
A Tight Lower Bound for Semi-Synchronous
Collaborative Grid Exploration
Sebastian Brandt
ETH Zürich, Switzerland
brants@ethz.ch

Jara Uitto1

ETH Zürich, Switzerland
juitto@ethz.ch

Roger Wattenhofer
ETH Zürich, Switzerland
wattenhofer@ethz.ch

Abstract
Recently, there has been a growing interest in grid exploration by agents with limited capabilities.
We show that the grid cannot be explored by three semi-synchronous finite automata, answering
an open question by Emek et al. [TCS’15] in the negative.

In the setting we consider, time is divided into discrete steps, where in each step, an adver-
sarially selected subset of the agents executes one look-compute-move cycle. The agents operate
according to a shared finite automaton, where every agent is allowed to have a distinct initial
state. The only means of communication is to sense the states of the agents sharing the same
grid cell. The agents are equipped with a global compass and whenever an agent moves, the
destination cell of the movement is chosen by the agent’s automaton from the set of neighboring
grid cells. In contrast to the four agent protocol by Emek et al., we show that three agents do
not suffice for grid exploration.

2012 ACM Subject Classification Computing methodologies → Mobile agents

Keywords and phrases Finite automata, Graph exploration, Mobile robots

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.13

Related Version A full version of the paper is available at [8], https://arxiv.org/abs/1705.
03834.

1 Introduction

Consider the problem of exploring an infinite grid with a set of mobile robots, ants, or agents.
In practical applications, it is often desirable to make use of inexpensive and simple devices and
therefore, a finite automaton is an attractive choice for modeling these agents. Furthermore,
neither reliable communication nor synchronous time is always available and thus, distributed
and non-synchronous solutions are needed. Also exploration models inspired by biology
require these features; for example models for ant foraging assume limited capabilities and
distributed searching. In both settings mentioned above, it is often reasonable to assume
simple means of communication of nearby agents.

1 Partially supported by ERC Grant No. 336495 (ACDC).

© Sebastian Brandt, Jara Uitto, and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brants@ethz.ch
mailto:juitto@ethz.ch
mailto:wattenhofer@ethz.ch
https://doi.org/10.4230/LIPIcs.DISC.2018.13
https://arxiv.org/abs/1705.03834
https://arxiv.org/abs/1705.03834
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

Semi-Synchrony

Recently, there has been a growing interest in studying constant memory agents performing
exploration on an infinite grid. An infinite grid is a natural discrete version of a plane which
disallows the bounded memory agents to make any use of the boundaries of the grid. Emek
et al. [17] introduced a model where the agents are able to communicate by sensing each
other’s states and showed a tight upper bound for the time needed for k agents to find a
treasure2 at distance D. As the first step into the model, let us introduce the way that the
semi-synchrony is defined. The time is divided into discrete time steps, and in each time
step, an adversarially chosen subset of the agents performs a look-compute-move cycle in
parallel. In each cycle, the chosen agents first sense the states of all the other agents in the
same cell and then, determined by their transition function, either stay still or move to an
adjacent grid cell. We point out that in every step, every agent performs the “look” action
before any agent executes their “compute” step, i.e., agents sharing a cell and activated in
the same time step see each other’s states before any of them executes a state transition.
This definition allows an arbitrary discrepancy in the number of steps the agents perform
but ensures that, whenever two agents meet, at least one of them will be able to sense the
presence of the other agent.

All input parameters, such as D and k are unknown to the agents and they are all initially
located in the origin of the grid. Motivated by the fact that ants are able to perform very
precise path integration, it is assumed that the agents are endowed with a global compass.

Previous Results

Following up on the above model, Emek et al. [16] studied the minimum number of agents
needed to explore the infinite grid, where exploring refers to reaching any fixed cell within
(expected) finite time. They showed that three randomized and four deterministic semi-
synchronous agents are enough for the exploration task. We want to point out that the
asynchronous environment in their paper is referred to as semi-synchronous in older litera-
ture [25, 26]. The paper left two open questions:

Can two agents controlled by a randomized FA solve the synchronous or asynchronous
version of the ANTS 3 problem?
Is there an effective FA-protocol for async-ANTS for three agents when no random
bits are available?

Very recently, Cohen et al. solved the first question by showing that two randomized agents
do not suffice [11]. The main result of this paper is a negative answer to the second question:

I Theorem 1. Three semi-synchronous agents controlled by a finite automaton are not
sufficient to explore the infinite grid.

Our result is obtained by solving two technical challenges. First, we carefully design
an adversarial schedule for the agents that, under the assumption that the agents actually
explore the entire grid, forces them to obey a movement pattern with the following property:
There is a fixed width w and fixed slope s auch that at any point in time, all agents are

2 In the deterministic case, exploring the grid and finding a treasure are equivalent. In the randomized
case, considering a treasure is more convenient as the exploration is equivalent to hitting every cell in
expected finite time.

3 The ANTS problem in their context is the same as our grid exploration problem.

S. Brandt, J. Uitto, and R. Wattenhofer 13:3

contained in a band of width w and slope s. Second, we formally show that the agents
cannot encode a super-constant amount of information in their relative positions. In other
words, while the relative distance can be unbounded and represent an unbounded amount of
information, we can bound the amount of information the agents can infer from their relative
positions. Due to space constraints, most of our proofs are deferred to the full version of the
paper [8].

2 Related Work

Graph exploration is a widely studied problem in the computer science literature. In the
typical setting one or more agents are placed on some node of a graph and the goal is to visit
every node and/or edge of the graph by moving along the edges. There is a wide selection
of variants of graph exploration and one of the standard ways to classify these variants
is to divide them into directed and undirected variants [12, 1]. In the directed model, the
edges of the graph only allow traversing into one direction, whereas in the undirected model,
traversing both ways is allowed. Our work assumes the undirected graph exploration model.

Other typical parameters of the problem are the conditions of a successful exploration and
symmetry breaking mechanisms. Some related works demand that the agents are required to
halt after a successful exploration [13] or that the agents must return to their starting point
after the exploration [3]. From the perspective of symmetry breaking, one characterization
is to break the problem into the case of equipping nodes with unique identifiers [23, 15]
and into the case where nodes are anonymous [9, 24, 5]. Since the memory of our agents
is restricted to a constant amount of bits with respect to the size of the graph, the unique
identifiers are not helpful.

The agents typically operate in look-compute-move cycles, where they first gather the
local information, then perform local computations, and finally, decide to which node they
move. This execution model can be divided into synchronous [26], semi-synchronous [25, 26]
and asynchronous variants [27, 19], referred to as FSYNC, SSYNC, and ASYNC. In the
FSYNC model, all agents execute their cycles simultaneously in discrete rounds. In the
SSYNC model only a subset (not necessarily proper) of the agents is activated in every
round and in the ASYNC model, the cycles are not assumed to be atomic. To avoid
confusion, we refer to the non-synchronous rounds as time steps. In this paper, we consider
the semi-synchronous model. Note that since the ASYNC model is weaker than the SSYNC
model, we directly obtain our lower bound result for the ASYNC model as well.

