks to minimize its indi-
vidual cost. In order to study the impact of such selfish
behavior, the solution concept of a Nash equilibrium (NE)
is used. A Nash equilibrium is a strategy profile where no
selfish player can unilaterally reduce its individual cost gi-
ven the strategy choices of the other players. We can think
of Nash equilibria as the stable strategy profiles of games
with selfish players. We will only consider pure Nash equi-
libria in this article, i.e., players cannot use random distri-
butions over their strategies but must decide whether they
want to inoculate or not.

In a pure Nash equilibrium, it must hold for each player
pi that given a strategy profile ~a8pi 2 V ; 8ai : caði;~aÞ 6
caði; ða1; . . . ;1� ai; . . . ; anÞÞ, implying that player pi cannot
decrease its cost by choosing an alternative strategy
1� ai. In order to quantify the performance loss due to self-
ishness, the (not necessarily unique) Nash equilibria are
compared to the optimum situation where all players col-

laborate. To this end we consider the Price of Anarchy
(PoA), i.e., the ratio of the social cost of the worst Nash
equilibrium divided by the optimal social cost for a problem
instance I. More formally, PoAðIÞ ¼ maxNECNEðIÞ=COPTðIÞ.

3.2. Social networks

In this article, we consider a setting where the virus
spreads on a social graph, i.e., players are connected to their
friends. Concretely, the virus inoculation game is adapted
for the context of social networks as follows.

We define a Friendship Factor Matrix F which captures
the extent to which players care about their friends, i.e.,
about the players adjacent to them in the social network.
More formally, Fi;j is the factor by which a player pi takes
the individual cost of its neighbor pj 2 CðpiÞ into account
when deciding for a strategy (we assume that Fi;j ¼ 0 if
i ¼ j or pj is not a neighbor). Fi;j can assume any value be-
tween 0 and 1: Fi;j ¼ 0 implies that the player i does not
consider the cost of its neighbor j at all, whereas Fi;j ¼ 1 im-
plies that a player values the well-being of its neighbor j to
the same extent as its own.

We will partition the neighbors CðpiÞ of player pi into
the set CsecðpiÞ# CðpiÞ of inoculated neighbors, and the
set CsecðpiÞ ¼ CðpiÞ n CsecðpiÞ of insecure neighbors.

We distinguish between a player’s actual cost and a
player’s perceived cost. A player’s actual individual cost is
the expected cost arising for each player defined in Defini-
tion 3.1 used to compute a game’s social cost. In our social
network, the decisions of our players are steered by the
players’ perceived cost.

Definition 3.2 (Perceived Individual Cost). The perceived
individual cost of a player pi is defined as

cpði;~aÞ ¼ caði;~aÞ þ
X

pj2CðpiÞ
Fi;j � caðj;~aÞ:

In the following, we write c0
pði;~aÞ to denote the perceived

cost of an insecure player pi and c1
pði;~aÞ for the perceived

cost of an inoculated player.
Fig. 1 illustrates our model.
This definition entails a new notion of equilibrium. We

define a friendship Nash equilibrium (FNE) as a strategy
profile ~a where no player can reduce its perceived cost by
unilaterally changing its strategy given the strategies of
the other players. Formally, 8pi 2 V ; 8ai : cpði;~aÞ 6 cpði;
ða1; . . . ;1� ai; . . . ; anÞÞ. Given this equilibrium concept, we
define the Windfall of Friendship !.

Definition 3.3 (Windfall of Friendship (WoF)). The Windfall
of Friendship !ðF; IÞ is the ratio of the social cost of the
worst Nash equilibrium for I and the social cost of the
worst friendship Nash equilibrium for I under the friend-
ship factor matrix F:

!ðF; IÞ ¼ maxNECNEðIÞ
maxFNECFNEðF; IÞ

where CNE and CFNE are the actual social cost of the Nash
equilibrium NE and the friendship Nash equilibrium FNE
respectively.
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!ðF; IÞ > 1 implies the existence of a real Windfall in the
system, whereas !ðF; IÞ < 1 denotes that the social cost can
become greater in social graphs than in purely selfish
environments.

We consider two special models (i.e., matrices F) in
more detail: (1) An uniform friendship model where all
friendship factors are equal: for all i; j, if pj 2 CðpiÞ then
Fi;j ¼ F for some given parameter F. We will sometime refer
to a corresponding equilibrium by UFNE. (2) And a relative
friendship model where friendship factors decline with the
number of friends: for all i; j, if pj 2 CðpiÞ then Fi;j ¼
F= j CðpiÞ j for some constant parameter F. We will refer
to such an equilibrium by RFNE.

3.3. Remarks

We conclude the section with a short discussion. First,
note that our model assumes that the virus propagation
graph and the social network graph are the same: the virus
propagates along the links describing friendship relation-
ships. This especially makes sense in social networks
describing human interactions: diseases may be propa-
gated during personal meetings. But also computer viruses
may spread along social links, e.g., a virus can propagate to
the contacts in an instance messenger or Online Social Net-
work. However, in other computer networks, friendship
relationships may not be reflected, e.g., in the underlying
physical network where the virus propagates. While theo-
retically our model applies to such a setting as well, it re-
quires a methodology to describe both the physical
network and the social network. The impact of friendship
is likely to be smaller: friends may be remote in the under-
lying network and hence the perceived costs independent.
We do not consider this generalization further in this
article.

Second, as mentioned, throughout this article, we will
assume that Fi;j 6 1: a player never cares more about a
friend than about himself. While some of our results even
hold for Fi;j > 1, we do not consider this case in more detail.

Finally, when referring to the friendship matrix F, we
will always assume that Fi;j ¼ 0 except for pj 2 CðpiÞ. By
slightly abusing notation, we will write F – 0 or F > 0 to
denote a setting where there exists at least one neighbor
with a positive friendship factor.

4. General analysis

We first present general characterizations of friendship
Nash equilibria. In the following, we will assume general
matrices F, i.e., the factors Fi;j can be arbitrary.

It has been shown [2] that in classic Nash equilibria
(F ¼ 0), an attack component can never consist of more
than Cn=L insecure players. A similar characteristic also
holds for friendship Nash equilibria. As every player cares
about its neighbors, the maximal attack component size
in which an insecure player pi still does not inoculate de-
pends on the number of pi’s insecure neighbors and the
size of their attack components. Therefore, it differs from
player to player. We have the following helper lemma.

