
Efficient Traffic Routing with Progress Guarantees
Stefan Blumer

ETH Zurich
blumers@ethz.ch

Manuel Eichelberger
ETH Zurich

manuelei@ethz.ch

Roger Wattenhofer
ETH Zurich

wattenhofer@ethz.ch

Abstract—This paper presents an efficient traffic scheduling
algorithm for vehicles such as cars, trains or ships. We pro-
vide guarantees for deadlock and starvation freedom, therefore
ensuring progress for each vehicle in the system. Our method
tolerates vehicles which do not disappear from the traffic network
once they reach their destination, but rather continue towards
subsequent destinations. Therefore, vehicles can run indefinitely.
We introduce the concept of safe spots, which are locations where
a vehicle can stop without ever blocking another vehicle. Using
such safe spots, we divide routes into short segments, which
reduces the number of routing alternatives exponentially, thus
allowing real-time traffic allocation.

Index Terms—autonomous car, deadlock freedom, naval traffic,
network utilization, railroad, train network, ship, starvation
freedom

I. INTRODUCTION

Many people spend a fair amount of time in traffic, for
instance for commuting to work. In the US, the average car
driver spends an equivalent of seven(!) 40-hour work weeks
per year in traffic.1 A considerable part of this time is wasted
in traffic jams.2 This is a nuisance, which is caused by the
limited capacity of street networks and by inefficient traffic
allocation and routing. Also in train networks, traffic density is
a challenge. Even in Switzerland, which has one of the densest
rail networks in the world, traffic is reaching the capacity
limits.3 Expanding road and rail networks is costly and uses
land. Land is especially precious in urban areas, where the
traffic volume is highest and traffic capacity increases are
usually most profitable. Instead of, or complimentary to,
expanding traffic infrastructure like streets and rails, better
routing offers a cheaper way of improving the life of traffic
participants.

In this paper, we propose a traffic routing system which
allows for efficient scheduling with variable safety margins
around vehicles with a particular focus on preventing dead-
locks and starvation. In high-density real-world traffic, dead-
locks do occur at some frequency and are hard to resolve.4

Sure enough, dense traffic exists in many places in the world,
and measured by this fact, traffic deadlocks are still relatively

1American Automobile Association: https://newsroom.aaa.com/2016/09/
americans-spend-average-17600-minutes-driving-year/

2Reuters: https://www.reuters.com/article/us-usa-traffic-study/u-
s-commuters-spend-about-42-hours-a-year-stuck-in-traffic-jams-
idUSKCN0QV0A820150826

3Swissinfo: https://www.swissinfo.ch/eng/swiss-railways-heads-towards-
its-limit/4364

4Many images and videos on the Internet show traffic deadlocks. Search
for “traffic deadlock” for examples.

uncommon on a global scale. However, this often comes at the
price of inefficient crossroads, which for instance feature long
idle times between traffic crossing from different directions. In
both cases, an implementation of our proposed system could
improve the situation.

Besides car and train networks, which can be well modeled
as graphs, traffic routing is also useful for ships. Ship naviga-
tion is often not constrained to strict lanes and therefore allows
ships to move freely, which results in more possibilities for
vessel allocation. Also, differently sized ships do not need the
same “lane width”. Several collisions of naval vessels in the
year 2017 highlight that manual navigation, even with modern
navigation aids, is prone to errors and can result in fatalities
and million-dollar damages.5 Better routing with sufficient, but
not thriftless, safety margins and automated navigation can
increase the reliability of vessel traffic and improve the traffic
throughput at the same time.

Besides preventing deadlocks and guaranteeing progress
for each vehicle in the system, our method also tolerates
vehicles which move on infinitely long paths. Solving one of
these problems alone is relatively easy: As long as vehicles
want to travel from one origin to one destination, a simple
shortest path search on a graph with nodes corresponding to
a geographic location at a certain time guarantees deadlock
freedom and progress, as long as the nodes on the path
are deleted for subsequent searches for other vehicles’ paths.
Conversely, if deadlocks or starvation do not need to be
prevented, each vehicle can start a new graph search to its next
destination, independently of all other vehicles, upon reaching
an intermediate destination. However, this latter method does
not prevent deadlocks: For instance, if two vehicles’ interme-
diate destinations are in the same single-lane dead end, once
the first vehicle reaches the destination, both vehicles start
moving towards each other and mutually block their way. Our
framework prevents any such situations.

