
Poster Abstract: Message Position Modulation for Power
Saving and Increased Bandwidth in Sensor Networks

Johannes Schneider
Computer Engineering and Networks Laboratory

ETH Zurich
schneider@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich
wattenhofer@tik.ee.ethz.ch

Abstract
We use a form of pulse-position modulation, i.e. message-
position modulation (MPM), to reduce the payload of a mes-
sage by encoding parts of the message through its transmis-
sion time. MPM allows to conserve energy and channel us-
age, thus reducing the risk of collisions and increasing avail-
able bandwidth. We evaluate our ideas on the TinyNode
platform showing a notable reduction of transmission en-
ergy and channel access without requiring significant usage
of additional resources such as memory.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design,Wireless communication

General Terms
Algorithms

Keywords
Low power,Medium Access Control(MAC), Time coding

1. INTRODUCTION
Low duty cycles, e.g. infrequent transmissions, is a must

for Medium Access Control(MAC) for low power sensor net-
works. For many applications information, e.g. measured
data, reaches the base station only after tens of seconds.
Thus, a small variation of the data transmission time of a
(sensing) node is generally of no concern. The base station
itself usually has much larger storage, processing and energy
means than a sensing node. MPM exploits this asymmetry
by keeping the base station awake and letting the neigh-
bors of the base transmit some information essentially with-
out energy consumption, i.e. through passed time between
the earliest possible transmission and the actual transmis-
sion. MPM also results in less channel usage, since message-
position modulated messages are shorter than ordinary mes-
sages.

Pulse-position modulation is a well-known signal modu-
lation technique where m bits are encoded using 2m time-
shifts, yielding a transmission ratio per time shift of m/2m.
In (only) one of the m time-shifts (or time slots) a pulse,
carrying itself little or no information, is transmitted, say in

Copyright is held by the author/owner(s).
IPSN’11, April 12–14, 2011, Chicago, Illinois.
.

Figure 1: Basics of MPM

time-slot x ∈ [0, 2m − 1], which is decoded by the receiver
as value x. We suggest using pulse-position modulation to
code only parts of the data to transmit using time-shifts.
The technique is sensitive to multipath effects for high data
rates, i.e. short time-shifts, and clock drift since a signal run-
ning on a long path and arriving at a later time-shift than
intended can cause the decoding of wrong data. We avoid
the danger of faulty data decoding due to multipath effects
by using time-shifts that are long enough such that a signal
must cover long distances. Therefore, it attenuates below
the threshold for reception when reaching the receiver in
the wrong shift. Differential position modulation, i.e. mea-
suring the time between transmissions, rather than absolute
message arrival times at the base station, helps to deal with
clock drift.

2. MESSAGE PASSING MODULATION (MPM)
We describe all important parameters for MPM for a low

power sensor network such as a network measuring tempera-
ture, humidity, light etc. using exemplary values (We discuss
settings in general in Section 4). A node should read its sen-
sor value every tsample = 100 seconds. The transmission of
a sample can be postponed by tdelay = 4 seconds.

To account for multipath effects we assume that the longest
path a signal might travel and still be received takes tmulti =
0.1ms longer to follow than the shortest distance between
base station and the sensing node. This corresponds to an
additional length of 30 km. Typical sensor nodes can com-
municate up to a few kilometers given very good conditions
(e.g. line of sight) and thus any signal that traveled an extra
30 km is too weak to be decoded.

We assume a clock drift dppm of about 45 ppm between
the base and a sensing node. Given that data is transmitted
reliably (i.e. the base station acknowledges each message
and the sensing node retransmits if it misses an ACK), the
longest time between two messages transmitted via MPM
from a sensing node is in [tsample, tsample + tdelay]. If the
system works in a best effort manner, i.e. lost messages im-



Figure 2: Number of saved bits nb per transmis-
sion (of at least one byte) depending on the allowed
(maximum) delay of a transmission (tdelay in [s]) and
the maximum time between two message receptions
tsync (in [s]) by the base, i.e. the synchronization
interval.

ply data loss, the time between two received messages might
be (much) larger, which increases the (maximum possible)
clock drift. To deal with this problem and allow for reg-
ular resynchronization, a sensing node might demand an
ACK from time to time to make sure that the time be-
tween received messages is not too large. Assuming a max-
imal time span of tsync = tsample + tdelay between two re-
ceived transmissions from a sensing node implies that the
clock of the base station and the sensing node drift up to
tdrift = (tsample + tdelay)/106 · dppm = 4.7ms for this time
interval.1 If the sensing node’s clock shows time t then
the clock of the base station might have any value from
[t − tdrift, t + tdrift]. Additionally to the clock drift, the
time between execution of the “send” command and the ac-
tual transmission might vary. For example, the delay might
depend on the amount of data to copy to the radio buffer
after the “send” command is called. We assumed a ran-
dom transmission (plus reception) jitter, i.e. delay, of up to
ttrans = 2 ms.