Lemma 4.1. The player pi will inoculate if and only if the size
of its attack component is

ki >
Cn=Lþ

P
pj2CsecðpiÞFi;j � kj

1þ
P

pj2CsecðpiÞFi;j
;

where the kjs are the attack component sizes of pi’s insecure
neighbors assuming pi is secure.

Proof. Player pi will inoculate if and only if this choice
lowers the perceived cost. The perceived individual cost
of an inoculated player is

c1
pði;~aÞ ¼ C þ

X
pj2CsecðpiÞ

Fi;j � C þ
X

pj2CsecðpiÞ
Fi;j � L

kj

n

and for an insecure player we have

c0
pði;~aÞ ¼ Lki=nþ

X
pj2CsecðpiÞ

Fi;j � C þ
X

pj2CsecðpiÞ
Fi;j � Lki=n:

For pi to prefer to inoculate it must hold that

c0
pði;~aÞ > c1

pði;~aÞ () Lki=nþ
X

pj2CsecðpiÞ
Fi;j � Lki=n

> C þ
X

pj2CsecðpiÞ
Fi;j � L

kj

n
() ki

>
Cn=Lþ

P
pj2CsecðpiÞFi;j � kj

1þ
P

pj2CsecðpiÞFi;j
: �

An interesting question is whether social networks
where players care about their friends yield better equilib-
ria than selfish environments. The following theorem an-
swers this questions affirmatively: the worst FNE costs
never more than the worst NE.

Theorem 4.2. For all instances of the virus inoculation game
and friendship factor matrix F with Fi;j 2 ½0;1�, it holds that

1 6 !ðF; IÞ 6 PoAðIÞ

Fig. 1. Players (here: computers in an OSN) are embedded in a social
context. Players care about their topological neighbors with a factor Fi;j .
Players which are inoculated are depicted in darker color. The vulnerable
parts are called attack components.
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Proof. The proof idea for !ðF; IÞP 1 is the following: for
an instance I we consider an arbitrary FNE with F – 0.
Given this equilibrium, we show the existence of a NE with
larger social cost (according to [2], our best response strat-
egy always converges). Let~a be any (e.g., the worst) FNE in
the social model. If~a is also a NE in the same instance with
F ¼ 0 then we are done. Otherwise there is at least one
player pi that prefers to change its strategy. Assume pi is
insecure but favors inoculation. Therefore pi’s attack com-
ponent has on the one hand to be of size at least k0i > Cn=L
[2] and on the other hand of size at most k00i ¼ ðCn=LþP

pj2CsecðpiÞFi;j � kjÞ=ð1 þ
P

pj2CsecðpiÞFi;jÞ 6 ðCn=L þ
P

pj2CsecðpiÞ

Fi;j � ðk00i � 1ÞÞ=ð1þ
P

pj2Csec ðpiÞFi;jÞ () k00i 6 Cn=L�
P

pj2CsecðpiÞ

Fi;j (cf Lemma 4.1). This is impossible and yields a contra-
diction to the assumption that in the selfish network, an
additional player wants to inoculate.

It remains to study the case where pi is secure in the
FNE but prefers to be insecure in the NE. Observe that,
since every player has the same preference on the attack
component’s size when Fi;j ¼ 0, a newly insecure player
cannot trigger other players to inoculate. Furthermore,
only the players inside pi’s attack component are affected
by this change. The total cost of this attack component
increases by at least

x ¼ ki=n � L� C|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
pi

þ
X

pj2CsecðpiÞ
ki=n � L� kj

n
L

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

pi ’s insecure neighbors

¼ ki=n � L� C þ L
n
ðjCsecðpiÞjki �

X
pj2CsecðpiÞ

kjÞ

Applying Lemma 4.1 guarantees that

X
pj2CsecðpiÞ

kj 6

ki 1þ
P

pj2CsecðpiÞFi;j

� �
� Cn=LP

pj2CsecðpiÞFi;j

This results in

x P
L
n

X
pj2CsecðpiÞ

Fi;j � ki �
ki 1þ

P
pj2CsecðpiÞFi;j

� �
� Cn=LP

pj2Csec
Fi;j

0
@

1
A

¼ kiL
n

1� 1P
pj2Csec

Fi;j

 !
� C 1� 1P

pj2Csec
Fi;j

 !
> 0

since a player only gives up its protection if C > kiL
n . If more

players are unhappy with their situation and become vul-
nerable, the cost for the NE increases further. In conclusion,
there exists a NE for every FNE (with positive friendship
values) for the same instance which is at least as expensive.

The upper bound for the WoF, i.e., PoAðIÞP !ðF; IÞ,
follows directly from the definitions: while the PoA is the
ratio of the NE’s social cost divided by the social optimum,
!ðF; IÞ is the ratio between the cost of the NE and the FNE.
As the FNE’s cost must be at least as large as the social
optimum cost the claim follows. h

Remark 4.3. Note that Aspnes et al. [2] proved that the
Price of Anarchy never exceeds the size of the network,

i.e., n P PoAðIÞ. Consequently, the Windfall of Friendship
cannot be larger than n due to Theorem 4.2.

The above result leads to the question of whether the
Windfall of Friendship grows monotonically with stronger
social ties, i.e., with larger friendship factors. Intriguingly,
this is not the case, even when all nodes have the same
friendship factor.

Theorem 4.4. For more than three players, there exist game
instances where !ðFðsÞ; IÞ > !ðFðlÞ; IÞ for two friendship matri-
ces FðsÞ and FðlÞ, although F(l) dominates F(s) in the sense that
FðsÞi;j 6 FðlÞi;j for all i; j.

Proof. We prove the claim on the star graph Sn which has
one center player and n� 1 leaf players. We consider two
friendship matrices, FðsÞ and FðlÞ, where FðsÞ represents
weaker social ties than FðlÞ. Concretely, we assume that
for two neighbors pi and pj; FðsÞi;j ¼ as for some small
as > 0, and similarly, FðlÞi;j ¼ al for some larger al > as.

We show that under FðlÞ, there exists a FNE, FNE1, where
only the center player and one leaf player remain insecure.
For the same setting but under weaker social ties, at least
two leaf players will remain insecure, which will trigger
the center player to inoculate, yielding a FNE, FNE2, where
only the center player is secure.