The standard efficiency measure of a graph exploration algorithm executed in the FSYNC
model is the number of synchronous rounds it takes until the graph is explored [23]. In
the non-synchronous models, this measure is typically generalized to the maximum delay
between activation times of any agent [10]. A widely-studied classic is the cow-path problem,
where the goal of the cow is to find food or a treasure on a line as fast as possible. There is
an algorithm with a constant competitive ratio for the case of a line and in the case of a grid,
a simple spiral search is optimal and the problem has been generalized to the case of many
cows [4, 22]. Some more recent work studied the time complexity of n distributed agents
searching for a treasure in distance D on a grid and a Θ(D/n2 +D) bound was shown in
the case of Turing machines without communication and in the case of communicating finite
automata [18, 17].

Our work does not focus on the time complexity of the problem, but rather on the
computability, i.e, what is the minimum number of agents that are required to find the
treasure. The canonical algorithm in the case of little memory is the random walk, where the

DISC 2018

13:4 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

classic result states that a random walk explores an n-node graph in polynomial time [2]. In
the case of infinite grids, it was shown in a recent paper that, even with a globally consistent
orientation, two randomized agents cannot locate the treasure in finite expected time [11].
By combining this result with previous work [6, 16], it follows that this lower bound is tight.
In the deterministic case, our lower bound of three deterministic semi-synchronous agents
closes the remaining gap in the results of [16].

Another typical measure for efficiency is the number of bits of memory needed per
agent [20, 13]. For example, it was shown by Fraigniaud et al., that Θ(D log ∆) bits are
needed for a single agent to locate the treasure, where D and ∆ denote the diameter and
the maximum degree of the graph, respectively. The memory of our agents is bounded by a
universal constant, independent of any graph parameters.

Work that falls close to our work is the study of graph exploration in labyrinths, i.e.,
graphs that can be seen as 2-dimensional grids, where some subset of the nodes cannot be
entered by the agents. The classic results state that all co-finite (finite amount of cells not
blocked) labyrinths can be explored by two finite automata and an automaton with two
pebbles [7], and that finite labyrinths (finite amount of cells are blocked) can be explored
using one agent with four pebbles [6], where a pebble is a movable marker. Furthermore,
it is known since long that there are finite and co-finite labyrinths where one pebble is not
enough [21] and that no finite set of finite automata can explore all planar graphs [24]. More
recently, it was shown that Θ(log logn) pebbles for an agent with Θ(log logn) memory is
the right answer for general graphs [14]. Notice that since we do not assume synchronous
communication between agents and a pebble can always be simulated by a finite automaton,
our result also yields the same bound for the pebble model.

3 Preliminaries

3.1 The Model
The model we use is the same as in [16]. We consider a group of n agents whose task is to
explore every cell of the infinite 2-dimensional grid where a cell is considered as explored
when it has been visited by at least one of the agents. We identify each cell of the grid with
a pair of integers, i.e., the grid can be considered as Z2, with two cells being neighbors if and
only if they differ in one coordinate by exactly 0 and in the other coordinate by exactly 1.

In the beginning, all agents are placed in the same cell, called the origin. W.l.o.g., we
will assume that the origin has the coordinates (0, 0). For the agents, all cells, including the
origin, are indistinguishable; in particular, they do not have access to the coordinates of the
cells.

Each agent is endowed with a compass, i.e., each agent is able to distinguish between
the four (globally consistent) cardinal directions in any cell and all agents have the same
notion of those directions. The behavior of each agent is governed by a deterministic finite
automaton. While we allow the agents to use different finite automata, we will assume that
the agents use the same finite automaton but have different initial states. Since in all cases
we consider, n is a constant, the two formulations are equivalent.

The only way in which communication takes place is the following: Each agent senses for
any state q of the finite automaton whether there is at least one other agent in the same cell
in state q. In each step of the execution, an agent moves to an adjacent cell or stays in the
current cell, solely based on its current state in the finite automaton and the subset of states
q for which another agent in state q is present in the current cell.

S. Brandt, J. Uitto, and R. Wattenhofer 13:5

Given the above, we are set to describe our finite automaton more formally. Let Q
denote the set of states, with each agent having its own initial state in Q. The set of input
symbols is 2Q, the set of all subsets of Q, reflecting the fact that for each state from Q an
agent in this state might be present or not in the considered cell. The transition function
δ : Q× 2Q → Q× {0, 1, 2, 3, 4} provides an agent in state q ∈ Q (sensing a subset Q′ ⊆ Q

of states present in the same cell) with a new state q′ ∈ Q and a movement, where 1, 2, 3, 4
stand for the four cardinal directions while 0 indicates that the agent stays in the current
cell.

The SSYNC [25, 26] environment in which the agents perform their exploration is
semi-synchronous. More specifically, we assume that the order of the steps of the agents
is determined by an adversarial scheduler that knows the finite automaton governing the
agents’ behavior. Each step of an agent is a complete look-compute-move cycle, where first
an agent senses for which states agents are present in the current cell, then it applies the
transition function with the sensed states and its own current state as input, and finally it
moves as indicated by the result. Cycles of different agents may occur at the same time, in
which case each of the agents completes the sensing before any of the agents starts to move.
Cycles that do not occur at the same time have no overlap, i.e., the movement performed
in an earlier cycle is completed before the sensing in a later cycle starts. Hence, we may
consider the order of the individual components of the execution as given by a mapping of
the agents’ steps to points in time.

We call such a mapping a schedule. Since the look-compute-move cycles of the agents
are atomic in nature, we can assume w.l.o.g. that the static configurations of the agents on
the grid (including the information about the states they are currently in) occur at integer
points in time t = 0, 1, . . . , and that the steps of the agents determining the transition from
one configuration to a new one take place between these points in time. If an agent’s action
is scheduled between time t and t+ 1, we say, for the sake of simplicity, that the action takes
place at time t. In order to prevent the adversary from delaying a single agent indefinitely,
we adopt the common requirement that each agent is scheduled infinitely often. For our
lower bound we will only use adversarial schedules where no two agents are scheduled at the
same time.

3.2 Definitions and Notation
For the notion of distance between two cells we will use the Manhattan distance. Let
c = (x, y), c′ = (x′, y′) be two cells of the infinite grid. Then, the distance between c and c′
is defined as Dist(c, c′) = |x− x′|+ |y − y′|. Moreover, we call the first coordinate of a cell
the x-coordinate and the second coordinate the y-coordinate. We denote the cell an agent
a occupies at time t by ct(a) = (xt(a), yt(a)). Similarly, we denote the state of the finite
automaton in which agent a is at time t by qt(a). If a = ai for some 1 ≤ i ≤ 3, then we also
write ci

t, x
i
t, y

i
t, q

i
t instead of ct(ai), xt(ai), yt(ai), qt(ai), respectively. Moreover, we denote the

number of states of the finite automaton governing the behavior of the three agents by N .
In our lower bound proof, we show for each finite automaton that three agents governed

by this automaton are not sufficient to explore the grid (or, more precisely, that there is an
adversarial schedule for this automaton under which the agents do not explore every cell
of the grid). In this context, we consider the number N as a constant, which also implies
that the result of applying any fixed polynomial function to N is a constant as well. For the
proof of our lower bound we require another intuitive definition. Let ` be an infinite line in
the Euclidean plane and d some positive real number. Let B be the set of all points in the
plane with integer coordinates and Euclidean distance at most d to `. Let B′ be the set of
all grid cells that have the same coordinates as some point in B. Then we call B′ a band.