Furthermore, the introduced concept of safe spots allows
for network partitioning, creating the possibility of local traffic
scheduling by decentralized authorities.

Our abstract method for traffic routing can be adapted to
different means of transport such as railroads and ships. It
is not only efficient in the allocation of vehicles in a given
traffic network, but also has low computational requirements,
allowing it to run in real-time on a consumer grade computer.

5Ars Technica Report: https://arstechnica.com/gadgets/2017/08/with-the-
uss-mccain-collision-even-navy-tech-cant-overcome-human-shortcomings/



II. RELATED WORK

Routing is a well researched topic in computer science. In
simulations and computer games, it is also called pathfinding.
For traffic routing, we are mainly looking at variants of the
shortest path problem which is the special case of routing with
the objective function of minimizing the cost of a path.

The most famous algorithm for solving the single-source
shortest path problem is Dijkstra’s algorithm [1]. Several
generalizations exist, which for instance tolerate negative or
probabilistic edge weights. Important for our method is the A*
search algorithm, which uses heuristics to speed up searches.

Our setting is a multi-source multi-destination routing prob-
lem in which the needs of multiple vehicles, or more generally
abstract agents, have to be accommodated. Generally, this
problem is NP-hard to solve optimally [2]. Techniques finding
optimal multi-agent pathfinding (MAPF) solutions are there-
fore slow. Many such methods are based on variants of A* [3],
[4]. Others reduce the problem to NP-complete problems such
as SAT [5] or Integer Linear Programming [6].

Some research on MAPF focuses on heuristic ap-
proaches [2]. So far, heuristic algorithms are capable of com-
puting one collision-free path for each of several agents with
arbitrary start and target locations. Concerning the properties
of the end state, when each agent has reached its target
location, to the best of our knowledge, no previous work
considers whether agents can reach further destinations.

One work experimentally determines the best MAPF al-
gorithm for naval traffic in specific bounded regions [7]. In
that paper, the goal is to minimize unsafe paths, defined by
a geographical and temporal distance threshold, which might
lead to collisions. Such unsafe paths are reduced but not
entirely prevented. An inherent assumption is that agents can
always leave the system within finite time and there will be no
deadlocks as soon as the ships are in open waters. Compared to
our method, the heuristics do not guarantee deadlock freedom,
but can work well in practice.

As explained in the introduction, we are not just considering
multiple agents, but looking at the more difficult problem that
involves agents which follow infinite paths. For this setting,
we could not find any related academic work. However, we
believe that this is an important branch of research, as the
example with the dead end illustrates.

In the industry, traffic simulations are for instance used
to predict traffic in city centers or during emergency evac-
uations and in video games. Pathfinding implementations for
video games focus more on computational performance than
physical accuracy or progress guarantees. Some games naively
perform pathfinding to the next target as soon as the previous
one is reached. Like this, deadlocks are not prevented and
even occur frequently in some games. Other games simply
allow agents to move through each other. This simplifies
the simulation, since each vehicle’s path can be computed
independently of all others and still prevents deadlocks or
starvation. However, in the real world, the physical nature of
traffic has to be respected in any scheduling mechanism.

III. METHOD

The basic idea of our technique to find paths for multiple
agents moving along infinite routes is to compute partial paths
and repeatedly expand them. This is necessary, since general
infinite paths cannot be computed with finite computation
power and storage.

In contrast to the naive approach, in which the search is done
from destination to destination, we perform searches between
so-called safe spots to guarantee that no two agents ever end
up in a deadlock situation. Unlike the destinations, safe spots
are not known a priori and have to be found. In practice, paths
can be expanded before an agent reaches the next safe spot.
This can improve the route quality in situations with a limited
number of safe spots, by omitting detours for passing through
a safe spot. Nevertheless, this does not thwart the deadlock
and progress guarantees provided by the safe spots.

The partial paths are computed using a pathfinding tech-
nique, such as Dijkstra’s algorithm [1]. While our method
does not rely on a specific pathfinding algorithm, the choice
influences the computation performance.