Consider FNE1 first. Let c be the insecure center player,
let l1 be the insecure leaf player, and let l2 be a secure leaf
player. In order for FNE1 to constitute a Nash equilibrium,
the following conditions must hold:

player c :
2L
n
þ 2alL

n
< C þ alL

n

player l1 :
2L
n
þ 2alL

n
< C þ alL

n

player l2 : C þ 2alL
n

<
3L
n
þ 3alL

n

For FNE2, let c be the insecure center player, let l1 be one
of the two insecure leaf players, and let l2 be a secure leaf
player. In order for the leaf players to be happy with their
situation but for the center player to prefer to inoculate, it
must hold that:

player c : C þ 2asL
n

<
3L
n
þ 6asL

n

player l1 :
3L
n
þ 3asL

n
< C þ 2asL

n

player l2 : C þ 3asL
n

<
4L
n
þ 4asL

n

Now choose C :¼ 5L=ð2nÞ þ alL=n (note that due to our
assumption that n > 3;C < L). This yields the following
conditions: al > as þ 1=2;al < as þ 3=2, and al < 4asþ
1=2. These conditions are easily fulfilled, e.g., with
al ¼ 3=4 and as ¼ 1=8. Observe that the social cost of the
first FNE (for al) is CostðSn;~aFNE1Þ ¼ ðn� 2ÞC þ 4L=n,
whereas for the second FNE (for Fs) CostðSn;~aFNE2Þ ¼
C þ ðn� 1ÞL=n. Thus, CostðSn;~aFNE1Þ � CostðSn;~aFNE2Þ ¼
ðn� 3ÞC � ðn� 5ÞL=n > 0 as we have chosen C > 5L=ð2nÞ
and as, due to our assumption, n > 3. This concludes the
proof. h
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Reasoning about best and worst Nash equilibria raises
the question of how difficult it is to compute such equilib-
ria. We can generalize the proof given in [2] and show that
computing the most economical and the most expensive
FNE is hard for any friendship factor.

Theorem 4.5. Computing the best and the worst pure FNE is
NP-complete for any social matrix F with Fi;j 2 ½0;1�.

Proof. We prove this theorem by a reduction from two
NP-hard problems, VERTEX COVER [17] and INDEPENDENT DOMINAT-

ING SET [15]. Concretely, for the decision version of the prob-
lem, we show that answering the question whether there
exists a FNE costing less than k, or more than k respec-
tively, is at least as hard as solving vertex cover or indepen-
dent dominating set. Note that verifying whether a
proposed solution is correct can be done in polynomial
time, hence the problems are indeed in NP.

Fix some graph G ¼ ðV ; EÞ and set C ¼ 1 and L ¼ n=1:5.
We show that the following two conditions are necessary
and sufficient for a FNE: (a) all neighbors of an insecure
player are secure, and (b) every inoculated player has at
least one insecure neighbor. Due to our assumption that
C > L=n, Condition (b) is satisfied in all FNE. To see that
Condition (a) holds as well, assume the contrary, i.e., an
attack component of size at least two. An insecure player pi

in this attack component bears the cost ki=nLþ
P

pj2CsecðpiÞ

Fi;j � C þ
P

pj2CsecðpiÞFi;j � ki=nLÞ. Changing its strategy reduces

its cost by at least Di ¼ ki=nLþ
P

pj2 CsecðpiÞFi;jki=nL� C�P
pj2CsecðpiÞFi;jðki � 1Þ=n� L ¼ ki=nLþ

P
pj2CsecðpiÞFi;j

1
n L� C. By

our assumption that ki P 2 it holds that Di > 0, resulting in
pi becoming secure. Hence, Condition (a) holds in any FNE
as well. For the opposite direction assume that an insecure
player wants to change its strategy even though (a) and (b)
are true. This is impossible because in this case (b) would
be violated because this player does not have any insecure
neighbors. An inoculated player would destroy (a) by
adopting another strategy. Thus (a) and (b) are sufficient
for a FNE.

We now argue that G has a vertex cover of size k if and
only if the virus game has a FNE with k or fewer secure
players, or equivalently an equilibrium with social cost at
most Ckþ ðn� kÞL=n, as each insecure player must be in a
component of size 1 and contributes exactly L=n expected
cost. Given a minimal vertex cover V 0# V , observe that
installing the software on all players in V 0 satisfies Condi-
tion (a) because V 0 is a vertex cover and (b) because V 0 is
minimal. Conversely, if V 0 is the set of secure players in a
FNE, then V 0 is a vertex cover by Condition (a) which is
minimal by Condition (b).

For the worst FNE, we consider an instance of the
independent dominating set problem. Given an indepen-
dent dominating set V 0, installing the software on all
players except the players in V 0 satisfies Condition (a)
because V 0 is independent and (b) because V 0 is a domi-
nating set. Conversely, the insecure players in any FNE are
independent by Condition (a) and dominating by Condition
(b). This shows that G has an independent dominating set

of size at most k if and only if it has a FNE with at least
n� k secure players. h

5. Windfall for special graphs

While the last section has presented general results on
equilibria in social networks and the Windfall of Friend-
ship, we now present upper and lower bounds on the
Windfall of Friendship for concrete topologies, namely
the complete graph Kn and the star graph Sn. In the follow-
ing, we will focus on the uniform friendship model (i.e.,
UFNE equilibria) where Fi;j ¼ F, for all neighboring players
pi and pj.

5.1. Complete graphs

In order to initiate the study of the Windfall of Friend-
ship, we consider a very simple topology, the complete
graph Kn where all players are connected to each other. First
consider the classic setting where players do not care about
their neighbors (F ¼ 0). We have the following result:

Lemma 5.1. In the graph Kn, there are two Nash equilibria
with social cost

NE1 : CostðKn;~aNE1Þ ¼ Cðn� dCn=Le þ 1Þ þ L=nðdCn=Le � 1Þ2

and

NE2 : CostðKn;~aNE2Þ ¼ Cðn� bCn=LcÞ þ L=nðbCn=LcÞ2

If dCn=Le � 1 ¼ bCn=Lc, there is only one Nash equilibrium.

Proof. Let ~a be a NE. Consider an inoculated player pi and
an insecure player pj, and hence caði;~aÞ ¼ C and caðj;~aÞ ¼
L kj

n , where kj is the total number of insecure players in
Kn. In order for pi to remain inoculated, it must hold that
C 6 ðkj þ 1ÞL=n, so kj P dCn=L� 1e; for pj to remain inse-
cure, it holds that kjL=n 6 C, so kj 6 bCn=Lc. As the total
social cost in Kn is given by CostðKn;~aÞ ¼ ðn� kjÞCþ k2

j L=n,
the claim follows. h

Observe that the equilibrium size of the attack compo-
nent is roughly twice the size of the attack component of
the social optimum, as CostðKn;~aÞ ¼ ðn� kjÞC þ k2

j L=n is
minimized for kj ¼ Cn=2L.