DISC 2018

13:6 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

3.3 A Single Agent
Consider a single agent a moving on the grid. Since the number of states of its finite
automaton is finite, a must repeat a state at some point, i.e., there must be points in time
t, t′ such that qt(a) = qt′(a) and qt′′(a) 6= qt(a) for all t < t′′ < t′. As shown in [16], agent a
will then, starting at time t′, repeat the exact behavior it showed starting at time t regarding
both movement on the grid and updating of its state. We call the 2-dimensional vector
ct′(a) − ct(a) = (xt′(a) − xt(a), yt′(a) − yt(a)) the travel vector of agent a (from time t to
time t′). Moreover, we call the time difference t′ − t the travel period.

Note that travel vector and travel period do not depend on the choice of t and t′ (provided
t and t′ satisfy the properties mentioned above). In the case of multiple agents, we use
the same definitions for any time segment where only a single agent is scheduled and does
not encounter another agent. In particular, we can only speak of a travel vector and a
travel period when there are two points in time (in the considered time segment) where the
scheduled agent repeats a state and at both times as well as in the time between, the agent
is alone in its cell.

4 Techniques

In order to show our main result, we use a (large) proof by contradiction. In the following we
give a (very informal and possibly slightly inaccurate) high-level overview of how it proceeds.
Our assumption, that holds throughout the remainder of the paper, is that three agents
actually suffice to explore the grid. From this assumption, we derive a contradiction as
follows:

First, we fix an adversarial schedule for the three agents that has certain advantageous
properties. (We will show that it is already possible to derive a contradiction for this specific
schedule.) Then, using the finiteness of the number of configurations of agents in any bounded
area, we show that for each distance D there is a point in time such that from this time
onwards, there are always at least two agents that have distance at least D. However, since
we can prove that any two agents must meet infinitely often, there must be infinitely many
travels between the two far-away agents (which are not always the same agents). We show
that the vector along which such a travel takes place must have a fixed slope that is the
same for all such travel vectors (from a sufficiently large point in time on). Otherwise, there
would exist two subsequent travels forth and back of different slope, which would imply that
the traveling agent on its way back would miss the agent it is supposed to meet (which is the
agent from whose position the first of the two travels started, roughly speaking). This also
holds if the traveling agent explores some area to the left and right of its travel direction
(during its travel), since the distance D between the two endpoints can be made arbitrarily
large.

The crucial part of the proof is to show that the state of the traveling agent at the end
of its travel does not depend on the exact vector between the start and the endpoint of its
travel, but only on this vector “modulo” some other vector v that is obtained by combining
all of the finitely many possible traveling vectors of the aforementioned fixed slope. Proving
this statement enables us to show that, at the start of a travel, the information 1) about the
states and relative locations “modulo v” of the agents, and 2) about which agent is scheduled
next and which is the traveling agent, are sufficient to determine the same information at
the start of the next travel. Since there are only finitely many of these information tuples
(exactly because they contain only the modulo version of the relative locations), at some
point a tuple has to occur again. Hence, in a sense, the whole configuration consisting of

S. Brandt, J. Uitto, and R. Wattenhofer 13:7

the three agents repeats its previous movement from this point on, at least if one ignores
any movement in the direction of the fixed slope. Thus, in each repetition between two
occurrences of the information tuple, the whole configuration moves by some fixed (and
always the same) vector, which implies that the agents explore “at most half” of the grid.

5 The Schedule

From this section on, we assume that three semi-synchronous agents whose behavior is
governed by a finite automaton suffice to explore the grid. Let a1, a2 and a3 be these agents.
We start our proof by contradiction by specifying a schedule that we assume to be the
adversarial schedule for the remainder of this paper:

We first schedule agent a1 for some number of time steps, then agent a2, then a3, and
then we iterate, again starting with a1. The number of steps an agent is scheduled can vary.
In other words, we can describe our schedule as a sequence

S =
(
S1

1 ,S2
1 ,S3

1 ,S1
2 ,S2

2 ,S3
2 ,S1

3 , . . .
)

of subschedules where in each subschedule Si
j only agent ai is scheduled. The number of

time steps in a subschedule Si
j is determined as follows:

1. If there is a (finite) number u > 0 of time steps after which agent ai is in a cell occupied
by another agent, then the subschedule Si

j ends after umin time steps where umin denotes
the smallest such u.

2. If Case 1 does not apply, but there is a (finite) number u > 0 of time steps after which ai

is in the same state in the same cell as it was at some earlier point in time during Si
j ,

then do the following:
Fix a total order on the state space of ai’s finite automaton. (This total order can be
chosen arbitrarily, but in each application of Case 2 for agent ai the same order has to be
used.) Let q be the smallest state according to this order which ai assumes at least twice
in the same cell (if we scheduled ai indefinitely). Then Si

j ends after the smallest positive
number of steps after which ai is in state q and in a cell where ai would assume q at
least twice. Note that the property that ai would assume q twice implies that it would
repeat the exact behavior between the first and the second assumption of q infinitely
often afterwards, thus iterating through the exact same movement on and on.

3. If none of the two above cases occurs, i.e., ai would move on indefinitely without meeting
any other agent or being in the same state in the same cell as before, then we schedule as
follows: Let (x, y) be the travel vector of ai’s movement, and k the travel period. Then
the subschedule Si

j ends at the first time t (strictly after the start of Si
j) for which the

following property is satisfied:
For each cell (xr

t , y
r
t) occupied by an agent ar, r 6= i, we have that 1) xi

t− xr
t > k if x > 0,

and xi
t − xr

t < −k if x < 0, and 2) yi
t − yr

t > k if y > 0, and yi
t − yr

t < −k if y < 0. The
definition of the travel vector ensures that there is such a (finite) point in time t. Note
that Case 3 can only occur if x 6= 0 or y 6= 04. Moreover, if this case actually occurs,
then the complete subsequent schedule is adapted according to the following special rule
(overriding all of the above): After time t, the two agents ar, r 6= i, are scheduled for
one time step each (in arbitrary order), then agent ai is scheduled for k time steps, i.e.,
exactly one travel period, and then we iterate this new scheduling.

4 If x = y = 0, agent a stays within a constant distance from the cell where the subschedule started.
Hence, if Case 1 does not occur, every state/cell combination possible within this constant distance is
assumed implying that Case 2 must occur.

DISC 2018

13:8 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

q

(a)

q

q

q

(b)

Figure 1 In Figure 1a, Case 2 of our schedule is shown. Note that the agent already stops when
it visits the cell on the right (in state q) for the first time (unless this happens after 0 time steps).
In Figure 1b, we see Case 3 of our schedule. One agent would move arbitrarily far away if scheduled
sufficiently long. By letting this agent move away far enough and then scheduling it sufficiently
often for a long enough period of time, we make sure that it will not interact anymore with any of
the other two agents.