A. Setup

Our technique works on graphs. Every state which an agent
can reach is represented by a node in a graph. States may not
only consist of an agent’s position, but any variable relevant to
the movement like velocity, rotation, fuel or time. An agent’s
movement restrictions determines the edges of its movement
graph.

For multiple agents, we could consider their combined
states and movement restrictions to build one collective graph
with each node representing all agents’ states and each edge
corresponding to movement actions for all agents. However,
such a graph grows exponentially with the number of agents
in the system, so this approach is infeasible in practice.
Instead, we construct individual graphs for all agents and
compute movement steps sequentially. For each agent’s move,
the invalidated edges of the graphs of all other agents are
deleted. In the end, the agents can move all at the same time
on their computed paths.

The following notation is used:
• Agents A = {a1, . . . , an}
• Graph nodes V = {v11, v12, . . . , v1m1 , v21, . . . , vnmn}
• Stations S = {S1, . . . , Sq},∀i. Si ⊆ V
• Path P = (vik, vil, . . .)
• Route R = (Si, Sj , . . .)

An agent ai always stays on its part of the graph consisting of
the nodes {vi1, . . . , vimi

}. Stations are sets of nodes, which
allows modeling different station sizes. An agent reaches
a station when arriving at any of its nodes. A path is a
finite sequence of nodes which an agent visits consecutively.
Similarly, routes are an infinite sequence of stations, with one
route for each agent. Agents are indefinitely moving along
their route, to any of the next station’s nodes.

Definition 1 (Collision). Collision(vik, vjl) is a symmet-
ric boolean function, which is true if nodes vik and vjl



cannot simultaneously be occupied (by agents ai and aj).
Collision(vik, vil) is always false.

A path P is valid if at any time ∀vik ∈ P, vjl ∈ V \
vik. Collision(vik, vjl) = false ∨ vjl is unoccupied, so no
collision occurs at any time.

Definition 2 (Movement Invariant). Each agent is at any time
either moving towards a safe spot or staying at a safe spot.

B. Safe Spots

Definition 3. A safe spot is a node where an agent may stay
forever, such that at any time, for every pair of other safe spots
in any agent’s graph, there is still a connecting path.6

A maximal set of safe spots can be constructed by re-
peatedly adding new nodes while showing the existence of
alternative paths. Alternative paths must cross neither the new
safe spot candidate nor any existing safe spots.

Below, let Ti ⊆ S be the sequence of stations on the path
of agent ai, and K the set of already selected safe spots.

Definition 4 (Path Existence). PathExists(vik, vil,K) de-
notes the existence of a path P from node vik to safe spot
vil ∈ K, passing through all stations Si ∈ Ti such that

∀vir ∈ P, vjs ∈ K \ {vil} : ¬Collision(vir, vjs)

Definition 5 (Alternative Path). Alternative(vik, vjl,K) is
true iff there exists an alternative path around vjl for every
path segment starting at safe spot vik ∈ K:

Alternative(vik, vjl,K) := ∀vih ∈ K :

PathExists(vik, vih,K) =⇒PathExists(vik, vih,K∪{vjl})

Definition 6 (Potential Safe Spot). vjl 6∈ K is a potential safe
spot iff

∀vik ∈ K : Alternative(vik, vjl,K).

Every potential safe spot can be selected as a safe spot.
The sequential selection of safe spots forms a strict ordering
of safe spots.

Definition 7 (Safe Spot Ordering). For safe spots vik and vjl,
we define vik < vjl iff vik is selected as safe spot before vjl.

Theorem 8. In a set of safe spots K ⊆ V , each safe spot
ensures alternative paths for all previously selected safe spots.

∀vik, vjl ∈ K : vik < vjl =⇒Alternative(vik, vjl,K\{vjl})

Proof. The claim follows directly from Definition 6.

Whether a node can become a safe spot depends on the set
of already selected safe spots. Initially, when the set of safe
spots is empty, any node can become a safe spot, since no
alternative paths need to be found. Depending on the sequence
of safe spot choices, the maximal number of safe spots may
differ. Note that according to Definition 2, an agent is only

6An inherent weak assumption is that the movement restrictions of an agent
allow it to stay at the node of the movement graph for an unbounded time.
This usually represents an agent standing still.