Lemma 5.2. In the social optimum for Kn, the size of the
attack component is either 1

2 Cn=L
� �

or 1
2 Cn=L
	 


, yielding a
total social cost of

CostðKn;~aOPTÞ ¼ n� 1
2

Cn=L
� �� �

C þ 1
2

Cn=L
� �� �2 L

n

or

CostðKn;~aOPTÞ ¼ n� 1
2

Cn=L
 �� �

C þ 1
2

Cn=L
 �� �2 L

n
In order to compute the Windfall of Friendship, the

friendship Nash equilibria in social networks have to be
identified.
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Lemma 5.3. In Kn, there are two friendship Nash equilibria
with social cost

FNE1 : CostðKn;~aFNE1Þ ¼ C n� Cn=L�1
1þ F

 �� �
þ L=n

Cn=L�1
1þ F

 �� �2

and

FNE2 : CostðKn;~aFNE2Þ ¼ C n� Cn=Lþ F
1þ F

� �� �
þ L=n

Cn=Lþ F
1þ F

� �� �2

If dðCn=L� 1Þ=ð1þ FÞe ¼ bðCn=Lþ FÞ=ð1þ FÞc, there is only
one FNE.

Proof. According to Lemma 4.1, in a FNE, a player pi

remains secure if otherwise the component had size at
least ki ¼ kj þ 1 P ðCn=Lþ Fk2

j Þ=ð1þ FkjÞ where kj is the
number of insecure players. This implies that
kj P dðCn=L� 1Þ=ð1þ FÞe. Dually, for an insecure player pj

it holds that kj 6 ðCn=Lþ Fðkj � 1Þ2Þ=ð1þ Fðkj � 1ÞÞ and
therefore kj 6 bðCn=Lþ FÞ=ð1þ FÞc. Given these bounds
on the total number of insecure players in a FNE, the social
cost can be obtained by substituting kj in CostðKn;~aÞ ¼
ðn� kjÞC þ k2

j L=n. As the difference between the upper
and the lower bound for kj is at most 1, there are at most
two equilibria and the claim follows. h

Given the characteristics of the different equilibria, we
have the following theorem.

Theorem 5.4. In Kn, the Windfall of Friendship is at most
!ðF; IÞ ¼ 4=3 for an arbitrary network size. This is tight in the
sense that there are indeed instances where the worst FNE is a
factor 4=3 better than the worst NE.

Proof. Upper Bound. We first derive the upper bound on
!ðF; IÞ.

!ðF; IÞ ¼ CostðKn;~aNEÞ
CostðKn;~aFNEÞ

6
CostðKn;~aNEÞ
CostðKn;~aOPTÞ

6
ðn� dCn=L� 1eÞC þ ðbCn=LcÞ2 L

n

n� 1
2 Cn=L

� �
C þ 1

2 Cn=L
� �2 L

n

as the optimal social cost (cf Lemma 5.2) is smaller or equal
to the social cost of any FNE. Simplifying this expression
yields

!ðF; IÞ 6 nð1� C=LÞC þ C2n=L

n 1� 1
2 C=L

� �
C þ 1

4 C2n=L
¼ 1

1� 1
4 C=L

This term is maximized for L ¼ C, implying that
!ðF; IÞ 6 4=3, for arbitrary n.

Lower Bound. We now show that the ratio between the
equilibria cost reaches 4=3.

There exists exactly one social optimum of cost
Ln=2þ ðn=2Þ2L=n ¼ 3n � L=4 for even n and C ¼ L by Lemma
5.2. For F ¼ 1 this is also the only friendship Nash
equilibrium due to Lemma 5.3. In the selfish game however
the Nash equilibrium has fewer inoculated players and is of

cost n � L (see Lemma 5.1). Since these are the only Nash
equilibria they constitute the worst equilibria and the ratio
is

!ðF; IÞ ¼ CostðKn;~aNEÞ
CostðKn;~aFNEÞ

¼ n � L
3=4n � L ¼ 4=3 �

To conclude our analysis of Kn, observe that friendship
Nash equilibria always exist in complete graphs, and that
in environments where one player at a time is given the
chance to change its strategy in a best response manner
quickly results in such an equilibrium as all players have
the same preferences.

5.2. Star

While the analysis of Kn was simple, it turns out that al-
ready slightly more sophisticated graphs are challenging.
In the following, we investigate the Windfall of Friendship
in star graphs Sn. Note that in Sn, the social welfare is max-
imized if the center player inoculates and all other players
do not. The total inoculation cost then is C and the attack
components are all of size 1, yielding a total social cost of
CostðSn;~aOPTÞ ¼ C þ ðn� 1ÞL=n.

Lemma 5.5. In the social optimum of the star graph Sn, only
the center player is inoculated. The social cost is

CostðSn;~aOPTÞ ¼ C þ ðn� 1ÞL=n:
The situation where only the center player is inoculated

also constitutes a NE. However, there are more Nash
equilibria.

Lemma 5.6. In the star graph Sn, there are at most three
Nash equilibria with social cost

NE1 : CostðSn;~aNE1Þ ¼ C þ ðn� 1ÞL=n

NE2 : CostðSn;~aNE2Þ ¼ Cðn� dCn=Le þ 1Þ þ L=nðdCn=Le � 1Þ2

and

NE3 : CostðSn;~aNE3Þ ¼ Cðn� bCn=LcÞ þ L=nðbCn=LcÞ2

If Cn=L R N, only two equilibria exist.

Proof. If the center player is the only secure player, chang-
ing its strategy costs L but saves only C. When a leaf player
becomes secure, its cost changes from L=n to C. These
changes are unprofitable, and the social cost of this NE is
CostðSn;~aNE1Þ ¼ C þ ðn� 1ÞL=n.

For the other Nash equilibria the center player is not
inoculated. Let the number of insecure leaf players be n0. In
order for a secure player to remain secure, it must hold
that C 6 ðn0 þ 2ÞL=n, and hence n0 P dCn=L� 2e. For an
insecure player to remain insecure, it must hold that
ð1þ n0ÞL=n 6 C, thus n0 6 bCn=L� 1c. Therefore, we can
conclude that there are at most two Nash equilibria, one
with dCn=L� 1e and one with bCn=Lc many insecure
players. The total social cost follows by substituting n0 in
the total social cost function. Finally, observe that if
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Cn=L 2 N and Cn=L > 3, all three equilibria exist in parallel;
if Cn=L R N, NE2 and NE3 become one equilibrium. h

Let us consider the social network scenario again.