Observe that according to this schedule, the number of time steps a scheduled agent can
stay put in a cell during one of its subschedules is upper bounded by N . Also note that in
each of the three cases, the number of steps in the subschedule is positive (and finite). For
an illustration of Cases 2 and 3, see Figure 1. We now collect a few lemmas that highlight
certain properties of the three cases.

I Lemma 2. Case 3 cannot occur.

Proof. Recall that we assume (globally) that the three agents explore the entire infinite
grid. Assume that Case 3 occurs and let ai denote the agent that would move on indefinitely
without meeting another agent. Then, at the beginning of the first iteration according to the
special rule, the distance of agent ai to any of the other agents is more than k in at least one
(of x- and y-) direction and ai moves away from the agents according to the travel vector.
After each of the other agents makes a step, this distance is still at least k. Hence, agent
ai cannot encounter one of the other agents during its next k steps, since in total it moves
away from the other agents, according to the specification of Case 3.

The direction of the travel vector also ensures that the distance to the other agents is
again increased to more than k (in at least one direction). Thus, the same arguments hold
for the next iteration, and we obtain by induction that agent ai will never encounter another
agent after the occurrence of Case 3. It follows that, if three agents suffice to explore the
grid, then also a team of two agents and a separate single agent can explore the grid without
any communication between the team and the single agent. From [16], we know that this is
not possible since a team of two agents (hence, also a single agent) can only explore a band
of constant width. J

Following Lemma 2, we will assume in the following that Case 3 does not occur, i.e., each
agent’s subschedule ends because it encounters another agent or because it repeats a pair
state/cell. This allows us to group the possible subschedules of an agent into two categories:
We say that a subschedule Si

j is of type 1 if Si
j ends because of the condition given in Case 1,

and of type 2 if Si
j ends because of the condition given in Case 2.

I Lemma 3. Any subschedule of type 2 consists of at most N time steps.

Proof. Assume for a contradiction that there is a subschedule Si
j of type 2 that consists of

at least N + 1 time steps and starts at some time t. Then, by the pigeonhole principle, there
must be two points in time t < t′ < t′′ ≤ t+N + 1 such that qi

t′ = qi
t′′ . Moreover, it must

also hold that ci
t′ = ci

t′′ since otherwise ai would move according to some non-zero travel
vector (from time t′ onwards) which would imply that Si

j is not of type 2.

S. Brandt, J. Uitto, and R. Wattenhofer 13:9

This implies that if ai’s subschedule would also continue at and after time t+N + 1 on
an empty grid, then ai would cycle through the same movement on and on, starting from
time t′. Hence, if there is a cell c that is visited by ai in some state q in the (continued)
movement after time t′′, then there must also be a point in time before t′′ (during Si

j) at
which ai visits c in state q. It follows from the definition of our schedule that Si

j ends before
time t′′, yielding a contradiction to our assumption. J

I Lemma 4. Any subschedule Si
j of type 1, where agent ai ends in the same cell from which

it started, consists of at most N(2N + 1) time steps. More generally, any subschedule Si
j

of type 1, where ai ends in a cell of distance at most D from the cell from which it started,
consists of at most N(2N + 1 +D) time steps.

Proof. We start by proving the special case where ai ends in the same cell from which it
started. Suppose for a contradiction that there is a subschedule Si

j as described in the lemma
that consists of more than N(2N + 1) time steps. Let t and u denote the points in time
when Si

j starts and ends, respectively. Since ai does not encounter any other agent between
time t and time u, it behaves like a single agent on an empty grid between t and u. In
particular, there is a travel vector (x, y) of agent ai from time t + 1 to time u − 1 since
N(2N + 1)− 1 > N .

For reasons of symmetry, we can assume w.l.o.g. that x > 0 and y ≥ 0. Note that
x = 0 = y is not possible since in that case ai would cycle through the same (cyclic)
movement over and over without meeting any other agent, which would imply that Si

j is not
of type 1. Let p be the travel period which, according to its definition, is at most N . Let q
be the state whose second occurrence during Si

j (excluding the occurrence of the state at the
beginning of Si

j) comes earliest. Let t′ be the time when q occurs for the first time. Since
t′ ≤ t+N , we know that xi

t′ ≥ xi
t −N .

Now, as in each travel period ai increases the x-coordinate of the cell it occupies by at
least 1, it follows that at time t′ + 2N · p the x-coordinate of the cell ai occupies is at least
xi

t +N . Furthermore, since in each further travel period agent ai would advance by at least
one cell in (positive) x-direction in total and p ≤ N , after time t′ + 2N · p agent ai will never
have an x-coordinate of less than xi

t + 1, i.e., it will never reach ci
t then. But ai also cannot

have visited ci
t(= ci

u) between time t+ 1 and t′ + 2N · p since t′ + 2N · p ≤ t+N(2N + 1)
and we assumed that Si

j consists of more than N(2N + 1) time steps. Thus, we obtain a
contradiction, which proves the first lemma statement.

For the more general second statement, by an analogous proof we obtain that after time
t′ + 2N · p+D · p agent ai will never have an x-coordinate of less than xi

t + 1 +D, i.e., it
will never reach ci

u then. But, since t′ + 2N · p+D · p ≤ t+N(2N + 1 +D), ai also cannot
have visited ci

u between time t + 1 and t′ + 2N · p + D · p, under the assumption that Si
j

consists of more than N(2N + 1 +D) time steps. Hence, this assumption must be false, and
the lemma statement follows. J

6 Traveling and Meeting

Having defined and studied the schedule, we now proceed with our lower bound proof as
described in Section 4. The next lemma shows that for each distance there is a point in time
after which the farthest two agents are never closer than this distance.

I Lemma 5. For each distance D there is a time T such that at any time t ≥ T the largest
pairwise distance of the three agents is at least D.

DISC 2018

13:10 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

Figure 2 An example showing a possible movement (red) of an agent whose travel vector is given
by the black arrows. The agent performs the total movement given by the travel vector in at most
N time steps, or more precisely, during one travel period.

Proof. Suppose that the lemma statement is not true. Then there is an infinite sequence T
of points in time such that at each of these points in time the largest pairwise distance of the
three agents is less than D. Since the distances of the agents are less than D at all points in
time from T and the number of states the three agents can be in is finite, it follows that
there must be points in time t, t′ ∈ T such that 1) each agent is in the same state at t and t′,
2) xi

t − x
j
t = xi

t′ − x
j
t′ and yi

t − y
j
t = yi

t′ − y
j
t′ for all i, j ∈ {1, 2, 3}, i 6= j, and 3) the same

agent is scheduled to move next. Since the agents are oblivious of the absolute coordinates
of the grid, this implies that from time t′ on, the agents will repeat the exact behavior they
showed starting at time t. (Note that we use here that the schedule following a configuration
is uniquely determined by the above information.) Hence, at time t′ + (t′ − t) the agents will
again be in the exact same configuration and so on.

