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Abstract

Wireless networks often experience a significant amount of churn, i.e. the arrival
and departure of nodes, and often it is necessary to keep all nodes informed
about all other nodes in the network. In this paper we propose a distributed
algorithm for single-hop networks that detects churn, meaning that the nodes
observe other nodes joining or leaving the network and inform all other nodes
in the network about their observations. Our algorithm works correctly even if
the nodes which join or leave and the respective points in time are chosen by an
adversary in a worst-case fashion. The delay until notification is small, such that
all nodes of the network are informed about changes quickly, in asymptotically
optimal time. We establish a trade-off between saving energy and minimizing
the delay until notification for single- and multi-channel networks.

Keywords: wireless networks, no collision detection, sensor networks, group
membership, monitoring.

1. Introduction

In traditional (wired) distributed systems, the group membership problem
has been studied thoroughly (we refer to [8] for a survey). The basic premise of
group membership is to know which other nodes are there, for instance to share
the load of some task. Nowadays large parts of wired networks are replaced
by Bluetooth or wireless LAN since one does not have to build an expensive
communication infrastructure first, but can communicate in “ad hoc” mode
immediately. This motivates a revisit of the group membership problem in a
wireless context: imagine for example a bunch of wireless sensors, distributed in
an area to observe that area. From time to time some of the nodes fail, maybe
because they run out of energy, maybe because they are maliciously destroyed.
On the other hand, from time to time some more sensors are added. Despite
this churn (nodes joining and leaving [23]), all nodes should be aware of all
present nodes, with small delay only. To account for the self-organizing flavor
and the wireless context we decided to change the name from group membership
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to self-monitoring in this paper. We present an efficient algorithm for the self-
monitoring problem in an adversarial setting.

Reducing the frequency of checking for changes, and thus the number of
messages exchanged per time period, prolongs the time interval until every node
is informed about changes. Since energy as well as communication channels are
scarce resources for wireless devices, we evaluate a trade-off between energy
and delay until notification for single- and multi-channel networks. For single-
channel networks, our algorithm can be applied to multi-hop networks using [2],
which shows that algorithms designed for single-hop networks can be efficiently
emulated on multi-hop networks.

This article is structured as follows. In Section 2 we review work under
the same communication model and related problems, followed by a description
of the model and a formal definition of the problem we analyze in Section 3.
The monitoring algorithm and a proof of its time complexity are provided in
Section 4. In this section, we assume that the number of channels available
is large. Subsequently we prove lower bounds and algorithmic modifications
necessary for a bounded number of channels and the consequences for the time
complexity and energy consumption in Section 5.

2. Related Work

Many algorithms have been designed for wireless networks under varying
assumptions concerning the communication model (reception range, collision
detection, transmission failures, etc.). There are many problems that are non-
trivial even in single-hop networks. We focus here on networks where nodes can-
not distinguish collisions from noise (no-collision detection model). The ability
to detect collisions can lead to an exponential speed up, e.g., as shown in [17] for
leader election. Moreover we consider the energy expenditure for transmission
and listening. Basic algorithms for these networks can be used as services or
building blocks for more complex algorithms and applications. Among them
are initialization (n nodes without IDs are assigned labels 1, . . . , n) [19], leader
election [18, 20], size approximation [4, 14], alerting (all nodes are notified if an
event happens at one or more nodes) [16], sorting (n values distributed among
n nodes, the ith value is moved to the ith node) [15, 25], selection problems
like finding the minimum, maximum, median value [24] and computing the av-
erage value [18], and do-all (schedule t similar tasks among n nodes with at
most f failures) [6] and information exchange despite adversarial interference
(n nodes inform each other about n − t values, an adversary can disturb com-
munication on t channels by jamming) [12, 11]. Note that in contrast to our
work the adversary examined in these papers cannot let nodes join or crash.
Moreover we cannot apply existing size approximation algorithms to estimate
the number of newly joined nodes, since they do not handle node failures and
they do not give high probability results for a small number of joining nodes.
The time and energy complexity of these services are summarized in Table 1.

Some of the algorithms require knowledge of the number of nodes n or an ap-
proximation of n, some are based on the assumption that nodes have unique IDs
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Service Adversary Time Energy per node Source
Initialization no O(n) O(log logn) [21]

O(logn) energy O(n) O(
√

logn) [19]
Leader Election no O(logn)1 O(log logn) [20]

no O(log2 n)2 O(log logn) [13]
O(logn) energy O(log3 n) O(

√
logn) [18]

Size Approx. no O(log2+ε n) O(logε logn) [13]
no O(log2 n)3 O(logn) [4]

O(logn) energy O(log2.5 n log logn) O(logn log logn) [14]
Wake up no O(log2 n) − [26]
ε-Mutual Exclusion no O(log(n) log(1/ε) - [3]
Alerting no O(log3 n) O(logn/ log logn) [16]
Sorting no O(n logn) O(log2 n) [15]

no O(n logn log∗ n) O(logn log∗ n) [15]
Selection no O(n) O(1) [24]
Average εn channels O(n logn)4 O(n logn) [18]
Info. Exchange t channels O(n/t2 + t5 log2 n) - [12]

t channels O(nt3 logn) - [11]

Table 1: Services for wireless single-hop networks consisting of n nodes without the ability
to detect collisions. None of these services is designed to tolerate churn. The second row
describes the resilience of the service to jamming. An adversary jamming t channels can
prevent communication on t channels. Nodes can never receive a message transmitted on
such a channel. An adversary with bounded energy can disturb channels until its energy
has been used up (one energy unit per channel and time slot). 1In expectation. 2With high
probability. 3This algorithm uses only bit messages. 4If the maximum difference between two
values is O(n). The analyses of the algorithms for information exchange and wake up do not
include the energy consumption.

and the number of communication channels available as well as the maximum
message size varies (typically O(log n) bits per message). The adversaries the
algorithms tolerate differ as well. Negative results for such networks include the
impossibility of acknowledged radio broadcasting [5] (transmitting a message
from one special node called the source to all other nodes and informing the
source about its completion) and the lower bound of Ω(n log n) time complexity
for deterministic leader election [10, 17]. Our work can be seen as continuous
initialization with the extension that more information is available. New nodes
can join the network later and are given a label (position in the ID table). After
each round of our self-monitoring algorithm, these labels are updated and in
addition all nodes know which nodes have failed. Moreover, the ID table can be
used to designate a leader and all nodes are aware of the current network size.
In [1], a routing problem is studied in a multi-channel, single-hop, time slotted
scenario and energy is considered as well. However, the algorithm they propose
is not suitable for our application, since it requires a preprocessing phase of
O(n) time slots.

One of the problems underlying the monitoring problem is the dynamic
broadcast problem, where an adversary can continuously inject packets to be
delivered to all participants of the network, see [7] for (im)possibility results and
algorithms (nodes are assumed not to crash in this model).

The problem we solve can be viewed as a special case of the continuous
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gossip problem, introduced in [9] recently: an adversary can inject rumors as
well as crash and restart participating nodes at any time, yet the rumors need
to reach their destination before a deadline. The authors analyze the problem
in a message passing model with unbounded message size and no collisions and
devise an algorithm with a guaranteed per-round message complexity. Our
update items can be viewed as rumors that directly depend on the crashes and
restarts and the deadlines are related to the number of crashes and restarts in
a time interval.