Lemma 5.7. In Sn, there are at most three friendship Nash
equilibria with social cost

FNE1 : CostðSn;~aFNE1Þ ¼Cþðn�1ÞL=n

FNE2 : CostðSn;~aFNE2Þ ¼Cðn�dCn=L�Feþ1ÞþL=nðdCn=L�Fe�1Þ2

and

FNE3 : CostðSn;~aFNE3Þ ¼Cðn�bCn=L�FcÞþL=nðbCn=L�FcÞ2

If Cn=L� F R N, at most 2 friendship Nash equilibria exist.

Proof. First, observe that having only an inoculated center
player constitutes a FNE. In order for the center player to
remain inoculated, it must hold that C þ Fðn� 1ÞL 1

n 6

n � L=nþ Fðn� 1ÞL n
n ¼ Lþ Fðn� 1ÞL. All leaf players remain

insecure as long as L=nþ FC 6 C þ FC () L=n 6 C. These
conditions are always true, and we have CostðSn;~aFNE1Þ ¼
C þ ðn� 1ÞL=n. If the center player is not inoculated, we
have n0 insecure and n� n0 � 1 inoculated leaf players. In
order for a secure leaf player to remain secure, it is neces-
sary that C þ F n0þ1

n L 6 n0þ2
n Lþ F n0þ2

n L, so n0 P dCn=L� Fe�
2. For an insecure leaf player, it must hold that n0þ1

n Lþ
F n0þ1

n L 6 C þ F n0
n L, so n0 6 bCn=L� Fc � 1. The claim fol-

lows by substitution. h

Note that there are instances where FNE1 is the only
friendship Nash equilibrium. We already made use of this
phenomenon in Section 4 to show that !ðF; IÞ is not mono-
tonically increasing in F. The next lemma states under
which circumstances this is the case.

Lemma 5.8. In Sn, there is a unique FNE equivalent to the
social optimum if and only if

bCn=L� Fc � 1
2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Fð1� Cn=LÞ

p
� 1

� �� �
� 2 P 0

Proof. Sn has only one FNE if and only if every (insecure)
leaf player is content with its chosen strategy but the inse-
cure center player would rather inoculate. In order for an
insecure leaf player to remain insecure we have n0 6

bCn=L� 1� Fc and the insecure center player wants to
inoculate if and only if

C þ Fðn� n0 � 1ÞC þ Fn0
1
n

L < ðn0 þ 1Þ L
n
þ Fðn� n0 � 1ÞC

þ Fn0
n0 þ 1

n
L

which is equivalent to Fn2
0 þ n0 þ 1� Cn=L > 0. This im-

plies that n0 P b 1
2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Fð1� Cn=LÞ

p
� 1

� �
þ 1c. Therefore

there is only one FNE if and only if there exists an integer
n0 such that 1

2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Fð1� Cn=LÞ

p
� 1

� �
þ 1

� �
6 n0 6

bCn=L� 1� Fc. h

Given the characterization of the various equilibria, the
Windfall of Friendship can be computed.

Theorem 5.9. If 1
2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Fð1� Cn=LÞ

p
� 1

� �� �
þ 2� bCn=

L� Fc 6 0, the Windfall of Friendship is

!ðF; IÞP ðn� 2ÞC þ L=n
C þ ðn� 1ÞL=n

; else !ðF; IÞ 6 nþ 1
n� 3

Proof. According to Lemma 5.8, the friendship Nash equi-
librium is unique and hence equivalent to the social opti-
mum if

bCn=L� Fc � 1
2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Fð1� Cn=LÞ

p
� 1

� �� �
� 2 P 0

On the other hand, observe that there always exist sub-
optimal Nash equilibria where the center player is not
inoculated. Hence, we have

!ðF; IÞ ¼ CostðSn;~aNEÞ
CostðSn;~aFNEÞ

¼ CostðSn;~aEÞ
CostðSn;~aOPTÞ

P
ðn� bCn=L� 1cÞC þ ðdCn=Le � 1Þ2L=n

C þ ðn� 1ÞL=n

P
Cðn� 2Þ þ L=n
C þ ðn� 1ÞL=n

Otherwise, i.e., if there exist friendship Nash equilibria
with an insecure center player, an upper bound for the
WoF can be computed

!ðF; IÞ ¼ CostðSn;~aNEÞ
CostðSn;~aFNEÞ

6
ðn� dCn=L� 1eÞC þ ðbCn=LcÞ2L=n

ðn� bCn=L� FcÞC þ ðdCn=L� 1� FeÞ2L=n

6
ðnþ 1ÞC

nC þ FC � 2Cð1þ FÞ þ ð1þ FÞ2L=n

<
ðnþ 1ÞC

Cðnþ F � 2ð1þ FÞÞ <
nþ 1
n� 3

�

Theorem 5.9 reveals that caring about the cost incurred
by friends is particularly helpful to reach more desirable
equilibria. In large star networks, the social welfare can
be much higher than in Nash equilibria: in particular, the
Windfall of Friendship can increase linearly in n, and hence
indeed be asymptotically as large as the Price of Anarchy.
However, if bCn=L� Fc � 1

2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Fð1� Cn=LÞ

p
� 1

� �� �
�

2 P 0 does not hold, social networks are not much better
than purely selfish systems: the maximal gain is constant.

Finally observe that in stars friendship Nash equilibria
always exist and can be computed efficiently (in linear
time) by any best response strategy.

5.3. Discussion

This section has focused on a small set of very simple
topologies only and we regard the derived results as a first
step towards more complex graph classes; we will discuss
Kleinberg and Facebook networks in more detail in the
simulation section (Section 8).
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Nevertheless, our findings have some implications for
general topologies already. For example, we could show
that even in simple graphs such as the star graph, the
Windfall of Friendship can assume all possible values, from
constant ratios up to ratios linear in n. This is asymptoti-
cally maximal for general graphs as well since the Price
of Anarchy is bounded by n [2].

Finally, note that we focused on the worst equilibria,
and the situation looks quite different for the best equilib-
ria. In fact, it is easy to see that in the star network, the cen-
ter node will always inoculate in the best equilibrium. We
do not explore best equilibria further in this article; for
some insights on the distribution of ‘‘average equilibria’’,
we refer the reader to the simulation section.

6. The relative friendship model

Let us now focus on the relative friendship model RFNE.
We will highlight some interesting commonalities and dif-
ferences between the UFNE and the RFNE model.