Define (x, y) = (xi
t′ − xi

t, y
i
t′ − yi

t), where i = 1 (which implies that this equation also
holds for i = 2, 3). Vector (x, y) describes the total movement of each of the agents during
each of the (repeating) time periods of length t′ − t. It follows that each cell that has not
been explored by time t must be at distance at most t′ − t from some cell that is obtained by
adding a multiple of the vector (x, y) to one cell from {c1

t , c
2
t , c

3
t}; otherwise it will never be

explored. Since each such cell at distance at most t′ − t (which is constant) must lie in a
band of constant width and “direction” (x, y) that contains c1

t , c2
t or c3

t , there are infinitely
many cells that must have been explored before time t. This yields a contradiction. J

For any distance D, we denote by TD the smallest time T for which it holds that at any
time t ≥ T the largest pairwise distance of the three agents is at least D. In the following we
collect a number of useful definitions regarding the meetings of different agents. In particular,
we distinguish between three different types of agents at times when one agent is traveling
from another agent to the far-away agent whose existence is certified by Lemma 5. For an
illustration of how a large distance between agents influences choices of travel vectors, see
Figure 2.

I Definition 6. For any t ≥ 0, we define the meeting set Mt as the set of agents that are
not alone in the cell they occupy, at time t. We call the infinite sequence (M0,M1, . . .) the
meeting sequence. If for a subsequence (Mt,Mt+1, . . . ,Mt+i) of the meeting sequence it holds
that i > 0, Mt 6= ∅ 6= Mt+i and Mt+j = ∅ for all 0 < j < i, then we call the pair (t, t + i)
a meeting pair. Now, let (t, u) be a meeting pair such that |Mt| = 2 = |Mu| and Mt 6= Mu.
Then we call (t, u) a travel meeting pair. Moreover, we call the (uniquely defined) agent a
contained in Mt ∩Mu a traveling agent (for (t, u)), the agent contained in Mt \ {a} a source
agent and the agent contained in Mu \ {a} a destination agent.

In order to continue according to our high-level proof idea from Section 4, we need a few
helping lemmas that highlight properties of the previous definitions. We start with a lemma
that shows an important property of the meeting sequence:

S. Brandt, J. Uitto, and R. Wattenhofer 13:11

I Lemma 7. Each of the three agents is contained in infinitely many of the Mt from the
meeting sequence.

Proof. Suppose that there is an agent ai that is not contained in infinitely many of the Mt,
i.e., there is a point in time u such that ai /∈ Mt for all t ≥ u. Then, starting from time
u, the exploration by the two agents ar, r 6= i is entirely independent of the exploration
by agent ai since they never meet again. Thus, we get a contradiction analogously to the
argumentation in the proof of Lemma 2. J

Next, we study travel meeting pairs more closely. In Lemma 8, we present bounds on the
number of subschedules of the different types of agents in the time frame given by a travel
meeting pair, and examine the types of the subschedules. Afterwards, in Lemma 9, we bound
the number of time steps between two subsequent travel meeting pairs from above. In both
cases, the results only hold from a large enough point in time onwards, but this is sufficient
for our purposes since before that point in time only a constant number of cells were explored.
Note that, in general, we do not attempt to minimize the dependence on N in our bounds as
showing the finiteness of certain parameters is, again, sufficient for our purposes. Instead we
prefer to choose the simplest arguments that lead to the desired finiteness results, even if
they augment the actual bound by a few factors of N .

I Lemma 8. There is a point in time T such that, for each travel meeting pair (t, u) with
t ≥ T , the following properties hold:
1. The traveling agent for (t, u) is scheduled exactly once (for a number of time steps)

between time t and time u.
2. The subschedule of the traveling agent is of type 1 and ends exactly at time u.
3. The source and the destination agent for (t, u) are scheduled at most once (for a number

of time steps).
4. If the source or the destination agent is scheduled, then its subschedule is of type 2.

Proof. Recall the definition of TD for any distance D. Let T ≥ T2N+1, and consider an
arbitrary travel meeting pair (t, u) with t ≥ T and traveling agent ai. Observe that if the
source agent is scheduled between time t and time u, then its subschedules must be of type
2, because the source agent is not contained in the meeting set Mu. Hence, if ai is not
scheduled at all between time t and time u, then the source agent must be scheduled at most
once (because of the specification of our schedule) which implies that its distance from ci

t at
time u is at most N , by Lemma 3. But since in this case ai and the destination agent meet
at ci

t at time u, we obtain a contradiction to the fact that T ≥ T2N+1. Thus, we know that
ai is scheduled at least once between time t and time u.

Now, assume for a contradiction that the first subschedule of ai between time t and time
u is of type 2. This implies that if one would schedule ai on and on, it would repeat a state
in the same (empty) cell after at most N + 1 time steps and then cycle through (a part of)
the same movement it performed before. Hence, even if there are more subschedules for ai

than one (between time t and time u), it will never reach a cell that has a distance of more
than N from ci

t. Since analogous statements hold for the source agent, we know that at time
u the distance between the source agent and the cell where ai and the destination agent
meet is at most 2N which again contradicts our specification of T . Thus, we know that the
first subschedule of ai is of type 1.

It follows that ai’s subschedule ends exactly at time u since the subschedule must end
with ai meeting the destination agent, which also implies that ai is scheduled exactly once
between time t and time u. Moreover, the subschedules of the source and the destination

DISC 2018

13:12 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

agent (if they are scheduled at all between time t and time u) must be of type 2 since (t, u)
is a (travel) meeting pair. Furthermore, by the nature of our schedule, the source and the
destination agent must be scheduled at most once between time t and time u. J

I Lemma 9. (Proof deferred to the full version) There is a point in time T such that the
following holds: If (t, u) and (t′, u′) are travel meeting pairs such that T ≤ t < t′ and there
exists no travel meeting pair (t′′, u′′) with t < t′′ < t′, then t′ − u ≤ 8(N + 1)5.

Using Lemma 9, we show in the following that for any travel meeting pair (t, u), the
information about the states of the agents, which two agents are in the same cell, and who is
scheduled next, all at time u, already uniquely determines a lot of information about the
agents at the starting time of the next travel meeting pair. Again, this result only holds from
a sufficiently large point in time onwards. This concludes our collection of helping lemmas.

I Lemma 10. (Proof deferred to the full version) There is a point in time T such that the
following holds: For any two subsequent travel meeting pairs (t, u), (t′, u′) with T ≤ t < t′,
the tuple (q1

u, q
2
u, q

3
u, a

next
u ,Mu) uniquely determines the tuple (q1

t′ , q
2
t′ , q

3
t′ , c

1
t′−c1

u, c
2
t′−c2

u, c
3
t′−

c3
u, a

next
t′ ,Mt′), where anext

u , resp. anext
t′ , denotes the agent scheduled at time u, resp. t′.

7 The Travel Vector and a Modulo Operation

After collecting the above helping lemmas, we are now all set to formally prove the (remaining)
statements from our proof sketch. Before going through the statements one by one, let us for
convenience define the notion of a travel: Let (t, u) be a travel meeting pair. By Lemma
8, we know that the traveling agent for (t, u) is scheduled exactly once between t and u.
We call the corresponding subschedule (or the movement during that subschedule) a travel.
Recall the definition of travel vector and travel period. Note that a travel only has a travel
vector (and period) if the traveling agent repeats a state (in empty cells) during the travel.
Furthermore, observe that if a travel has a travel vector, then at least one entry of the travel
vector is non-zero, due to the choice of our schedule. We now prove the first of the remaining
statements, namely, that after a certain point in time, any travel vector has the same slope.