3. Model

The network consists of a set of wireless nodes, each with a built-in unique
ID. All nodes are within communication range of each other, i.e., every node
can communicate with every other node directly (single-hop). New nodes may
join the network at any time, and nodes can leave or crash without notice.
To simplify the presentation of the algorithms and their analysis, we assume
time to be divided into synchronized time slots. Messages are of bounded size,
each message can only contain the equivalent of a constant number of IDs.
Messages between nodes are sent over so-called communication channels, or
just channels. If only one channel is available, we talk about single-channel
networks, otherwise multi-channel networks. We first assume that the number
of properly divided communication channels is rather large, a requirement we
drop later. The fluctuation of nodes in the network is called churn [23]. The
severity of churn is determined by the number of nodes joining/leaving per time
interval. We exclude Byzantine behavior and assume that as soon as a node
crashes, it does not send any messages anymore. Due to the churn, the number
of nodes in the network varies over time.

In each time slot a node v is in one of three operating states: transmit (v
broadcasts on some channel k), receive (v monitors some channel k) or sleep
(v does not send or receive anything). In the states transmit and receive, v
can choose an arbitrary channel k from all available communication channels.
A transmission is successful, if exactly one node is transmitting on channel k
at a time, and all nodes monitoring this channel receive the message sent. If
more than one node transmits on channel k at the same time, listening nodes
can neither receive any message due to interference (called a collision) nor do
they recognize any communication on the channel (this is known as no collision
detection). The energy dissipation of v is defined to be the sum of the energy for
transmission and reception (cf. for example [13]). Because in current embedded
systems transmitting and receiving consumes several orders of magnitude more
energy than sleeping or local computations, we set the energy consumption for
being in state transmit or receive to unity and neglect the energy used in state
sleep or for local computations. The nodes have sufficient memory to store an
ID table containing all IDs of currently participating nodes and execute the
provided algorithms. By nt we denote the number of entries in the correct ID
table at time t. Since nodes which just joined do not immediately know the
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whole ID table (due to the limited message size), we define an ID table with
entries for all nt positions to be good. Otherwise it is called fragmentary.

At any time, an adversary may select arbitrary nodes to crash, or it may
let new nodes join the network. In this case, all nodes should be aware of this
change and update their ID tables accordingly as soon as possible. However, the
adversary may not modify or destroy messages. Since messages are of bounded
size, nodes can learn at most a constant number of identifiers per message. As
each node can receive at most one message per time slot, with any algorithm it
needs at least cmin time units on average (for some constant cmin) until the nodes
know about one crash or join that just occurred. In other words, if on average
more than rate rmax := c−1min nodes crash (or join) per time unit, no algorithm
can handle the information (cf. [7] for the maximum tolerable average message
rate in a dynamic broadcast setting). In the following, we define an adversary
and monitoring algorithm accordingly. Crashes or joins that occur at the same
point in time are called a burst. Denote by b the number of crashes / joins that
happen in a maximal burst and by b̃ the maximal burst size that an algorithm
tolerates.

Definition 3.1 (c-Adversary, (c, b̃)-Adversary). We call an adversary a c-
adversary if it lets nodes join and crash arbitrarily as long as: 1. There re-
mains at least one node having a good ID table in the network at any time.
2. On average the number of adversarial joins / crashes is at most one node in
c time slots. The adversary has full knowledge of the algorithm and can coor-
dinate crash and join events with the aim of making the algorithm fail. A fixed
burst (c, b̃)-adversary is a c-adversary who lets at most b̃ nodes join or leave the
network during every period of c · b̃ time slots.

4. Monitoring Algorithm

In this section, we present the Monitoring Algorithm that solves the self-
monitoring problem and prove that it takes only a short time after a burst
happened until all nodes have updated their ID tables correctly. First we briefly
describe the different steps of an algorithm that works correctly if the maximal
size of a burst is upper bounded by a known value b̃ and explain how to use this
algorithm to obtain our Monitoring Algorithm that works for unknown burst
size b. After that we consider the different steps in greater detail.

The algorithm we propose is asymptotically optimal in the sense that it can
survive in a setting where on average one crash or join occurs in c time units,
for a constant c. We can tolerate bursty churn (a large number of nodes joining
or leaving during a small time interval). Similarly to an optimal algorithm, we
need time to recover from bursts since the number of newly joining (or crashed)
nodes is bounded according to the message size. The algorithm can also tolerate
churn while trying to recover from previous bursts; again the only limit is that
nodes can only learn about r := c−1 crashed or joined nodes per time unit
on average. Indeed, the adversary may crash all but one node at the same
instant (killing all nodes is a special case, leading to an initialization problem,
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which we do not address here). Clearly, learning about nodes that have left or
joined takes time, depending on the size of the bursts. If there is a burst of
β joins or crashes, an optimal algorithm needs at least β · cmin time until the
corresponding information at all nodes is up-to-date, for some constant cmin.
Our algorithm needs time β · c for some constant c > cmin. If bursts happen
while recovering from previous bursts, delays occur because more information
has to be distributed and the amount of information per message is limited.
In our algorithm the delay until all nodes are informed about all changes is
asymptotically optimal: the algorithm handles the maximum average rate of
churn any algorithm can tolerate in this communication model.

Our algorithm is partially randomized. However, randomness is only re-
quired for detecting new nodes since this part cannot be done in a deterministic
fashion. (This is because the number of joiners is not bounded at all. If nodes
want to join the network, they have to transmit their ID at some point, and
because the number of such potential joiners is unknown, they have to transmit
somehow randomly to break ties.) All other parts of the algorithm are deter-
ministic, which might be of interest in a setting where only updates on crashed
nodes are needed and no nodes join the network.

Main Theorem 4.1. There exists a monitoring algorithm that tolerates c-ad-
versaries with maximum burst size b with logarithmic additive overhead: O(b+
log nt) time slots after an event all nodes have updated the corresponding en-
tries in their ID tables. The number of channels needed for this algorithm is
O(nt/ log nt)

Remark 4.2. Nodes with fragmentary ID tables update their ID table as well
and learn the IDs of all nodes in the network in parallel to executing the mon-
itoring algorithm (see Section 4.6). Eventually they have good ID tables (see
Section 4.7). This takes at most Θ(nt) time slots, as we explain later (cf. in-
variant 4.3). Section 5 gives lower bounds and describes how to adapt the
algorithm for fewer channels.

At first, we describe a fixed burst monitoring algorithm Ab̃ which works

correctly if the burst size is in the order of b̃, algorithm 1. Then, from a
family of fixed burst monitoring algorithms fbma {Ab̃}b̃∈N that tolerate (c/4, b̃)-
adversaries we construct a monitoring algorithm B. Each Ab̃ might fail if the
churn is too large – since we do not know b beforehand, we derive an algorithm
B that adapts to the bursts by searching for a good value for b̃ with a binary
doubling search procedure.

From now on, we use the term “fbma” as an abbreviation for “fixed burst
monitoring algorithm”. Let us now consider the fbma Ab̃ for a fixed b̃ ∈ N, al-
gorithm 1. In order to work correctly if the bursts are smaller than anticipated
and to detect its failure it requires the following invariant.

Invariant 4.3. The ID tables of all nodes that have been in the network for
Θ(nt) time slots always contain the same entries. Nodes that joined more re-
cently know their position (according to the ascending order of the IDs) in the
ID table.
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To ensure that this invariant holds when starting the algorithm, we may
assume that at time 0 there is only a single designated node active, and all
other nodes still need to join. This leads to the same ID table at all nodes.