Therefore, the length of a time shift is given by tshift :=
tdrift + tmulti + ttrans = 6.8ms. Using MPM we can code
nb := blog(tdelay/tshift)c = blog(4000/6.8)c = 9 bits through
time-coding per transmission. From the view of the base sta-
tion the transmission by the sensing node should occur in
the middle of a time-shift, i.e. with an offset of tshift/2 to
account for a positive or negative clock drift. The sensing
node can compute the time shift tshift to transmit as follows
tshift := (nb + 1

2
) · tshift. Thus after the sample has been

obtained and the time shift tshift is computed the sensing
node sleeps for time span tshift, wakes up and transmits.

1The number of clock ticks for tsync = tsample + tdelay is
tsync · f , where f is the frequency of the oscillator. The
number of drifted clock ticks is tsync · f/106 · dppm, dividing
by f yields the drift tdrift := tsync/106 · dppm.

3. EVALUATION
Our test network consisted of a base station, two sensing

nodes and a jammer node, all positioned within one room.
The most interesting test case is a system where data is
transmitted in a best effort way (without ACK), since lost
messages prolong the time between two receptions of a mes-
sage. We intentionally used a jammer node close to the base
station to create interference by transmitting randomly ev-
ery 8 ms on average. Therefore, a longer time shift tshift as
in Section 2 of 14ms was used to correctly decode a message
and still save 1 byte per transmission. The other parame-
ters, i.e. tsample = 100s and tdelay = 4s, are as in Section
2. For implementation the TinyNode 584 sensor platform
running TinyOS 2.1.1 was taken. We only relied on stan-
dard TinyOS commands for transmission. TinyOS does not
guarantee that the point of transmission is the same as the
time when the send procedure was called due to other (long-
running) tasks. This is usually of minor concern, since low-
power networks generally do not perform long and heavy
computations requiring lots of energy. We did not use any
synchronization mechanism (e.g. [1]) or temperature clock
drift compensation[2] but employed the milli seconds timer
provided by TinyOS. Our implementation uses only little
extra system resources, e.g. less than 20 bytes of RAM. The
system was ran until 500 messages were received by the base
station. In theory, due to multiple missed messages the syn-
chronization might deteriorate and data might be decoded
wrongly. Still, all received time coded data was decoded
correctly, the maximum clock drift between two receptions
of a message by the base was 5ms.

4. DISCUSSION AND IMPROVEMENTS
The usefulness of MPM depends on the (worst case) drift

between both clocks. A constant offset or slowly varying
drift can be compensated to a large extend, e.g. by using
temperature measuring capabilities of the node[2] or special
algorithms, e.g.[1]. Either way, to maintain sufficient syn-
chronization messages must reach the base station (or the
sensing node) from time to time. For all applications, where
the message loss is low or only a certain (or no) data loss is
acceptable, this requirement is automatically fulfilled.

Figure 2 shows the time-coded bits per transmission nb :=
blog(tdelay/tshift)c, where tshift := tdrift + tmulti + ttrans =
tsync/106 · dppm + tmulti + ttrans. The clock drift dppm is 45
ppm. The (unknown) random transmission (plus reception)
delay ttrans, depending on the hardware is 2ms. The time
used for multipath compensation tmulti is 0.1ms.

Roughly speaking, the number of “saved” bits grows by 1
when doubling tdelay (up to at most tsync) and decreases by
1 when doubling tsync or the clock drift rate dppm. Thus, the
number of “saved” bits is relatively insensitive to changes in
the setup. In many scenarios it is straight forward to save
one byte and with better clocks (or more advanced synchro-
nization) it is not hard to save two bytes, but saving three
bytes requires special hardware, e.g. a clock drift of less
than one microsecond for time interval tsync.

5. REFERENCES
[1] C. Lenzen, P. Sommer, and R. Wattenhofer. Optimal Clock

Synchronization in Networks. In SenSys, 2009.
[2] T. Schmid, P. Dutta, and M. B. Srivastava. High-resolution,

low-power time synchronization an oxymoron no more. In
IPSN, 2010.