First, recall that the relative perceived individual cost of a
player pi is defined as

crði;~aÞ ¼ caði;~aÞ þ F �
P

pj2CðpiÞcaðj;~aÞ
jCðpiÞj

:

In the following, we write c0
r ði;~aÞ to denote the relative

perceived cost of an insecure player pi and c1
r ði;~aÞ for the

relative perceived cost of an inoculated player.
While most results for general friendship equilibria still

hold, there is a crucial difference. Namely, the phenome-
non of a non-monotonic welfare increase with larger F
does no longer hold in the star graph Sn. To see this, note
that there are only at most two distinct RFNE in Sn (apart
from the trivial situations where all players are either inse-
cure or secure): the ‘‘good equilibrium’’ where the center
player is secure and all the leave players insecure, and
the ‘‘bad equilibrium’’ where the center is insecure and a
fraction of the leaves secure. The following theorem shows
that the example of Theorem 4.4 for FNE is no longer true
for RFNE.

Theorem 6.1. The Windfall of Friendship is monotonic in F
for Sn under the relative cost model.

Proof. Consider a friendship factor F. Clearly, the equilib-
rium where only the center player is secure always exists
(w.l.o.g., we focus on ‘‘reasonable values’’ C and L). When
is there an equilibrium where the center is insecure? Con-
sider such an equilibrium where x leave players are inse-
cure. In order for this to constitute an equilibrium, it
must hold for the center player that:

ðxþ 1ÞL
n

þ F
n� 1

� ðxþ 1ÞL
n

þ F � C � ðn� x� 1Þ
n� 1

< C þ F
n� 1

� x � L
n
þ F � C � ðn� x� 1Þ

n� 1

() ðxþ 1ÞL
n

þ F
n� 1

� L
n
< C

On the other hand, for an insecure leaf player we have:

ðxþ 1ÞL
n

þ FLðxþ 1Þ
n

< C þ FLx
n
() ðxþ 1ÞL

n
þ FL

n
< C

Unlike in the FNE scenario, the center player is less likely to
inoculate, i.e., leaf players inoculate first. Thus, a larger F
can only render the existence of such an equilibrium more
unlikely. h

Finally, note that the hardness result of Theorem 4.5 is
also applicable to relative FNEs.

Theorem 6.2. Computing the best and the worst pure RFNE
is NP-complete for any F 2 ½0;1�.

Proof. (Sketch) Again, deciding the existence of a RFNE
with cost less than k or more than k is at least as hard as
solving the vertex cover or independent dominating set prob-
lem, respectively. Note that verifying whether a proposed
solution is correct can be done in polynomial time, hence
the problems are indeed in NP. The proof is similar to The-
orem 4.5, and we only point out the difference for Condi-
tion (a): an insecure player pi in the attack component
bears the cost ki=n � Lþ F j CsecðpiÞ j Cþ j CsecðpiÞ j �ðkiL=nÞ=
j CðpiÞ j, and changing its strategy reduces the cost by
at least Di ¼ kiL=nþ F j CsecðpiÞ j kiL=ðj CðpiÞ j nÞ � C � F j
CsecðpiÞ j ðki � 1ÞL=ðj CðpiÞ j nÞ ¼ kiL=n� C þ FL j CsecðpiÞ j =
ðj CðpiÞ j nÞ. By our assumption that ki P 2, and hence
j CsecðpiÞ jP 1, it holds that Di > 0, resulting in pi becoming
secure. h

7. Convergence

According to Lemma 4.2, the social context can only im-
prove the overall welfare of the players, both in the uni-
form and the relative friendship model. However, there
are implications beyond the players’ welfare in the equilib-
ria: in social networks, the dynamics of how the equilibria
are reached is different.

In [2], Aspnes et al. have shown that best-response
behavior quickly leads to some pure Nash equilibrium,
from any initial situation. Their potential function argu-
ment however relies on a ‘‘symmetry’’ of the players in
the sense insecure players in the same attack component
have the same cost. This no longer holds in the social con-
text where different players take into account their neigh-
borhood: a player with four insecure neighbors may be
more likely to inoculate than a player with just one, secure
neighbor. Thus, the distinction between ‘‘big’’ and ‘‘small’’
components used in [2] cannot be applied, as different
players require a different threshold.

Nevertheless, convergence can be shown in certain sce-
narios. For example, the hardness proofs of Lemmas 4.5
and 6.2 imply that equilibria always exist in the corre-
sponding areas of the parameter space, and it is easy to
see that the equilibria are also reached by best-response
sequences. Similarly, in the star and complete networks,
best-response sequences converge in linear time. Linear
convergence time also happens in more complex, cyclic
graphs. For example, consider the cycle graph Cn where
each player is connected to one left and one right neighbor

230 D. Meier et al. / Computer Networks 62 (2014) 221–236



in a circular fashion. To prove best response convergence
from arbitrary initial states, we distinguish between an ini-
tial phase where certain structural invariants are estab-
lished, and a second phase where a potential function
argument can be applied with respect to the view of only
one type of players. We will use the term round to refer
to a sequence of best-response decisions where each
player could update its decision exactly once (round-
robin).

Theorem 7.1. From any initial state in the cycle graph Cn,
any round-robin best-response scheme results in an equilib-
rium after Oð1Þ rounds, both in case of uniform and relative
friendship equilibria and for any F.

Proof. After two rounds where each player is given the
chance to make a best response twice (at most 2n changes),
it holds that an insecure player p1 which is adjacent to a
secure player p2 cannot become secure: since p1 preferred
to be insecure at some time t, the only reason to become
secure again is the event that a player p3 becomes insecure
in p1’s attack component at time t0 > t; however, since p1

has a secure neighbor p2 and hence p3 can only have more
insecure neighbors than p1; p3 cannot prefer a larger
attack component than p1, which yields a contradiction
to the assumption that p1 becomes secure while its neigh-
bor p2 is still secure. Moreover, by the same arguments,
there cannot be three consecutive secure players.

Therefore, in the best response rounds after the two
initial ones, there are the following cases. Case (A): a
secure player having two insecure neighbors becomes
insecure; Case (B): a secure player with one secure
neighbor becomes insecure; and Case (C): an insecure
player with two insecure neighbors becomes secure.