Theorem 4.4. If invariant 4.3 holds at the start, then for all b̃ ∈ N, fbma Ab̃
(algorithm 1) tolerates (c, b̃)-adversaries for a constant c. Furthermore each
node detects if the algorithm failed c · (b̃ + log nt) time slots after a stronger
adversary caused a burst larger than 2b̃. The energy consumption and the time
for detection is asymptotically optimal.

Proof. In brief, algorithm 1 repeats a loop consisting of six steps to main-
tain up-to-date information in the ID tables of the nodes. Each step is fully
distributed and does not need a central entity to control its execution. Subse-
quently, we call one execution of the loop of the fbma Ab̃ a round. We now
briefly describe each step of the algorithm and indicate its time complexity.
Detailed descriptions of the steps can be found in subsequent sections, and the
same applies to explanations of the time complexities.

Algorithm 1 Ab̃ for a fixed b̃ ∈ N

loop forever // same ID table (Inv. 4.3) at all nodes

1: partition nodes into sets of size O(b̃);
2: detect crashed nodes in each set on separate channels in parallel;
3: detect joined nodes;
4: disseminate information on crashed and joined nodes to all nodes;
5: stop if burst too large;
6: all nodes update their ID table;

Step 1 – partition nodes into sets: Nodes are divided into N ∈ O(1 +
nt/b̃) sets V := {S1, . . . , SN}. Based on the information in their ID table, the
nodes can determine which set they belong to by following a deterministic proce-
dure. Each set appoints nodes as representatives of the set and designates their
replacements in case they crash (details in section 4.1). No communication,
time complexity O(1).

Step 2 – detect crashed nodes in each set on separate channels:
Each set SI ∈ V executes an algorithm to detect its crashed nodes. No com-
munication between sets takes place. To avoid collisions each set carries out its
intra-set communication on a separate channel. To find out if any of the set
members in SI have crashed, each node sends a “hello” message in a designated
time slot. All other nodes of the set detect who did not send a message and
generate the information to disseminate: a list of so-called update items UI
(details in section 4.2). N channels necessary, time complexity O(b̃).

Step 3 – detect joined nodes: New nodes listen to learn the tolerated
burst size b̃ and when to try joining. They send requests to join to S1 with
probability 1/b̃. In expectation at least one node can join in a constant number
of rounds if the estimate b̃ is in Θ(b). Detected joiners are added to U1 together
with a note that they joined. After O(b̃+ log nt) time slots S1 decides whether
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the estimate b̃ needs to be doubled due to too many joiners. Its decision is correct
with high probability (whp), that is with probability greater than 1 − n−γt for
any but fixed constant γ (details in section 4.3). One channel necessary, time
complexity O(b̃+ log nt).

Step 4 – disseminate information on crashed and joined nodes to
all nodes: Now every set SI has a list UI of update items containing the
IDs of crashed and joined nodes in the set. To distribute this information,
each set becomes a vertex of a balanced binary tree and the representative
nodes communicate with the representatives of neighboring vertices in the tree
according to a pre-computed schedule. If a representative crashes, there are b̃
replacements to take over its job. No collisions occur due to the schedule (details
in section 4.4). N channels necessary, time complexity O(b̃+ log nt).

Step 5 – stop if burst too large: If the adversary is too strong, infor-
mation on some of the sets is missing, or more than b̃ nodes crashed or tried to
join. In this case, all nodes are notified and the execution of the algorithm stops
(details in section 4.5). N channels necessary, time complexity O(b̃+ log nt).

Step 6 – all nodes update their ID table: If the algorithm did not stop,
every node now has the same list U =

⋃N
I=1 UI and can update its ID table.

invariant 4.3 holds. No communication, time complexity O(1).

Remark 4.5. Newly arrived nodes do not know the ID table yet and have to
learn the IDs of all present nodes in asymptotically optimal time, described in
section 4.5. However, even with fragmentary ID tables they can participate
in the algorithm, see section 4.6.

While steps 1 and 6 are executed locally and hence the time complexity
is constant, steps 2–5 require communication between nodes. The following
sections describe the steps in more detail and examine their time complexity
as well as prove that the invariant 4.3 at the beginning of the loop holds (as
long as b is bounded by b̃ – otherwise the algorithm detects that it failed). The
number of channels used is N . If nt < 4b̃ + 4, only one set is constructed in
Step 2, and the dissemination step 4 as well as the step 5 to detect oversized
bursts can be simplified. Thanks to the definition of the adversary there is
always at least one node alive which has a good ID table. As a consequence a
proof for the case nt ≥ 4b̃+ 4 implies the other case, thus we focus on it in the
remainder of this paper.

A lower bound and the optimality of the algorithm’s energy consumption is
proved in Section 5.

Proof of Main Theorem 4.1. We construct a monitoring algorithm B from a
family of fixed burst monitoring algorithms fbma Ab̃ (algorithm 1). It ex-

ecutes algorithms Ab̃i from the above family with estimated values b̃i for b,

starting with b̃1 := log nt (we do not start with b̃1 = 1 because the running time
of A always exceeds log nt due to the dissemination step). If algorithm A detects
its failure, we know that an algorithm A tolerating (c/4, b̃i)-adversaries is not
sufficient and B doubles the estimated value of b to b̃i+1 := 2b̃i = 2i log nt. Let
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the adversary’s maximal burst be b. After at most log(b/ log nt) + 1 repetitions,
the algorithm A succeeds and so does B. The total time needed by B is at most

log( b
log nt

)+1∑
i=1

c

4
·(b̃i+log nt) <

c

4

log( b
log nt

)∑
i=0

2i+1 log nt ≤
c

4
·22 · b

log nt
·log nt = c·b.

The number of channels necessary is maximal for b1, i.e., at most O(nt/b1) =
O(nt/ log nt) channels are used.

Remark 4.6 (Adaptability). After a maximal burst of size b happened, the
above procedure always needs as much time as it needed for the big burst for all
later bursts. The algorithm can be modified to update a network the quicker the
smaller the current burst is by setting the estimate b̃ to b̃1 after every successful
update (proofs need to be adjusted slightly in a few spots).

4.1. Partition Nodes into Sets (Step 1)

Compute sets: If b̃ ≥ nt/4 − 4, the network forms one large set. If
b̃ < nt/4 − 4, let s := 2b̃ + 2 and partition the nt nodes into N := dnt

s e − 1
sets S1, . . . , SN . Each set is of size s, except SN which contains between s
and 2s nodes. The nodes are assigned to the sets in a canonical way, based
on their ID’s position in the sorted ID table {id1 < id2 < · · · < idnt

}. Set
SI is the set SI := {id(I−1)·s+1, . . . , idI·s} for 1 ≤ I ≤ N − 1 and SN =
{id(N−1)·s+1, . . . , idN ·s, . . . , idnt}. We denote the index of SI by a capital I and
call it the ID of the set. Let us denote the set of all sets {S1, . . . , SN} by V
(since the sets are the vertices of a communication graph in the dissemination
step 4). Note that there is no ambiguity in the mapping of nodes to sets and
thus we sometimes write SIv to refer to the set to which node v belongs to.