I Lemma 11. There is a point in time T and a (possibly negative) ratio r such that each
travel starting at time T or later has travel vector (x, y) with y/x = r. For the sake of
simplicity, assume that r is set to ∞ if x = 0.

Proof. Let T be sufficiently large so that T ≥ TN+2 holds and Lemma 8 and Lemma 9
apply. Then we know that any travel starting at time T or later actually has a travel vector
(and period). Now, consider two travel meeting pairs (t, u) and (t′, u′) with T ≤ t < t′

such that there is no travel meeting pair (t′′, u′′) with t < t′′ < t′. Let (x, y), (x′, y′) be the
travel vectors for the travels corresponding to (t, u) and (t′, u′), respectively. Assume that
y′/x′ 6= y/x, where, again, we set the ratio to ∞ if the denominator is 0. Note that not
both of x and y (or x′ and y′) can be 0. Let c0 and c1 be the cells at which the travel with
travel vector (x, y) starts and ends, respectively, and c′0 and c′1 analogously for the travel
with travel vector (x′, y′).

By the characterization of the travel of a single agent and the fact that the travel
period is always at most N , we know that there are positive integers b and b′ such that
Dist(c1, c0 + b · (x, y)) ≤ N and Dist(c′1, c′0 + b′ · (x′, y′)) ≤ N . Moreover, by Lemma 3
and Lemma 8, the source agent for (t, u) travels at most a distance of N between time t
and u since its subschedule is of type 2 if the agent is scheduled at all. The same holds
for the destination agent for (t′, u′) between time t′ and u′. By Lemma 9, it follows that

S. Brandt, J. Uitto, and R. Wattenhofer 13:13

Dist(c0, c
′
1) ≤ 8(N + 1)5 + 2N (since the source agent for the first of the two travels is the

destination agent for the second) and Dist(c1, c
′
0) ≤ 8(N+1)5. Combining our above distance

observations, we also obtain Dist(c′1, c0 + b · (x, y) + b′ · (x′, y′)) ≤ N + 8(N + 1)5 +N , which
together with Dist(c0, c

′
1) ≤ 8(N + 1)5 + 2N implies Dist(c0, c0 + b · (x, y) + b′ · (x′, y′)) ≤

16(N + 1)5 + 4N .
Let D ≥ N be some positive integer. We now require, additionally to the above

requirements regarding T , that T ≥ TD. Also fix some arbitrary x, y, x′, y′ such that (x, y)
and (x′, y′) are possible travel vectors of a single agent. For a contradiction, assume that
x, y, x′, y′ have the properties specified at the beginning of the proof (which implies that also
all of the above conclusions hold).

At the time when the first of the two considered travels starts there are two agents at c0
and c1 while the last agent is in distance at most N from c0. Hence, the distance between
c0 and c1 is at least D −N . This implies that b · (|x|+ |y|) ≥ Dist(c1, c0) −N ≥ D − 2N .
Analogously, we obtain b′ · (|x′|+ |y′|) ≥ D− 2N . Since x, y, x′, y′ are fixed, we can therefore
make b and b′ arbitrarily large by increasing D. By increasing b and b′, we can in turn make
Dist(c0, c0 +b ·(x, y)+b′ ·(x′, y′)) arbitrarily large, since y′/x′ 6= y/x (which implies that there
is an angle between the two vectors (x, y) and (x′, y′) that is not 0◦ or 180◦). Hence, if D is
sufficiently large, then the above inequality Dist(c0, c0+b·(x, y)+b′ ·(x′, y′)) ≤ 16(N+1)5+4N
is not satisfied anymore, which shows that y′/x′ = y/x.

Note that the magnitude D has to reach for this (in our proof by contradiction) depends
on x, y, x′, y′. However, since the number of possible travel vectors of a single agent is
bounded by the number of states in its finite automaton, we can simply derive a sufficiently
large D for each of the finitely many possible combinations for x, y, x′, y′ and then choose a
T that is larger than all of the TD. J

Note that the exact value of r depends only on the finite automaton governing the
behavior of the three agents. From now on, we denote the ratio whose existence is certified
by Lemma 11 by r. W.l.o.g., we can (and will) assume that r ≥ 0 (and that r 6= ∞), for
reasons of symmetry. Recall that any travel vector has at least one non-zero entry. The next
step on our agenda is essentially to show that the state of an agent at the end of a travel
does not depend on (the full information about) the vector between start and endpoint of
that travel (and other parameters), but only on a reduced amount of information regarding
this vector (and the other parameters). More specifically, the required information about
this vector is the result of applying a certain modulo operation to the vector.

We then proceed by showing that the information about 1) the states of the agents, 2)
their relative locations after applying the modulo operation, 3) which agents shared a cell
most recently, and 4) which agent is scheduled next, at the start of a travel, is enough to
determine the exact same information at the end of the travel. Now, we benefit from the
previous reduction of information due to our modulo operation in the sense that we can
show that there are only constantly many combinations of relative locations of the three
agents (that can actually occur) after applying the modulo operation. This, in turn, implies
that there are only constantly many possibilities for the whole aforementioned information
tuple at the start and end of a travel, which will enable us to prove our main theorem. We
start by defining our modulo operation in Definition 12. Then we show a technical helping
lemma, Lemma 13, which finally enables us to prove the aforementioned relation between
the information tuple at the start and end of a travel in Lemma 14. Note that for technical
reasons, Lemma 14 gives a slightly different statement than indicated above, dealing with
travel meeting pairs instead of travels.

DISC 2018

13:14 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

I Definition 12. Let {(x1, y1), (x2, y2), . . . , (xk, yk)} be the set of travel vectors that the
agents can have if you let one of them explore the grid starting in an arbitrary state (which
clearly is a superset of the actually occurring travel vectors in our multi-agent case). Let R
be the subset of the above set that contains exactly the vectors (xj , yj) that satisfy yj/xj = r.
From now on, denote by x the least common multiple of the |xj | from the vectors in R and
set y := rx. It follows that (x, y) is a (possibly negative) integer multiple of any of the
vectors from R. Note that R cannot be empty since otherwise it is not possible that the
agents explore the entire grid, due to Lemma 7 and Lemma 11.

Now, let w, z be integers and let b be the smallest integer such that w + bx ≥ 0. (This is
well-defined since x > 0, due to r 6=∞.) We define (w, z) (mod (x, y)) := (w + bx, z + by).
For two cells (w′, z′), (w′′, z′′), we define (w′′, z′′)	 (w′, z′) := (w′′−w′, z′′−z′) (mod (x, y)).

Note that Definition 12 ensures that for any (w, z), (w′, z′) where (w′ − w, z′ − z) is a
multiple of (x, y), we have that (w, z) (mod (x, y)) = (w′, z′) (mod (x, y)).