1

2
3

4

5
6

Fig. 1. Movement graph for a single agent with stations S1 = {1} and
S2 = {6}

allowed to enter the traffic network if there exists at least one
safe spot in its part of the graph.

Example 9. Initially, all nodes of the graph in Figure 1 are
potential safe spots. If Node 3 is selected as the first safe spot,
Nodes 4 and 5 are further potential safe spots. If Node 2 is
selected instead, Nodes 3 and 4 are other potential safe spots.

C. Deadlocks
According to Definition 2, agents always move between safe

spots. A deadlock occurs if agents cannot find a path to another
safe spot, because all paths are blocked by other agents. In this
section, we show that deadlocks cannot arise.

Definition 10 (Lock). We say that (an agent in) a safe spot
locks another one, when there is no alternative path around
the former, for paths starting at the latter:

Lock(vjl, vik,K) := ¬Alternative(vik, vjl,K) ∨
(∃vgh ∈ K \{vjl} : Lock(vjl, vgh,K)∧Lock(vgh, vik,K))

The second part of the function makes it transitive. This
captures cases in which two agents lock each other indirectly.

Definition 11 (Deadlock).

Deadlock(vik, vjl,K) :=Lock(vik, vjl,K)∧Lock(vjl, vik,K)

To prove deadlock freedom, we show that no two agents in
a valid state according to Definition 2, can be in a deadlock.

Theorem 12. A safe spot vjl cannot lock another safe spot
vik if the latter was selected as a safe spot before vjl:

vik < vjl =⇒ ¬Lock(vjl, vik,K)

Proof.

¬Lock(vjl, vik,K) ⇐⇒ Alternative(vik, vjl,K) ∧
(∀vgh ∈ K\{vjl} : ¬Lock(vjl, vgh,K)∨¬Lock(vgh, vik,K))

Our proof goes by induction.
Base case: An alternative path is ensured by Theorem 8.
Induction step: To prove ∀vgh ∈ K \ {vjl} :
¬Lock(vjl, vgh,K) ∨ ¬Lock(vgh, vik,K), we make a case
distinction:

1) Case vik < vgh: We recursively apply Theorem 12 to
get ¬Lock(vgh, vik,K).

2) Case vgh < vik: Due to the total order provided
by Definition 7, vgh < vjl and we recursively apply
Theorem 12 to get ¬Lock(vjl, vgh,K).



In a finite graph, the transitive function Lock(vab, vcd,K)
can only be formed from a finite list of non-transitive relations
Lock(vab,vg1h1,K),Lock(vg1h1,vg2h2,K),...,Lock(vgphp,vcd,K).
Otherwise, there must be some loop
Lock(vwx, vyz,K), Lock(vyz, vwx,K), where
Lock(vwx, vyz,K) is non-transitive and, because of the strict
ordering of safe spots, vwx < vyz holds. By Theorem 8 we
have Alternative(vwx, vyz,K \ {vyz}). Using Definition 10,
this leads to ¬Lock(vwx, vyz,K) which breaks the chain of
non-transitive relations above. Therefore, the recursion depth
of applying Theorem 12 is finite.

Theorem 13. Any two agents in safe spots are never in a
deadlock situation:

∀vik, vjl : vik < vjl =⇒ ¬Deadlock(vik, vjl)

Proof. This follows from Theorem 12, since one of the condi-
tions for a deadlock, as in Definition 11, is not satisfied.

D. Progress

Moving from safe spot to safe spot does not necessarily
mean that an agent advances on its route. However, infinite
progress along a route is desirable. In other words, an agent
should always reach the next station in finite time.

Definition 14 (Partial Path). A partial path is a finite section
of an infinite path.

Definition 15 (Path Segment). A path segment is a finite path
with the last node being a safe spots and all other nodes not
colliding with any safe spot.

An infinite path of an agent is constructed by repeatedly
extending a partial path with new segments.

Definition 16 (Progress Function). The progress function
Progressi(L) indicates how much closer an agent ai gets
to its infinite target on its route R when moving along a path
segment L.