Compute representatives: In the subsequent steps, the sets communi-
cate with each other. To this end, representative senders and receivers are
chosen to act on behalf of the set. Moreover, for each representative, the
set appoints b̃ replacement nodes to monitor the representative and take over
if it crashes. Each set SI designates two sets of nodes consisting of b̃ + 1
nodes: Rsender:={id(I−1)s, . . . , id(I−1)s+b̃} and Rreceiver := {id(I−1)s+b̃+1, . . . ,

id(I−1)s+|SI |−1}. In each set we appoint the node with smallest ID to be the

representative sender / receiver of SI , denoted by rsenderI , rreceiverI . Its replace-

ments are the other b̃ nodes in Rreceiver and Rsender. The ith replacement node
of a representative (which is the node with ith-smallest ID of the corresponding
set) takes over the role of the representative in case the representative as well as
the replacement nodes 1 to i−1 crashed. Each node v can compute the index iv
of its ID in the ID-table. From iv the node v can compute the set SIv to which
it belongs. Then v can check easily if it is its set’s representative sender/receiver
or the ith replacement by looking at its position in the sorted ID table. The
replacement nodes listen in all time slots whether their representative is sending
or receiving messages in order to detect its failure and have the same knowledge
as the representative. Thus they are able to take over the representative’s role
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Algorithm 2 Crash Detection

1: compute index Iv of v’s set SIv based on idv;
2: UIv := ∅
3: for k := 0, . . . , |SIv | − 1 do
4: if iv = Iv · |SIv |+ k then
5: send “Im here!” on channel Iv;
6: else if no message received on channel Iv then
7: UIv := UIv ∪ {idIv·|SIv |+k};

immediately. To keep things simple we often write that “SI sends an update
item to SJ” instead of “the representative sender rsenderI of SI sends information
on some crashed or new node to the representative receiver rreceiverJ of SJ”. In
some cases the introduced notation of representatives is used to clarify what
exactly the algorithm does.

Remark 4.7. As no communication is necessary, the time complexity of Step 1
is O(1) and no channels are needed.

4.2. Detect Crashed Nodes in each Set in Parallel (Step 2)

Let the time slot in which the current round of the algorithm starts be t0.
All nodes that crash in time slot t0+1 or later might not necessarily be detected
during this execution of the loop but in the next one, i.e. at most O(b̃+ log nt)
time slots later. Each set SI detects separately, which of its members crashed.
Observe that if the estimate b̃ of b is correct, it is not possible that all nodes
in a set SI crash during the execution of a round. This is because there are at
least 2b̃ + 2 nodes in a set SI and the burst size is limited to b ≤ 2b̃. In the
case that b̃ is smaller than b a whole set Si could crash, but this is detected and
b̃ is increased as we show later. Set SI uses the channel I for communication
among its set members to avoid collisions with other sets. Each node v is
assigned a unique time slot to inform the other set members that it is still alive
(algorithm 2, lines 4–5). In all other time slots, v listens to the other set
members to determine crashed nodes, i.e., when v does not receive a message
in the time slot corresponding to a certain ID (line 6) it assumes that the node
with this ID has crashed and adds it to UI (line 7).

Theorem 4.8. When repeating algorithm 2 continuously, any crashed node
in the network is detected at most two rounds (O(b̃) time slots) after it crashed
unless the algorithm fails (this is the case that the estimate b̃ is too small).

Proof. There are O(b̃) nodes in each set, thus each set can complete the crash
detection in O(b̃) time slots. If there are N channels available, all sets can exe-
cute this algorithm simultaneously. If a node crashes after sending its message,
its failure is detected the next time algorithm 2 is executed.

If the burst is too large it can happen that all nodes of a set SI crash. The
algorithm detects this case in Step 5 (Stop if Burst too Large) and as the total
time complexity of the algorithm is O(b+ log nt) the following statement holds.
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Corollary 4.9. Using algorithm 1, it takes time O(b+ log nt) until a crash
is detected. Furthermore N channels are used (one by each set SI).

4.3. Detect Joined Nodes (Step 3)

Apart from detecting nodes that have disappeared, the network needs to be
able to integrate new nodes: Let j ≤ b̃ be the number of such joining nodes.
These nodes listen on channel 1 for a message containing the current number
of nodes nt and the estimated b̃. This message is sent by the representative of
set S1. When a joiner has received such a message, it waits for a time slot and
then tries to join by sending a message with its ID with probability p := 1/b̃
on channel 1. If there has not been a collision, the representative sender of the
set S1 replies to the successful joiner with a welcome message. Otherwise each
unsuccessful joiner repeats sending messages with this probability followed by
listening for a reply or a stop message in the next time slot. The representative
sender transmits a stop message after d′ · max(log nt, b̃) time slots for some
constant d′ depending on the error probability one can tolerate (see proof of
Lemma 4.10). The probability that a joiner is successful is constant if j < b̃
and hence the joiners attach to the network in a constant number of rounds in
expectation. algorithm 3 the behavior of nodes eager to join the network in
pseudo-code.

Algorithm 3 Join Algorithm

For new nodes that want to join

1: while attached = false do
2: repeat
3: listen on channel 1;
4: until received message “b̃ bursts, nt nodes”
5: p := 1/b̃;
6: loop
7: send message “hello, id” on channel 1;
8: listen on same channel;
9: if received welcome message then

10: attached := true;
11: else if received “stop joining” then
12: break;

Lemma 4.10. In expectation a node attaches to the network in less than 3.3
rounds if j < b̃.

Proof. Since j < b̃ the probability that a joiner is successful in a certain time
slot is at least 1/b̃(1− 1/b̃)j−1 ≥ 1/eb̃. Thus the probability that a joiner is the

only sender at least once during b̃ time slots is greater than 1 − (1 − 1/eb̃)b̃ >

1− e−e−1

> 0.3. Hence the expected number of rounds until a node has joined
is less than 3.3.
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Algorithm 4 Join Detection

For nodes in set S1 in the network

1: count := 0;
2: for k := 0, . . . , 4d′ ·max(lognt, b̃) do
3: if (iv = rsender1 and k mod 4 = 0 and k < d′ lognt ) then
4: send message “b̃ bursts, nt nodes” on channel 1;
5: else if received message from rsender1 then
6: count := count+ 1;
7: else if received message from joiner idj then
8: if iv = rsender1 then
9: send message “welcome” on channel 1;

10: U1 := U1 ∪ {idj};
11: if count ≥ 2d′ lognt

e2
(1− 2

b̃
) then

12: U1 := U1 ∪ {“b̃ too small”};
13: if iv = rsender1 then
14: send message “stop joining” on channel 1;

We now describe the procedure the nodes in S1 follow to detect if the current
estimate for b̃ is in the correct order of magnitude. The representative sender
rsender1 transmits messages on channel one every second time slot reserved for
the joiners until it tried d′ log nt times for some constant d′ to be defined later
(line 3 of algorithm 4). Hence, every second opportunity for new nodes to
join is blocked d′ log nt times. The other nodes in S1 count the number of times
the representative sender of S1 transmits successfully using the variable count
(line 6). If the nodes receive a message from a joiner with idj , the representative
sender replies with a welcome message (line 9). After this loop, the set decides
that b̃ is too small for the current number of joiners if count is less than a
threshold τ = 2d′ log nt · e−2 · (1 − 2/b̃) (line 11), and lets the other sets know
about this in the next step. To this end, all nodes in S1 insert an additional
update item to U1 which has the highest priority to be forwarded to all other
nodes. algorithm 4 describes the behavior of nodes of the network in pseudo-
code.