In order to prove convergence, the following potential
function U is used:

Uð~aÞ ¼
X

A2Sbigð~aÞ
jAj �

X
A2Ssmallð~aÞ

jAj

where the attack components A in Sbig contain more than
t ¼ nC=ðFLÞ � L=F þ 1 players and the attack components
A in Ssmall contain at most t players in case of uniform
friendship equilibria; for relative friendship equilibria we
use t ¼ 2Cn=ðFLÞ � 2L=F þ 1. In other words, the threshold
t to distinguish between small and big components is cho-
sen with respect to players having two insecure neighbors;
in case of uniform FNEs:

C þ F � L � ðt � 1Þ
n

¼ t � L
n
þ 2F � L � t

n
() Cn

FL
� L

F
þ 1 ¼ t

and in case of relative FNEs:

C þ F=2 � L � ðt � 1Þ
n

¼ t � L
n
þ F � L � t

n
() 2Cn

FL
� 2L

F
þ 1 ¼ t

Note that it holds that �n 6 Uð~aÞ 6 n;8~a. We now show
that Case (A) and (C) reduce Uð~aÞ by at least one unit in
each best response. Moreover, Case (B) can increase the
potential by at most one. However, since we have shown
that Case (B) incurs less than n times, the claim follows
by an amortization argument. Case (A): In this case, a

new insecure player p1 is added to an attack component
in Ssmall. Case (B): A new insecure player p1 is added to an
attack component in Ssmall or to an attack component in
Sbig (since p1 is ‘‘on the edge’’ of the attack component, it
prefers a larger attack component). Case (C): An insecure
player is removed from an attack component in Sbig . h

The proof of Theorem 7.1 can be adapted to show linear
convergence in general networks where players have de-
gree at most two. In order to gain deeper insights into
the convergence behavior of other graph classes, we con-
ducted several experiments described (among many other
findings), in the following section.

8. Simulations

We complement our formal worst-case analysis with a
simulation study, and investigate the equilibria and con-
vergence times on larger social networks on average. Fur-
thermore we initiate discussions on robustness and
fairness aspects.

8.1. Methodology

To study the virus inoculation game in more complex
social networks, we generated graphs according to the
Kleinberg model [21]. The reason for choosing Kleinberg
graphs is that they exhibit the small-world property and
are frequently used to model social networks. Concretely,
Kleinberg graphs with n2 nodes are based on a n� n toroi-
dal lattice; each node u has four local connections, one to
each of its neighbors. In addition, one long range connec-
tions to some node v where v is chosen randomly accord-
ing to probability proportional to dðu;vÞ�a, where dðu;vÞ
is the lattice distance between u and its long-range contact
v, and where a is the so-called clustering exponent. Previ-
ous studies have shown that a clustering exponent of
a ¼ 2:0 is most appropriate [21]. We repeat all our exper-
iments 100 times on different Kleinberg graphs.

In addition, we also run some experiments on a 252-
node connected subgraph of Facebook (obtained from
[37]). The Facebook graph is less symmetric than the Klein-
berg graph, in the sense that degrees, densities, connectiv-
ity, etc. exhibit a higher variance over the graph (see also
Fig. 2). In the following, if not stated otherwise, plots are
shown for Kleinberg graphs only: their regular structure
simplifies the interpretation of the simulation results and
hence provides interesting insights into the convergence
behavior and the nature of the equilibria. In particular, as
we will see, despite the symmetric topology, the variance
of the size of attack components is high and the cost can
be distributed unfairly among players.

8.2. Equilibria and convergence

A first takeaway from our simulations is that in the
thousands of experiments we conducted, we did not
encounter a single instance which did not converge; how-
ever, a formal proof for (or against) the existence of equi-
libria remains an open research question. Moreover, our

D. Meier et al. / Computer Networks 62 (2014) 221–236 231



experiments indicate that the initial configuration (i.e., the
set of secure and insecure players) as well as the relation-
ship of L to C typically has a negligible effect on the conver-
gence time, and hence, unless stated otherwise, the
following experiments assume an initially completely inse-
cure network and C ¼ 1 and L ¼ 4.

8.3. Average Windfall of Friendship

All our experiments showed a positive Windfall of
Friendship that increases monotonically in F, both for the
relative and the uniform friendship model. Fig. 3 shows a

typical result for Kleinberg graphs. Maybe surprisingly, it
turns out that the Windfall of Friendship is often not due
to a higher fraction of secure players, but rather the fact
that the secure players are located at strategically more
beneficial locations (see also Fig. 4). We can conclude that
there is a Windfall of Friendship not only for the worst but
also for ‘‘average equilibria’’.

The boxplots in Fig. 5 give a more detailed picture of the
cost for F 2 f0;1g. The overall cost of pure NE is typically
higher than the cost of RFNE which is in turn higher than
the cost of UFNE.

8.4. Convergence time

Besides social cost, we are mainly interested in conver-
gence times. In the following, we will consider the conver-
gence time in best response rounds until an equilibrium is
reached; in one round, each player makes one best re-
sponse. We find that while the convergence time typically
increases already for a small F > 0, the magnitude of F
plays a minor role. Fig. 6 shows the typical convergence
times in best response rounds as a function of F on Klein-
berg graphs. Notice that the convergence time more than
doubles when changing from the selfish to the social mod-
el but is roughly constant for all values of F.

The boxplots in Fig. 7 provide a more thorough charac-
terization of the convergence times, for different network
sizes and using one hundred repetitions each (i.e., random
order of best-response sequence). The plots show that

Fig. 2. Degree distribution of Kleinberg graphs with 250 nodes and of Facebook subgraph with 252 nodes.

Fig. 3. Average social cost and average number of secure players as a
function of F, in the FNE resulting from round-robin best response
sequences starting from an initially completely insecure Kleinberg graph.
Note that a FNE with F ¼ 0 is a NE.

Fig. 4. Number of secure players in different models using L ¼ 16: friendship does not imply more secure players, but better locations (blue represents the
results between the median and the 75-percentile, red the results between the median and the 25-percentile). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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runtimes in social settings exhibit quite a high variance,
and that the convergence times to uniform FNEs are usu-
ally higher than the convergence times to relative FNEs;

this may be due to larger dependency of the players’
interactions.

Moreover we found that while the average cost per
node is more or less independent of the starting scenario,
the largest convergence time until an equilibrium is
reached occurs when no nodes are inoculated in the begin-
ning. For example, to find relative equilibria takes 1.9
rounds longer on average when no nodes are inoculated
than when nodes start being inoculated with probability
0.5; this corresponds to an increase of more than 30%
(see Fig. 8 for more details).