The condition for infinite progress is:
∞∑
j=1

Progressi(Lj) =∞

To guarantee infinite progress, we need to ensure that every
partial path can eventually be extended with a path segment
L with Progress(L) ≥ ε > 0.

Definition 17 (Infinite Progress). InfProgressi(vik) denotes
that an agent ai in safe spot vik can always find a path back to
vik, visiting all stations of its route R and avoiding any other
safe spot vjl ∈ (K \ {vik}).

InfProgressi(vik) := PathExists(vik, vik,K \ {vik})

The path segment Lloop, which we have to find to ensure
InfProgressi(vik), must not necessarily visit the stations in
a particular order. We can always construct a segment that
visits the stations in any given order, by repeating the loop
multiple times.

1
2

6

4

5

3

7

Fig. 2. Movement graph for a single agent with stations S1 = {2, 5} and
S2 = {4, 7}

Theorem 18. An agent staying at some safe spot always gets
a chance to extend its partial path in finite time.

Proof. If agents cannot collide and the movement graph is
finite, the number of agents must be finite. Any agent in a
safe spot takes only finite time for a movement attempt: If
there is a path segment guaranteeing progress, moving will
only take a bounded time. Otherwise, the agent cannot move,
which takes zero time. The total time used for all agents’
movement attempts is therefore finite.

Theorem 19. An agent ai moving along route R and staying
at safe spot vik makes infinite progress in infinite time if
InfProgressi(vik) is true.

Proof. Theorem 18 guarantees that agent ai, staying at safe
spot vik, is able to attempt extending its partial path in finite
time. Definition 17 ensures the existence of a path segment L
leading back to vik and passing through every station Si ∈ R.
Because L passes through all stations Si ∈ R, the agent always
reaches its next station and therefore makes progress.

Example 20. For the graph shown in Figure 2, initially any
node can be selected as a safe spot. By selecting Node 3,
we can guarantee InfProgress(3) for the cyclic route R =
{S1, S2, S1, S2, . . .} as L = {3, 4, 2, 3} visits every station of
route R. When selecting Node 6 instead, we cannot guarantee
InfProgress(6), as no path segment exists that fulfills the
requirement.

E. Updating Path Segments

Paths consisting of path segments reaching from safe spot to
safe spot can be suboptimal in terms of required travel time.
An agent might have to slow down at every safe spot and
subsequently accelerate again. A solution to this problem is to
update path segments before reaching the next safe spot. Like
this, agents might never need to actually stop at a safe spot.

Example 21. Assume that the graph in Figure 3 only contains
Safe Spot 1. For an agent moving along a cyclic route
R = {S1, S2, S1, S2, . . .}, the only valid path segment must
be L = {1, 2, 3}. Infinitely moving over L will lead to
infinite progress. To visit 2n stations along route R, we need
about 3n state transitions. If instead, always before the agent
moves to Node 1, we update the path segment to a new path
segment Lnew = {3, 2, 3, 1}, we construct an infinite path
{1, 2, 3, 2, 3, 2, 3, 2, . . .}. Visiting 2n stations along route R
now only needs about 2n state transitions.



1

2 3

Fig. 3. A movement graph with stations S1 = {2}, S2 = {3}

IV. IMPLEMENTATION

Our technique can be used to route different kinds of
traffic. We implemented simulations for a road and a naval
scenarios. The difference between the scenarios is that in the
road scenario, the movement graph is sparser, due to the given
roads lanes, while the ships in the naval scenario have much
more choices due to a denser movement graph. Due to space
constraints, and since the naval scenario is computationally
more challenging because of the larger number of choices in
the denser graph, we only discuss the naval scenario here.

In our implementation, all agents move simultaneously, if
possible. We achieve this by searching paths for all agents
one after the other, while excluding nodes occupied by agents
whose paths have been computed earlier.

The naval traffic sample application simulates ships moving
on cyclic routes between multiple harbors. Waters consist of
a regular grid in which each cell is either land or water. The
maximum grid size we tested was 512 by 512 cells. A ship’s
state is composed of:
• Position: Using the same granularity as the grid
• Rotation: 32 different angles
• Velocity: 7 steps including standstill

A ship’s state transition is governed by the following rules:
• The ship may accelerate, keep its velocity or decelerate.
• The ship can either turn left, turn right or keep the direc-

tion. A complete 360◦ turn requires 32 state transitions.
• The ship must move to another cell.
• The ship must not collide with land cells or other ships.
The maximum number of states for a scenario with a 512

by 512 grid is 512 ∗ 512 ∗ 32 ∗ 7 = 58720256, if the whole
map consists of water only.