Using Chernoff bounds we show that this decision is correct w.h.p. This
procedure only prolongs the period until nodes are detected by a constant factor.
For the probability analysis of this procedure we use the following well-known
results:

Fact 4.11 (e.g. in [22]). For all y ≥ 1, |x| ≤ y the following holds:

ex ≥
(

1 +
x

y

)y
≥ ex

(
1− x2

y

)
Fact 4.12 (Chernoff-Inequalities, e.g. in [22]). Let X1, . . . , Xn be independent
Bernoulli-distributed random variables with Pr[Xi = 1] = pi and Pr[Xi = 0] =
1− pi. Then the following inequalities hold for X :=

∑n
i=1Xi and µ := E[X] =∑n

i=1 pi:
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(i) Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3 for all 0 < δ ≤ 1,

(ii) Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2 for all 0 < δ ≤ 1.

Lemma 4.13. For any constants d1, d2 > 0, there is a parametrization of the
algorithm such that the probability that S1 decides that b̃ is too small even though
there are fewer than b̃ joiners is n−d1t and the probability that S1 decides that b̃
is large enough even though there are more than 2b̃ joiners is n−d2t by choosing
d′ appropriately.

Proof. Let X be the random variable counting the number of successful mes-
sage transmissions for the representative sender of S1.

Case j < b̃. The expected value of X is

E[X | j < b̃] =

d′ logn∑
i=1

Pr[no joiner sends in slot i | j < b̃]

≥ d′ log nt · Pr[no joiner sends in slot 1 | j < b̃]

≥ d′ log nt

(
1− 1

b̃

)b̃
≥ d′ log nt · e−1

(
1− 1

b̃

)
≥ d′ log nt

2e
,

where the second inequality follows since nodes that appear newly in the
single-hop area during the join-detection do not participate (they do not know
b̃ and wait for the next time the join-detection step is executed). The last
inequality holds for all b̃ ≥ 2. We assume this to be true since b̃ ≥ log nt, which
is asymptotically larger than 2.
Due to Chernoff Bound 4.12 (ii), the probability that fewer than τ = 2d′ log nt ·
e−2 ·

(
1− 2

b̃

)
messages are received correctly is

Pr[X ≤ τ | j < b̃] = Pr[X ≤ (1− δ1)µ | j < b̃] ≤ e−µδ
2
1/2

with δ1 = 1 − τ/µ. The necessary conditions for Chernoff, i.e., 0 < δ1 ≤ 1,
can easily be validated. Because

δ1 = 1− τ

µ
= 1−

2e−2
(

1− 2
b̃

)
(

1− 1
b̃

)j ≥ 1−
2
(

1− 1
b̃

)2b̃
(

1− 1
b̃

)b̃ ≥ 1− 2e−1,

we write

Pr[X ≤ τ | j < b̃] ≤ e−µδ
2
1/2 ≤ e−γ1d

′ lognt ≤ n−d1t ,

for suitable constants γ1 and d′. By tuning the parameter d′, i.e. influencing
the number of transmission trials of the representative sender of S1, d1 can be
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made arbitrarily large, leading to an arbitrarily small probability and thus a
result w.h.p.

Case j > 2b̃. We observe that Pr[X ≥ τ | j > 2b̃] ≤ Pr[X ≥ τ | j = 2b̃], so
we upper bound only the latter probability. Again, we compute a lower bound
on the expected value of X:

E[X | j = 2b̃] =

d′ logn∑
i=1

Pr[no joiner sends in slot i | j = 2b̃]

= d′ log nt

(
1− 1

b̃

)2b̃

≥ d′ log nt · e−2 ·
(

1− 2

b̃

)
≥ d′ log nt · e−2 ·

2

5
,

where we used Fact 4.11, and the last inequality follows when we assume
that b̃ ≥ 5. As before, we assume this due to b̃ being at least log nt, which is
asymptotically larger than 5.
Using Chernoff bound 4.12 (i), the probability that more than τ = 2d′ log nt ·
e−2 ·

(
1− 2

b̃

)
messages are received correctly is

Pr[X ≥ τ | j = 2b̃] = Pr[X ≥ (1 + δ2)µ | j = 2b̃] ≤ e−µδ
2
2/3

where δ2 = τ/µ − 1. Again, the necessary conditions for Chernoff, i.e.,
0 < δ2 ≤ 1, are valid for b̃ ≥ 5. Because

δ2 =
τ

µ
− 1 =

2e−2
(

1− 2
b̃

)
(

1− 1
b̃

)2b̃ − 1 ≥ 2

(
1− 2

b̃

)
− 1 ≥ 1

5

for b̃ ≥ 5, we obtain

Pr[X ≥ τ | j = 2b̃] ≤ e−µδ
2
2/3 ≤ e−γ2d

′ lognt ≤ n−d2t

for suitable constants γ2 and d′. Due to the same reasons as in the latter
case, we have obtained a correct result w.h.p. This completes the proof that the
probability to make a wrong decision is very small and the nodes can determine
whether b̃ was chosen in the correct order of magnitude w.h.p.

Remark 4.14. As discussed in Section 2, there are energy-efficient size approx-
imation algorithms. However, letting an unknown number of nodes join cannot
be solved with the help of these algorithms, since they do not handle node failures
and they do not give high probability results for a small number of joining nodes.

After joining, the new nodes listen on channel 1 until the end of the current
loop. In addition, all nodes have to execute the algorithm described in Sec-
tion 4.7 to make sure that the new nodes have a complete ID table eventually.
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Remark 4.15. We could use more sets than one (currently S1) to listen to
joining nodes. As we only need to make sure that new nodes join in a constant
number of rounds and that the error probability is low, we use only the set S1

for the sake of simplicity.

4.4. Disseminate Crash/Join-Information to all Nodes (Step 4)

In the previous sections we discussed how each set SI detects crashed nodes
and accepts new nodes that want to join the network. This information is stored
in a (possibly empty) list UI of update items, where each update item consists
of the ID of the node it refers to and whether the node has crashed or joined
the network. This list UI needs to be distributed to all other sets. To this end,
the representatives of each set communicate with representatives of other sets
to compute the set U =

⋃N
I=1 UI of all changes in the network.

Theorem 4.16. If b ≤ b̃, the update items are disseminated within time O(b̃+
log nt) with algorithm 5. Otherwise, a failure of the algorithm is detected in
step 5.

Idea: First, the sets are mapped to vertices of a communication graph G (in
our case this is a tree1). This is done deterministically within each node and no
messages need to be exchanged. Second, neighboring sets exchange information
repeatedly until the information reaches all sets.

Definition 4.17 (Family of communication graphs). Let C be an infinite family
of undirected communication graphs CN = (VN , EN ) over N vertices which have
the property that the degree of each vertex is bounded by dN . Furthermore we
require that each CN can be computed deterministically only from knowledge of
N , as well as a function SN , where

sN : VN × {1, . . . , lN} −→ {1, . . . , N} × {1, . . . , N}
(v, t) 7−→ (κsend, κreceive).

This function SN determines a schedule sN of length lN that tells each vertex v ∈
V that it should send in time slot t ∈ {1, . . . , lN} on channel κsend ∈ {1, . . . , N}
(denoted by sN (v, t)1) and receive on channel κreceive ∈ {1, . . . , N} (denoted by
sN (v, t)2) respectively – in such a way that within lN time slots all neighbors of G
are able to exchange exactly one message (containing one piece of information)
with each other without collisions. The diameter of a communication graph CN
is denoted by diameter(CN ).