I Lemma 13. Let a be an agent, q a state from a’s finite automaton and c, c′, c′′ cells of the
grid such that the following properties are satisfied:
1. Dist(c, c′) ≥ N and Dist(c′′, c′) ≥ N
2. There is an integer b such that c′′ − c = b · (w, z), where (w, z) is agent a’s travel vector

if it starts in state q.
3. If agent a starts in cell c in state q on an otherwise empty grid, then it arrives at c′ after

finite time.
4. If agent a starts in cell c′′ in state q on an otherwise empty grid, then it arrives at c′

after finite time.

Let q′ denote the state in which a arrives at c′ (for the first time) when starting from c

(in state q), and q′′ the state in which a arrives at c′ (for the first time) when starting from
c′′ (in state q). Then it holds that q′ = q′′.

Proof. If c = c′′, then the lemma holds trivially, thus assume that c 6= c′′. W.l.o.g., we can
assume that b > 0, which implies that, if agent a starts in cell c in state q (say, at time
t), then a arrives at some point in time u > t in cell c′′ in state q (possibly a visited c′′

before in some other state). Hence, if a does not visit cell c′ between time t and time u, then
the lemma also holds since after arriving at c′′ in state q, a will perform the exact same
movement as if it started in c′′ in state q.

Thus, consider the last remaining case, i.e., assume that a visits c′ for the first time at
some time t < t′ < u. W.l.o.g., we can assume that w and z are non-negative and w ≥ z.
(Also recall that at least one of w and z is non-zero.) Let c0, c1, . . . be the cells that a visits
in state q at and after time t, where c0 and ck, for some k > 0, are the cells that a visits
at time t and u, respectively, i.e., c0 = c and ck = c′′. Observe that cj+1 = cj + (w, z)
holds for each j. Denote the x-coordinates of c′ and ck = c′′ by x′ and x′′, respectively.
Since w ≥ z, it follows that Dist(cj , c

′) ≥ Dist(c′′, c′) ≥ N for all j ≥ k if x′ ≤ x′′, and
Dist(cj , c

′) ≥ Dist(c′′, c′) ≥ N for all 0 ≤ j ≤ k if x′ ≥ x′′. Let h be the largest index such
that a visits ch in state q at or before time t′. Then h < k, and Dist(ch, c

′) ≤ N − 1 since
traveling from ch (in state q) to ch+1 (in state q) takes a at most one travel period, so at
most N time steps. If x′ ≥ x′′, then we obtain a contradiction to our above observation, thus
it follows that x′ < x′′. But this implies Dist(cj , c

′) ≥ N for all j ≥ k which in turn implies
for all j ≥ k that c′ cannot be visited by a between visiting cj (in state q) and cj+1 (in state
q). Hence, a does not visit c′ at or after time u. Since a performs the exact same movement

S. Brandt, J. Uitto, and R. Wattenhofer 13:15

from time u onwards as if it would have initially started in c′′ in state q, it follows that agent
a starting in c′′ in state q never visits c′, which is a contradiction to our assumptions. Thus,
this last remaining case cannot occur, which completes the proof. J

I Lemma 14. (Proof deferred to the full version) Let (t, u) be a travel meeting pair. Consider
the tuple Qt := (q1

t , q
2
t , q

3
t , c

1
t	c2

t , c
1
t	c3

t , c
2
t	c3

t , a
next
t ,Mt), where anext

t again denotes the agent
that is scheduled at time t. There is a point in time T such that the following holds: If t ≥ T ,
then Qt uniquely determines the tuple Qu = (q1

u, q
2
u, q

3
u, c

1
u 	 c2

u, c
1
u 	 c3

u, c
2
u 	 c3

u, a
next
u ,Mu).

8 Three Semi-Synchronous Agents Do Not Suffice

We now conclude our lower bound proof with Theorem 1. Roughly speaking, Lemma 14
certifies that the behavior of the agents between any two subsequent occurrences of the same
fixed information tuple Qt is reasonably similar. Since there are only finitely many different
Qt that actually occur, it follows that the behavior of the agents loops, in a very informal
sense. From this, we can derive a contradiction to the assumption that all cells are explored.

I Theorem 1. Three semi-synchronous agents controlled by a finite automaton are not
sufficient to explore the infinite grid.

Proof. Suppose for a contradiction that three agents suffice to explore the grid. From the
definition of a travel meeting pair and Lemma 7, it follows that there are points in time
t1 < u1 ≤ t2 < u2 ≤ t3 < . . . such that (tj , uj) is a travel meeting pair for any j ≥ 1 and for
every travel meeting pair (t′, u′) there is a j ≥ 1 with t′ = tj and u′ = uj .

Recall the definition of Qt in Lemma 14. Let T be sufficiently large so that T ≥ T1 holds
(where T1 is just TD for D = 1) and Lemmas 8, 9, 10, 11 and 14 apply, and let k be an
index such that tk ≥ T and there is a h > k with h− k even and Qtk

= Qth
. Such a k must

exist since there is only a finite number of tuples of the general form Qt (after time T) and
the number of travel meeting pairs is infinite, by Lemma 7. Note that the finiteness of the
number of tuples, in particular the finiteness of the (combinations of the) relative locations
of the agents modulo (x, y), relies on the fact that the possible travel vectors after time T
are restricted by Lemma 11, together with the fact that in the time span given by a travel
meeting pair source and destination agent are scheduled for at most N steps, by Lemma 3
and Lemma 8.

Consider the sequence ((tk, uk), (tk+1, uk+1), . . . , (th, uh)) of travel meeting pairs, where
h is the smallest index such that h > k holds, h− k is even, and Qtk

= Qth
. We examine the

cells that are explored by the source agent for (tk, uk) between time tk and tk+1 and by the
destination agent for (tk+1, uk+1) (which is the same as the aforementioned source agent)
between time tk+1 and tk+2. Then we iterate this examination, in each iteration increasing
the indices by 2, and stop at time th. We say that the cells explored in the described way
are explored during even explorations.

In the first iteration, we obtain the following picture, where we denote the source agent
for (tk, uk) (i.e., the destination agent for (tk+1, uk+1)) by a: The exact vector by which
a moves between time tk and uk is uniquely determined by Qtk

, as observed in the proof
of Lemma 14. The exact vector by which a moves between time uk and tk+1 is uniquely
determined by Quk

, by Lemma 10. Similarly, the exact vectors by which a moves between
time tk+1 and uk+1 and between time uk+1 and tk+2 are uniquely determined by Qtk+1 and
Quk+1 , respectively.

Moreover, by combining Lemma 10 and Lemma 14, we see that Quk
, Qtk+1 , Quk+1 , and

Qtk+2 are all uniquely determined by Qtk
. Thus, the exact vector by which a moves between

time tk and time tk+2 is uniquely determined by Qtk
. Furthermore, by Lemma 3, Lemma 8,

DISC 2018

13:16 A Tight Lower Bound for Semi-Synchronous Collaborative Grid Exploration

and Lemma 9, the number of cells a visits between time tk and time tk+2 is bounded by a
constant. Note that each Qtj

also uniquely determines which agent is the traveling agent
(and hence which agent is the source/destination agent) for (tj , uj), as observed in the proof
of Lemma 14.