For pathfinding, we use a hierarchical A* algorithm [8] to
find path segments. Hierarchical A* uses the result of an A*
search in fewer dimensions, in our case only the distance, as
a heuristic for the complete A* search. This heuristic is more
precise than a simple Euclidean distance heuristic as it takes
the topology of the waters into account.

By multiplying the distance value by a heuristic factor, we
overestimate the number of steps needed to reach the next
station. This is a common technique to trade solution quality
for reduced computation time with A*. We experimentally
determined that a heuristic factor of 1.7 does not increase the
length of the computed path, but leads to a speed-up factor of
158. With that, a path search for one agent took 103 ms on our
notebook computer, compared to 16333 ms with the Euclidean
distance measure. Since completing a computed path usually
takes at least several seconds, our system can thus support

many agents in real-time. For road networks, the state space
is much smaller and thus even more agents can be handled
with our method.

V. CONCLUSION

Our method enables deadlock-free traffic routing with
progress guarantees for many agents in densely populated
traffic networks. Our abstract framework can be adapted to
different scenarios, including simple cases such as railroads
in which the network is already given as a graph and more
challenging environments such as ship traffic. With a good
choice of the shortest path search algorithm, our traffic sched-
uler can run in real-time even though collisions during the path
search increase with larger numbers of traffic participants.

Today, rail networks are already operated in a tightly
regulated fashion similar to the system which we propose.
In contrast, car and ship traffic is relatively anarchic. In such
systems it is a challenge to efficiently route dense traffic.7 The
advent of self-driving, connected cars and ship localization and
tracking systems such as the automatic identification system
(AIS) makes guided routing a possibility. To cope with the ever
increasing traffic volume, this will also become a necessity in
congested areas.

The safe spots introduced in this paper allow partitioning
traffic networks into independent parts. An agent can be routed
to a border safe spot in one network and then continue its path
in the adjacent network, with the routes in both networks being
independent of each other. This also enables decentralized
traffic management, for instance by different traffic authorities.
In the real world, this can be used as a moderate solution
which does not force totally controlled traffic. Our method
can be applied to increase the safety in the most frequently
used streets and rivers and still allow anarchic traffic in less
critical areas.

REFERENCES

[1] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”
in Numerische Mathematik, 1: 269-271, 1959.

[2] R. S. Max Barer, Guni Sharon and A. Felner, “Suboptimal Variants of
the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding
Problem,” in Seventh Annual Symposium on Combinatorial Search, 2014.

[3] T. S. Standley, “Finding Optimal Solutions to Cooperative Pathfinding
Problems,” in AAAI, vol. 1. Atlanta, GA, 2010, pp. 28–29.

[4] G. Wagner and H. Choset, “M*: A Complete Multirobot Path Planning
Algorithm with Performance Bounds,” in Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011, pp.
3260–3267.

[5] P. Surynek, “Towards Optimal Cooperative Path Planning in Hard Setups
Through Satisfiability Solving,” in Pacific Rim International Conference
on Artificial Intelligence. Springer, 2012, pp. 564–576.

[6] J. Yu and S. M. LaValle, “Planning Optimal Paths for Multiple Robots on
Graphs,” in Robotics and Automation (ICRA), 2013 IEEE International
Conference on. IEEE, 2013, pp. 3612–3617.

[7] H. C. L. Teck-Hou Teng and A. Kumar, “”Coordinating Vessel Traffic
to Improve Safety and Efficiency”,” in 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), May 2017.

[8] R. Z. Robert C. Holte, M.B. Perez and A. MaxDonald, “Hierarchical A*:
Searching Abstraction Hierarchies Efficiently,” in National Conference
on Artificial Intelligence, AAAI-96, 1996.

7Ship traffic features various crowded hot spots which can be found in the
map at https://www.marinetraffic.com/.