1We decided to present the algorithm in this slightly more general way such that it is
easy to replace the family of communication graphs. This is useful to handle unreliable
communication where information being transported from a leaf to the root is very unlikely.
Using expander graphs might help in this case, since they also have logarithmic diameter and
constant degree but are more robust: after a short time (say f(n)) the information is copied
to 2f(n)/O(1) nodes with not too small a probability. Compared to the tree, it is more likely
that at least one of the many copies of the information reaches the destination.
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Definition 4.18 (Trees). Let C := {CN | N ∈ N} be the family of rooted binary
trees over N nodes of height blogNc. In CN := (VN , EN ) we have the vertices
VN := {1, . . . , N} and for each vertex v ∈ VN \ {1} there are edges (v, bv/2c)
and (bv/2c, v) connecting v to its parent bv/2c.

Lemma 4.19. A schedule sN of length 4 can be computed deterministically for
any member CN of the above tree family.

Proof. Each node v in odd levels of the tree (that is blog2(v)c is odd) exchanges
one message (both ways) with child 2v in the first time slot and with child 2v+1
in the second time slot – observe that children are in even levels. Then each
node v in even levels of the tree exchanges one message (both ways) with child
2v in the third time slot and with child 2v + 1 in the fourth time slot. Every
node u sends only on its own channel u to avoid collisions – receivers tune to
this channel. The complete schedule is given by

sN (v, 1) =

{
(v, 2v) :blog2(v)c odd
(v, bv/2c) :blog2(v)c even

sN (v, 2) =

{
(v, 2v + 1) :blog2(v)c odd
(v, bv/2c) :blog2(v)c even

sN (v, 3) =

{
(v, 2v) :blog2(v)c even
(v, bv/2c) :blog2(v)c odd

sN (v, 4) =

{
(v, 2v + 1) :blog2(v)c even
(v, bv/2c) :blog2(v)c odd

If a channel (vertex) on (to) which a node v should send or listen is not in the
range of {1, . . . , N}, then v can be sure that the corresponding node does not
exist and just sleeps in this slot – this happens for the root and the leaves.

Corollary 4.20. The family of trees C := {CN | N ∈ N} from definition 4.18
combined with the schedules sN from lemma 4.19 is a family of communication
graphs, where the diameter diameter(CN ) of CN is 2·dlog nte, the degree of each
node is bounded by dN = 3 and the length of any schedule sN is 4.

We now describe the algorithm in more detail.
In the first part of the algorithm, all nodes start with the same good ID

table, what we can assume according to invariant 4.3. From the information
nt stored in the ID table, each set v of the N sets computes deterministically
without communication (line 1) the communication graph G := CN as well as
the schedule SN of length lN .

The second part consists of O(diameter(G) + b̃) phases (one send or receive
operation, described in lines 3–10 for the representative sender and lines 2–
7 for the representative receiver of Algorithm 5), each of lN + dN time slots.
During each phase each vertex is able to send one update item to each of its
(at most) dN neighbors and receive one update item from each of its (at most)
dN neighbors. This communication takes place by adhering to the previously
computed schedule sN of length lN . Thus in each phase each vertex exchanges
messages with its neighbors by letting its representatives follow Algorithm 5.
The vertices maintain two lists of update items. In the first list U are the items
the set knows of, while the second list U ′ contains the items it has forwarded
already. In the first of all phases, the first list is set to U := UI , the list of
the IDs determined in the detection step, and the second list U ′ := ∅ is empty
(line 3). After the completion of the second part, U equals U ′ and contains all
items. In each phase, set SI sends the information of the lowest ID in U \ U ′
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Algorithm 5 Deterministic Dissemination

Sender:

1: compute schedule sN for G := CN := ( {S1, . . . , SN}︸ ︷︷ ︸
vertices VN

, EN︸︷︷︸
edges

);

2: U ′ := ∅;
3: for t = 1, . . . , diameter(G) + b̃ do
4: for j = 1, . . . , lN do
5: itemsend := minitem∈U\U′{D}

or “no news” if U empty;
6: send itemsend on channel sN (Iv, j)1;
7: U ′ := U ′ ∪ {itemsend};
8: for j = lN + 1, . . . , lN + dN do
9: receive item itemreceive on channel Iv;

10: U := U ∪ {itemreceive};
11: send U on channel Iv;

Receiver:

1: compute schedule sN for G := CN := ( {S1, . . . , SN}︸ ︷︷ ︸
vertices VN

, EN︸︷︷︸
edges

);

2: for t = 1, . . . , diameter(G) + b̃ do
3: for j = 1, . . . , lN do
4: receive itemj on channel sN (Iv, j)2;
5: for j = lN + 1, . . . , lN + dN do
6: send itemj on channel Iv

unless it is “no news”;
7: U := U ∪ {itemj};

to its (at most) dN neighbors and receives (at most) dN update items from its
dN neighbors. Depending on the outcome of each phase, the lists U and U ′ are
updated.

See Algorithm 5 for a description in pseudo-code.
First we show that exchanging messages with neighboring vertices is possible

for two representatives in each set within time lN + dN if none of them crashes
(lemma 4.21). We argue later in lemma 4.23 that we can tolerate b̃ crashes
during the execution and in section 5 we establish a time/energy/channel
trade-off for fewer channels.

Lemma 4.21. All sets transmitting update items to their (at most) dN neigh-
bors and receiving (at most) dN update items from their (at most) dN takes time
lN + dN when the number of channels N is equal to the number of sets and no
node crashes.

Proof. We adhere to the schedule sN . As we noted before, all nodes computed
the same graph G and schedule sN such that all global communication activities
are consistent with the local computation of v. This takes lN time. Afterward
the receiver rreceiverI reports the newly received update items (there are at most
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dN , one from each neighbor) to rsenderI on the set’s channel I during time slots
lN+1, . . . , lN+dN of this phase (lines 5–6 of the receiver’s part). rsenderI receives
this information and adjusts U and U ′ accordingly (lines 8–10 of the sender’s
part). All these computations happen in a deterministic way based on the same
information (stored in each node) and yield the same schedule for the whole
graph in each node.

Observe that no set (vertex) crashes completely as the adversary is bounded
to let at most b̃ nodes crash during the execution of the algorithm. Hence there
are b̃ nodes ready to replace the representatives. In lemma 4.23 we prove that
repeating the procedure from lemma 4.21 O(diameter(G) + b̃) times leads to
full knowledge of U . First we prove a weak version of this lemma (lemma 4.22).
We extend this lemma to hold despite crashes during execution (lemma 4.23).

Lemma 4.22. All vertices can learn the set U that contains all update items
after O((diameter(G) + b̃) · (lN + dN )) time slots if no nodes crash during the
execution of this algorithm.

Proof. W.l.o.g., let U := {item1, . . . , itemb̃} be a sorted list of update items.
By induction on i we prove that itemi is known to all vertices SI in G after
O((diameter(G) + i) · (lN + dN )) time slots of executing algorithm 5 if no
nodes crash during the execution.

Base case i = 1: Any representative v that receives item1, always immedi-
ately communicates item1 to its neighbors in the next phase since item1 is the
first item in v’s sorted list U \ U ′. Thus item item1 has been broadcast to all
nodes after diameter(G) + 1 phases if no nodes crash during this computation.

Inductive step i → i + 1: Let us assume the induction hypothesis for i.
Item itemi+1 can only be delayed (in line 5 of the sender’s part) by items with
smaller indices. Let itemj be the item with the largest index that delays itemi+1

on any of the shortest paths to any of the vertices in G. Then itemi+1 is known
by all vertices in G one phase after itemj . By the induction hypothesis, this is
after diameter(G) + j + 1 phases. We remember j ≤ i to obtain the induction
hypothesis for i+ 1.