For the second, third, . . . , iteration we obtain an analogous picture. Hence, the tuples
Qtk+2 , Qtk+4 , . . . are all uniquely determined by Qtk

, and the locations of the respective
source agents at times tk+2, tk+4, . . . are all uniquely determined by Qtk

and the location of
the source agent for (tk, uk) at time tk.

We obtain the following bigger picture: The location of the source agent for (tk, uk) at time
tk together with Qtk

uniquely determines both Qth
and the location of the source agent for

(th, uh) at time th, which, in turn, uniquely determine Qth+(h−k) and the location of the source
agent for (th+(h−k), uh+(h−k)) at time th+(h−k), and so on. Hence, there is a vector (w, z)
such that the locations of the respective source agents at times tk, th, th+(h−k), th+2(h−k), . . .

are c, c+ (w, z), c+ 2(w, z), . . . , where c denotes the cell occupied by the respective source
agent at time tk. Moreover, since the number of cells explored during an even exploration
between time tk and th (and similarly between time th+j(h−k) and th+(j+1)(h−k) for each
j ≥ 0) is bounded by a constant (which follows from a similar observation above), we get that
there is a constant L such that each cell explored during an even exploration has a distance
of at most L to some cell of the form c+ j′ · (w, z), where j′ is some non-negative integer.

Moreover, by Lemmas 3, 8, 9, 11, and the definition of even explorations, we know that
each explored cell is close to the travel of a traveling agent, i.e., there is a constant L′ such
that each cell explored at or after time tk has a distance of at most L′ to some cell of the
form c′+ j′′ · (x, y), where j′′ is some integer and c′ a cell explored during an even exploration.
Combining our observations and adding the fact that only a constant number of cells are
explored up to time tk, it follows that there is a constant L′′ such that each cell explored by
the agents has a distance of at most L′′ to some cell of the form c+ j′ · (w, z) + j′′ · (x, y),
where j′, j′′ are integers and j′ is non-negative. Hence, we can draw a line in the grid such
that all explored cells are to one side of the line, yielding a contradiction to the assumption
that three agents suffice to explore the grid. J

References
1 Susanne Albers and Monika Henzinger. Exploring Unknown Environments. SIAM Journal

on Computing, 29:1164–1188, 2000.
2 Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz, and Charles Rackoff.

Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In
FOCS, pages 218–223, 1979.

3 Igor Averbakh and Oded Berman. A Heuristic with Worst-case Analysis for Minimax
Routing of Two Travelling Salesmen on a Tree. Discrete Appl. Math., 68(1-2):17–32, 1996.

4 Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J. E. Rawlins. Searching in
the Plane. Information and Computation, 106:234–252, 1993.

5 M. A. Bender and D. K. Slonim. The Power of Team Exploration: Two Robots can Learn
Unlabeled Directed Graphs. In FOCS, pages 75–85, 1994.

6 M. Blum and W. J. Sakoda. On the capability of finite automata in 2 and 3 dimensional
space. In FOCS, pages 147–161, 1977.

7 Manuel Blum and Dexter Kozen. On the Power of the Compass (or, Why Mazes Are Easier
to Search Than Graphs). In FOCS, pages 132–142, 1978.

8 Sebastian Brandt, Jara Uitto, and Roger Wattenhofer. Tight Bounds for Asynchronous
Collaborative Grid Exploration. CoRR, abs/1705.03834, 2017. URL: http://arxiv.org/
abs/1705.03834.

http://arxiv.org/abs/1705.03834
http://arxiv.org/abs/1705.03834

S. Brandt, J. Uitto, and R. Wattenhofer 13:17

9 Lothar Budach. Automata and Labyrinths. Mathematische Nachrichten, 86(1):195–282,
1978.

10 Marek Chrobak, Leszek Gasieniec, Thomas Gorry, and Russell Martin. Group Search
on the Line, pages 164–176. Springer Berlin Heidelberg, 2015. doi:10.1007/
978-3-662-46078-8_14.

11 Lihi Cohen, Yuval Emek, Oren Louidor, and Jara Uitto. Exploring an Infinite Space with
Finite Memory Scouts. In SODA, pages 207–224, 2017.

12 Xiaotie Deng and Christos Papadimitriou. Exploring an Unknown Graph. Journal of Graph
Theory, 32:265–297, 1999.

13 Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. Tree Exploration
with Little Memory. Journal of Algorithms, 51:38–63, 2004.

14 Yann Disser, Jan Hackfeld, and Max Klimm. Undirected Graph Exploration with
Θ(log logn) Pebbles. In SODA, pages 25–39, 2016.

15 Christian A. Duncan, Stephen G. Kobourov, and V. S. Anil Kumar. Optimal Constrained
Graph Exploration. ACM Trans. Algorithms, 2(3):380–402, 2006.

16 Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. How
Many Ants Does it Take to Find the Food? Theor. Comput. Sci., 608:255–267, 2015.
doi:10.1016/j.tcs.2015.05.054.

17 Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer. Solving the ANTS
Problem with Asynchronous Finite State Machines. In ICALP, pages 471–482, 2014.

18 Ofer Feinerman, Amos Korman, Zvi Lotker, and Jean-Sebastien Sereni. Collaborative
Search on the Plane Without Communication. In PODC, pages 77–86, 2012.

19 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed Coordination of a Set
of Autonomous Mobile Robots. In Intelligent Vehicles Symposium, pages 480–485, 2000.

20 Pierre Fraigniaud and David Ilcinkas. Digraphs Exploration with Little Memory, pages
246–257. Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540-24749-4_22.

21 Frank Hoffmann. One Pebble Does Not Suffice to Search Plane Labyrinths. In FCT, pages
433–444, 1981.

22 Alejandro López-Ortiz and Graeme Sweet. Parallel Searching on a Lattice. In CCCG,
pages 125–128, 2001.

23 Petrişor Panaite and Andrzej Pelc. Exploring Unknown Undirected Graphs. In SODA,
pages 316–322, 1998.

24 H. A. Rollik. Automaten in Planaren Graphen, pages 266–275. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1979. doi:10.1007/3-540-09118-1_28.

25 Kazuo Sugihara and Ichiro Suzuki. Distributed Algorithms for Formation of Geometric
Patterns with Many Mobile Robots. Journal of Robotic Systems, 13(3):127–139, 1996.

26 Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mobile Robots: Forma-
tion of Geometric Patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

27 Ichiro Suzuki and Masafurni Yarnashita. Distributed Anonymous Mobile Robots - Forma-
tion and Agreement Problems. In SIROCCO, pages 1347–1363, 1996.

DISC 2018

http://dx.doi.org/10.1007/978-3-662-46078-8_14
http://dx.doi.org/10.1007/978-3-662-46078-8_14
http://dx.doi.org/10.1016/j.tcs.2015.05.054
http://dx.doi.org/10.1007/978-3-540-24749-4_22
http://dx.doi.org/10.1007/3-540-09118-1_28

	Introduction
	Related Work
	Preliminaries
	The Model
	Definitions and Notation
	A Single Agent

	Techniques
	The Schedule
	Traveling and Meeting
	The Travel Vector and a Modulo Operation
	Three Semi-Synchronous Agents Do Not Suffice