8.5. Robustness

As already observed in Fig. 4, the number of secure
players does not increase for larger F; rather, a smaller
number of secure players are located a more strategic loca-
tions in the graph. This naturally raises the questions:
What happens if a secure player fails to stop the virus
propagation? Are friendship equilibria less robust? We
conducted experiments studying the consequences of sup-
posedly secure nodes forwarding the virus. More precisely
we analyzed the attack component size and the cost before
and after the making 50 secure nodes insecure (out of 1000
nodes in the network). On average the difference of the at-
tack component size is rather small, i.e., the best response

Fig. 6. Boxplot of number of best response rounds until convergence to
FNE with L ¼ 4, starting from an initially completely insecure graph (blue
represents the results between the median and the 75-percentile, red the
results between the median and the 25-percentile). (For interpretation of
the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5. Boxplots of social cost in different scenarios. The considered equilibria resulted from round-robin best response sequences starting from an initially
completely insecure graph (blue represents the results between the median and the 75-percentile, red the results between the median and the 25-
percentile). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Boxplot of convergence times for L ¼ 16 with round-robin best response sequences from initially completely insecure graph.
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dynamic leads to a robust equilibrium (Fig. 9). In contrast,
the cost difference is large and grows in F; this indicates
that taking neighbor costs into account to a larger extent
helps to reach equilibria where players in strategically
good locations are inoculated.

8.6. Fairness

Related to the robustness discussion above is the fair-
ness issue: how fair is the distribution of the perceived cost
among the players? Fig. 10 shows a histogram for the num-
ber of players occurring a certain actual cost in the Klein-
berg graph. (Recall from Fig. 2 that the Kleinberg
network is otherwise quite regular.) Note that while in

the considered setting, the actual costs cannot exceed a va-
lue of one unit, independently of F, the average perceived
cost increases with F. In other words, a larger F will in-
crease the fraction of players with a high perceived cost:
the distribution becomes more unfair. Thus, fairness may
constitute another price in the social setting.

Fig. 10 shows a histogram of the actual costs incurred
by different players as a function of F. (Note the logarith-
mic y-axis in the second plot of Fig. 10.) We observe that
a larger F implies a higher perceived cost for some of the
nodes. The Gini Coefficient, measuring the inequality among
the players costs (0 expresses perfect equality), varies be-
tween 7% and 29% for these scenarios, with the perceived
cost being distributed in a fairer way than the actual cost.

Fig. 8. Cost and number best response rounds until convergence for starting scenarios without inoculation compared to starting scenarios where the
probability to be inoculated is 0.5. The cost per node of the found equilibria depends only on F but the convergence complexity is higher if no nodes are
inoculated.

Fig. 9. Differences of average attack component size (left) and cost (right) when making 50 supposedly secure nodes insecure. While the attack component
sizes are not affected by much (although the difference can reach 260 nodes), the cost rises significantly for larger F.

Fig. 10. The fairness price.
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At the same time a higher F results in a higher Gini Coeffi-
cient in both actual and perceived cost, i.e., fairness des-
creases with growing F.

8.7. Impact of social network topology

Finally, we also ran experiments with alternative social
network graphs, namely Facebook networks and Kleinberg
graphs with smaller and larger clustering exponents a.
While many results are qualitatively similar to the ones
presented above for the Kleinberg graph with a ¼ 2, there
are also difference. The main insights from the simulations
on alternative topologies can be summarized as follows:
(1) The Windfall of Friendship is always positive. (2) The
social costs do not depend much on a, i.e., our results are
relatively robust to the social network topology. (3) In con-
trast, the convergence time does depend on the clustering
exponent. In particular, our experiments show that a larger
a yields lower convergence times. For example, a ¼ 3:0
converges up to 50% faster than a ¼ 1:0. (3) As expected,
the higher the clustering exponent, the smaller the number
of secure nodes in the equilibrium.

9. Conclusion

This article presented a framework to study and quan-
tify the effects of game-theoretic behavior in social net-
works. For example, this framework allows us to formally
describe phenomena which are known on an anecdotal le-
vel only. For instance, we find that the Windfall of Friend-
ship is always positive, and that players embedded in a
social context may be subject to longer convergence times.
Moreover, interestingly, we find that the Windfall of
Friendship does not always increase monotonically with
stronger social ties.

We believe that our work opens interesting directions
for future research. We have focused on a virus inoculation
game, and additional insights must be gained by studying
alternative and more general games such as potential
games, or games that do and do not exhibit a Braeßpara-
dox. Also alternative equilibria (e.g., the best equilibria
and the Price of Stability) as well as the implications on
the games’ dynamics need to be investigated in more detail
(e.g., [39]). It may also be interesting to study scenarios
where players care not only about their friends but also,
to a smaller extent, about friends of friends. Finally, in
our model, we so far assumed that the social graph and
the virus propagation graph coincide; in many Internet
networks, the two graphs may differ, and the Windfall of
Friendship is likely to be smaller.

What about practical implications? One intuitive take-
away of our work is that in case of large benefits of social
behavior, it may make sense to design distributed systems
where neighboring players have good relationships. How-
ever, if the resulting convergence times are large and the
price of the dynamics higher than the possible gains, such
connections should be discouraged; moreover, a more so-
cial environment may lead to less robust configurations if
secure players fail. Our game-theoretic tools can be used
to compute these benefits and convergence times, and

may hence be helpful during the design phase of such a
system.
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Appendix A. Differences to EC 2008 Paper

A preliminary version of this work appeared at the ACM
EC 2008 conference [28]. The article at hand extends the
conference paper in the following respects.

1. Generalized friendship: We generalize our results to set-
tings where Fi;j can differ from neighbor to neighbor. In
addition to the case study of uniform friendship, we
introduce a model where the relative importance of a
neighbor decreases with the total number of friends
(new Section 6). The relative friendship model offers
some interesting insights: While friendship is still
always beneficial, we show that the non-monotonicity
result no longer applies: unlike in the uniform friend-
ship model, the Windfall of Friendship can only increase
with stronger social ties. We also show that the best
and worst relative friendship equilibrium is still NP-
hard.

2. Convergence: We initiate the study of convergence
issues (Section 7) in social networks. It turns out that
it takes longer until an equilibrium is reached compared
to purely selfish environments and hence constitutes a
price of friendship. We present a potential function
argument to prove convergence of best-response
sequences in some simple cyclic networks, and perform
a simulation study on Kleinberg and Facebook graphs.

3. Simulations (new Section 8): We report on insights
gained on alternative equilibria reached by best-
response sequences by simulations. We investigate dif-
ferent social networks, and initiate the study of fairness
and robustness aspects.

4. We improve the bound in Theorem 4.4: we show that
non-monotonicity already holds for n > 3 (and not only
for n > 7 as proved in the EC paper).

5. We updated and extended the related work section.
6. Minor improvements in the presentation.
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