Lemma 4.23. lemma 4.22 remains true even when up to b̃ nodes crash during
execution.

Proof. If a representative crashes during the dissemination step (either a sender
or a receiver), a replacement node realizes the crash of its representative at
most one phase later since the replacement is listening to all actions of the
representatives and thus detects whether it sent all messages it was supposed
to send. If it did not send a message during a phase it must have crashed and
the next replacement node steps up to be the new representative (in case no
information needs to be sent by a representative in a time slot it does not matter
whether it crashed). This is possible since the replacement nodes have exactly
the same information as the representative and know when the representative
should send what message. For the same reason they are able to know how
many replacements happened before and thus when it is their turn to jump in
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to retransmit the necessary message in the next phase after the crash. Since at
most b̃ nodes can crash, there are never more than b̃ retransmissions necessary.
This can lead to a delay of at most b̃ phases and the statement follows.

Proof of theorem 4.16. We combine lemma 4.22 and lemma 4.23 as well
as use the fact that in the communication graphs provided by the tree fam-
ily from corollary 4.20, for all values of N ∈ N we have diameter(CN ) =
O(log nt), dN = 3 and that the schedule-length of sN is lN = 4.

As a consequence, all representatives and replacements of SI know all the
update items available after O(log nt + b̃) time slots. Thus all nodes in any
set SI are aware of all crashed and new nodes at the time when the algorithm
started (and also of some crashes/joins that happened during the algorithm’s
execution, but not necessarily all of those). N channels are used (one for each
set).

4.5. Stop if Burst too Large (Step 5)

In this step, the sets determine whether the algorithm failed due to too
large a burst – that is more than b̃ nodes joined or crashed (within time cb̃). To
distinguish sets that do not have any information to forward from sets of which
all members crashed, we let each set SI send “I’m here!” in its scheduled time
slots without new information to be sent.

Theorem 4.24. If b > b̃ then O(log nt + b̃) time slots after the dissemination
step all nodes have the same information: Either they have noticed that the
burst is too large and stopped the execution or all have the same information on
network changes.

Proof. Set S1 knows with high probability if too many nodes tried to join and
forwarded this information in the dissemination step. Thus all nodes are aware
of this event at the end of step 4 of the fbma Ab̃ if it occurs: if the decision
of S1 is wrong, the algorithm still works properly, it just takes longer until all
nodes which join the network are included, however, all nodes receive the same
information.

If one or more sets SI completely crash before or during step 4, its neighbors
immediately know that more than b̃ nodes crashed and the algorithm might
fail (e.g. the communication graph might be disconnected and not all nodes
have been delivered the same information). The neighbors of SI then broadcast
this information through the communication graph with highest priority. Even if
further sets crash completely and the failure message originated by the neighbors
of SI does not reach all sets, the neighbors of the other crashed sets start
propagating such a message through the network as well. After O(log nt + b̃)
phases (one send or receive operation constitutes a phase, described in lines
3-10 for sender and lines 2-7 for receiver of Algorithm 5) all representatives
are informed if one or more sets did not receive all the information: If no set
crashed then after log nt + b̃ phases all sets have all the update items. If a set
crashes before all sets have this information, then log nt + b̃ phases later all
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sets are informed of a failure, no matter how many sets crash now. If a set
crashes afterward, the update information has reached all sets already and thus
all surviving sets can continue with this information.

The last possibility of an adversary to disturb the self-monitoring process
consists in letting more than b̃ nodes crash even though all sets survive. By
extending the dissemination phase by a constant number of time slots, we can
ensure that all sets notice if more than b̃ update items have been disseminated
and conclude that the adversary exceeds the bound of b̃. Therefore, also in
this case a potential failure of the algorithm is known to all nodes after the
dissemination step. Thus, the algorithm guarantees that all sets have the same
set of update items at the end of a successful round if it did not stop the
execution.

4.6. Participating with a fragmentary ID Table

Note that the joiners can already participate in the algorithm without know-
ing the whole ID table: When a new node v is detected by the network, the node
that is the oldest in the network according to the timestamp (ties are broken
by ID) tells v the smallest ID of a node w in the network that is larger than v’s
ID. This is possible since the oldest node is guaranteed to have a good ID table.
Joiner v now assumes to have this position in the ID table. After the dissemina-
tion step has finished, node v determines the number c< of crashed nodes with
IDs smaller than v and subtracts c< from its assumed position. Then v counts
j<, the number of nodes that joined the network with an ID smaller than itself
and adds j< to its assumed position. Thus there is only one node in the network
assigned to a position in the ID table after updating the ID tables based on the
information gathered in the dissemination step. Knowing this position in the ID
table allows the joiner to participate in all the necessary algorithms: partition
/ crash and join detection / information dissemination. In the next section we
describe how the new nodes can fill their ID table with entries for the existing
nodes.

4.7. Learning the ID Table

In order to allow new nodes to learn the IDs of the nodes that are already
in the network, the existing nodes alternately transmit their IDs and the time
slot when they arrived on channel 1. This process can be interleaved with the
execution of the monitoring algorithm, i.e., odd time slots can be used for the
monitoring algorithm while even time slots are reserved for getting to know all
existing nodes. The sequence in which the nodes announce their presence is
ordered by the timestamp of their arrival (in case of ties by their ID) as stored
in the ID table. Let us consider joiner j which attached to S1 in time slot t. Let
the number of nodes currently in the network be nt (this number includes the
nodes that have joined in previous rounds and are not yet announcing their ID
at time t). In the following node j listens to the announcements in even time
slots and enters the information obtained into its ID table. As soon as a joiner
j receives such an announcement for the second time, it starts announcing itself
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at the appropriate point in time. To make sure that j learns those nodes that
joined shortly before j and have not inserted themselves into the announcement
procedure during the first traversal of the sequence, joiner j keeps listening until
it hears an announcement for the third time. Observe, that there is always a
node that announces itself three times as long as we set c to be larger than 6
(since then not all nodes can crash during this period of time). This guarantees,
that joiner j learns all the IDs of nodes in the network and this procedure is
completed in O(nt + b) time slots. At the same time it is informed about nodes
that crashed or joined during the time it learned the ID table and can update
it continuously. Now j’s ID table contains all IDs and is therefore a good ID
table. The future time slots it has to announce itself can be computed internally
based on the information in the ID table.

5. Lower Bound and Trade-Offs

Until now the algorithm is asymptotically optimal up to an additiveO(log nt)
term due to being linear in b for b = Ω(log nt) as we need at least b time to
disseminate b information items. The following lemma shows that also the
additive O(log nt) term is necessary.

Lemma 5.1. In order to detect which nodes crashed without mistakingly declare
an active node as missing any (randomized) algorithm using k or fewer channels
has time complexity Ω(nt

k ).

Proof. We prove the lower bound for algorithms solving the simplified problem
of detecting which node crashed in the case that exactly one node v chosen
uniformly at random fails. Showing a lower bound for this case implies a lower
bound for the self-monitoring problem, since this reflects the case b = 1, which
needs to be covered.

Up to a constant factor, the only way to be sure a node u has not crashed is
to receive a message sent by u. Thus if u does not send a “hello” message in the
time slot assigned to it, one can assume it crashed. As there is no mechanism
available for collision detection, we can use techniques where several nodes use
the same channel simultaneously only in a very limited way, especially since
there is exactly one node that crashed: It is possible to obtain a speed-up of
two by asking pairs of nodes to send a message in each time slot. Since we know
that exactly one node crashed, there is exactly one node that can transmit a
message successfully (the messages of other pairs collide) and we can derive
which node did not send. However it is not possible to get a higher speed-up –
assume more than two nodes are sending on the same channel, then no matter
whether one of them crashed or not there will be a collision and we cannot
derive which node crashed. This also implies that there is no better solution in
a randomized setting.

Thus (when ignoring constant factors) any algorithm must ensure that for
each node ui there is a time slot and a channel to send its “hello” message
successfully without collisions. Let X be the random variable denoting how

21



many nodes an algorithm did not listen to before finding the crashed node v
(i.e., not receiving a message from v in the time slot assigned to it). Since the
crashed node v was chosen uniformly at random, any algorithm does not listen
to E[X] = nt/2 nodes in expectation.

Using the Markov inequality stating that Pr[X ≥ λ · E[X]] ≤ 1/λ we derive
Pr[X ≥ nt

2 ·
3
2 ] ≤ 2/3 which implies that there is no Monte-Carlo algorithm

working correctly with probability greater than 2/3 and that needs to check
fewer than nt − 3 · nt/4 = nt/4 nodes.

The above does not take into account the fact that we should not mistakingly
declare an active node as missing. Remark that this would only increase the
lower bound and thus we do not take care of this anymore. Since on each of the
k channels we can only check one node at a time, we need Ω(nt

k ) time to check
Ω(nt) nodes.

The previous analysis implies that the time complexity of our algorithm
is asymptotically optimal for all values of b, since the monitoring algorithm
presented in this paper uses only O (nt/ log nt) channels and any algorithm
needs Ω(log nt) time in this case.

Now that we have a lower bound depending on the channels, we are interested
in a trade-off for the time complexity upper bound that arises if the number
of channels and the energy available are limited. In the presentation of our
Algorithm 1 we need one channel for each of the sets (in step 2 the sets use
a separate channel each for communication within the set, in step 4 and 5
the same channels are used for inter-set communication, in step 3 only one
channel is used). So far we assumed that there are as many channels available
as there are sets, i.e., the number of channels used is Θ(maxtime t(nt/ log(nt))).
This is due to the fact that each iteration of the monitoring algorithm starts
with b̃1 = log nt and thus needs O(nt/ log nt) channels, one for each of the
N = dnt/(2 log nt + 2)e − 1 sets. Since in typical wireless networks the number
of channels is fixed, we show now how to modify our algorithms to work for
networks with k channels.

Lemma 5.2. For (c, b̃)-adversaries, the fbma Ab̃ (Algorithm 1) implies a
trade-off between the time complexity and the number of channels necessary for
known b̃, i.e., the time complexity is O(b̃ + log nt + nt

k ). For b̃ > log nt this
trade-off is asymptotically optimal.

If only k channels are available and the burst size b is unknown, the fbma

family {Ab̃}b̃∈N implies a time complexity of O
(
b+ log

(
b

lognt

)
nt

k + nt

k + log nt

)
for a monitoring algorithm.

Proof. Each time slot of step 2 and 3 of the algorithm is spread across dN/ke
time slots: set SI is assigned to channel I mod k and executes the correspond-
ing action in the dI/keth time slot. In all other time slots the nodes of the set
sleep. The schedule for step 4 is stretched analogously and adapts the assign-
ment of channels and time slots for transmission and reception. Apart from
time slots when a transmission or reception of the set is scheduled all nodes
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of the set sleep. Thus each round of Ab̃ takes a factor dN/ke longer. Since

one round of the algorithm with N channels is completed in O(max(b̃, log nt))
and N ∈ O(nt/max(b̃, log nt)), the time complexity with k channels is thus
O(b̃ + log nt + nt/k). This is asymptotically optimal, because of the capacity
of a k-channel medium. Every node needs an opportunity to successfully send
an “I am still here” message, which cannot be achieved in fewer than Ω(nt/k)
time slots. If fewer time slots are available, some nodes are mistakenly assumed
to have crashed. For the dissemination of the information at least Ω(b̃) time
slots are necessary, because nodes can only receive messages on one channel at
a time.

We can derive the result for unknown burst size analogously by modifying
the proof of Theorem 4.1. If b < log nt, only one round is executed, which
leads to a runtime of O(log nt + nt/k). If b ≥ log nt, as we have just shown the
time for one execution of the loop rises from O(bi) to O (bi + nt/k) and thus

log( b
log nt

)∑
i=1

O
(
bi +

nt
k

)
=

log( b
log nt

)∑
i=1

O
(

2i+1 log nt +
nt
k

)
= O

(
2log

b
log nt log nt + log

(
b

log nt

)
nt
k

)
= O

(
b+ log

(
b

log nt

)
nt
k

)
.

Hence, in the case of a bounded number of channels k and unknown burst

size b we obtain an overall runtime of O
(
b+ log

(
b

lognt

)
· nt

k + nt

k + log nt

)
.

Apart from its resilience against c-adversaries, we measure an algorithm’s
quality by its energy usage. Note that all our algorithms are energy-balanced
in the sense that the highest energy consumption among all nodes is only a
constant factor larger than the lowest energy consumption. So far, we focused on
algorithms that detect missing or new nodes and disseminate this information in
as few time slots as possible. To this end, the nodes are either in state transmit
or receive in a constant fraction of the time slot. We now analyze scenarios
requiring that the radio communication system of each node is on during at most
e time slots in every interval of T ≥ max(e, c ·b) consecutive time slots. In other
words a delay of a factor T/e is tolerated in exchange for prolonged network
lifetime. We define the energy consumption et of an algorithm associated with
time slot t to be the maximum energy consumption of all nodes m ∈ M over
the next T time slots. Additionally, let σi(m) ∈ {transmit, receive, sleep}
denote the state of the node m in time slot i. Then et is formally given by

et := max
m∈M

|{i | σi(m) ∈ {transmit, receive}, t ≤ i < t+ T}|.

A lower bound on the energy consumption for a burst of size b is Ω(b), since every
node has to listen to a channel during at least Ω(b) time slots to be informed
about all events. Thus algorithms with a maximum energy consumption O(b)
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are optimal. We now show how to modify our algorithms for optimal energy
consumption.

Theorem 5.3. By adding dT/2 − c · b/2e time slots at the end of each round
of the fbma Ab̃ we can construct monitoring algorithms with optimal energy
complexity for T ≥ c · b.

Proof. One round of the fbma Ab̃ consists of db̃ · c/2e time slots to guarantee
that every node of the network is updated at most two rounds after an event
happened. In the time slots added at the end of each round, all nodes sleep.
Thus the additional time slots ensure that all update items have reached all
nodes in T time slots while at the same time the energy consumption is kept at
c · b. This implies that we can modify the monitoring algorithm as constructed
in Theorem 4.1 as well to guarantee that time and energy complexity are
optimal.

6. Conclusion

This paper presents an algorithm that notifies the participants of a wireless
network of crashed and new members. This algorithm can be used as service
to build applications that rely on the nodes to have a consistent view of the
network. Despite the fact that we considered nodes without the possibility to
distinguish collisions from noise on the channel, the algorithm reacts to events
fast and continuously adapts to the number of nodes that fail or arrive. Apart
from the procedure for joining nodes, which is inherently randomized, the algo-
rithm is deterministic and ensures that the participants exchange few messages
in order to save energy. Open problems for future work include to further
explore multihop networks, to extend the algorithm to cope with adversaries
that prevent communication on certain channels (jamming) or to investigate
the possible speed up if larger messages can be transmitted.
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